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Four-Mass Kinematics for Regge Crossing*
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We investigate the kinematics of two-particle —to-two-particle scattering for the purpose of Regge cross-
ing. The boundaries of the physical regions for all three channels are given by a single equality, [z, l

= lz, l=
l
z

l
= 1, which is not the case for two different-mass and four equal-mass processes. In both the z and I

physical regions,
l

z& l
is larger than or equal to 1, and has a maximum whose value increases with increasing

energy. At the same time, the position of this maximum approaches the forward direction as the energy
increases. (Similar statements can be made about s, in the I and e channels, and s„in the s and t channels. )
There exist three singular points in either the forward or backward directions for two channels at definite
scattering energies for which one of z„sf,or s„is indeterminate.

I. INTRODUCTION

HE Regge analysis of scattering experiments in
which all four particles have diferent masses is

made dificult by the complexity of the kinematics. This
problem was investigated some time ago, ' and the
general features of the kinematics are well known. Here
we are interested mainly in those aspects which will be
used in Regge crossing. In particular we discuss the
behavior of the three angle variables in the s, $, and I
channels on the Mandelstam plane. We have applied
the results of this paper to a Regge analysis of the
reaction zr +p —+ tf+m. s

In the scattering of four equal masses the physical
regions are de6ned by s= /= I=0. In the two-equal-
mass case in which the t channel is 2m ~ 2', they are
given by 1=0 and the two branches of the hyperbola
su= (M' —ms)s. In the four-unequal-mass case a single

expression, a trinomial in s, t, and I de6nes the physical
regions. In addition, on the boundaries of a particular
channel not only is the cosine of the scattering angle of
this channel ~1, but the cosines of the angles of the
other two channels are also ~1.As mentioned before,
this result does not hold if there are only one or two
diferent masses. As a consequence of this feature, both
in the forward and backward directions it is necessary
to evaluate the Legendre functions P„(s)which appear
in the Regge representation at all energies rather than
use their asymptotic expansions.

In Sec. II we de6ne the variables and in particular
the angle variables. %e have included this section for
the sake of completeness even though these formulas
are well known. In Sec. III we discuss the boundaries
of the physical regions in terms of the angle variables.
We also investigate the indeterminacy points, their
number, and the relation between the mass ordering
and the distribution of these points among different
channels. In Sec. IV we discuss the behavior of the
angle variables inside and. outside the physical regions.
of particular interest for Regge crossing is their be-
havior at 6xed energy and the change in this behavior
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as the energy changes. In Sec. V we give a procedure for
determining the behavior of the angle variables on the
Mandelstarn plane for any reaction.

st ——(Ms—ms)', ss= (Mt —mt)',

sz ——(Mt+mt)z, r4= (Ms+ms)'.

The 4-momenta of the particles taking part in the
scattering are called p; and P, (z=i, 2) (see Fig. 1).
They satisfy the following relations

pi+ ps+Pt+Pz =0, (2.1)

p„s=m,s, P,z=M, s (z= 1, 2). (2.2)

For convenience we de6ne the quantity Z to be
mP+mss+MP+Mz'. The Lorentz tnvanant vanables
are given by

s= (pt+Pt)'= (ps+Ps)',
&= (pt+ pz)'= (Pt+ Pz)', (2 3)

zz= (pt+Pz)'= (pz+Pr)',

(2.4)

The s channel corresponds to the reaction

mt+Mt —+ ms+Ms.

In this case the 4-momenta and the Mandelstam vari-
ables are

p& ——(et,p„0,0), Pt ——(Er, —p» 0, 0),
—pz

——(ez,q, cose„q,sino„0),

Pz (Es, —q, cos0„——q, s——in0„0),
s= mts+Mtz+2etEt+2P, '=mss+Msz+2ezEz+2qgs,

f=mts+mzs —2etez+ 2Pgqgsg ) (2.5)

zz=ms +My 2Etez —2p~q~sg ~—
where all quantities are defined in the center-of-mass

system. s,= cos8, is the cosine of the scattering angle in

the s channel, e, and E; are particle energies, and p, and

q, are the magnitudes of the 3-momenta before and
after the scattering which are given by

(S—Sz) (S—Sz) (S—St) (S—S4)

P,z=- —, q.s=, (2.6)
4s 4s



Fn. j.. Diagram defining 4-momenta
of scattering particles.

Eliminating pg and qg in the equation for s, we find that

»2+2»s »Z—+ (m P m—P) (MP M—P)
Sg

L(»—»1)(t—t )(t—»3)(t—t )j'»'

(u ——,'Z)' —(s—~Z~)'+ (mP —mm') (MP—MP)
(2 12)

I.(t-t )(t-t )(t-t )(t-«) j'»'

The corresponding equations for the e channel,

m2+MI —+ m1+Mm,

The ordering of the s,'s is taken with the reaction
+P ~ g+u 'ill xIllnd. II1 tllls case $1($2(ss(sg. For

other reactions the ordering may be diferent, but there
is no loss of generality.

If p, and q, are eliminatedfro m the equation for u,
one obtains

—s' —2su+sZ+ (Mp —mp) (MP—mu')

I (s—»)(s—")(s—s){s—s)~'"

(u ——,'Z)' —(t—-,'Z)'+ (Mp —mp) (Mp —m21)
(-' 8)

L(.—.,)(.-")(- )(- )j'"
The t-channel reaction is'

(2.13)

{u—uI) (u —ug) (u —u2) (u —ug)
(2.14)

4@

&I——(L,", —p„0,0), pg
——(e,",p„,0,0),

—PI= (eI",g„cos8„,q„sin8„,0),
—&2= (E2", —q„cos8,—q„sin8„,0),

u= mP+MP+2e2"EI"+2P„'

=m p+M p+2eI"E2"+2g„',
S=mp+M p 2e1"EI"——2p„g»„S„,

mI +m9 2eI e2 +2pggI»ggsgg )

m1+m2 ~ MI+Mg.

(Because the masses of particles and antiparticles are
the same we make no distinction between Mi and, say,
3fI. Thc results of tIBS papcI d.epcnd solely on the
numerical values of the masses. ) The variables now are

p.=(.',p 0,0), p.=( ', -p. 0. 0)

u1 ——(MI—mg)', ug= (M2 —mI)~,

u3= (Mm+m1)', ug ——(MI+m, )g.

The relation between z„,I,, and u is

u'+2tu —uZ+ (MP —m2') (MP —mP)
8@

I (u—u1) (u—ug) (u —u3) (u—ug) jI»'

(2.1S)

I I= (EI,Ilg CO—S8gggfg S1118g,0),

P2= (E2 )
—

g
—
g cos8g, —

g g s1118g, 0),

t=mP+mP+2eI e2+2PP

=MP+MP+2EI'Em'+2qP,

u =m2 +M/ —2em EI —2Pgggsg
„

s= mP+MP 2eI'EI'+2Pgqgsg, —
(2.9)

(s——,'Z)' —(t—~Z)'1 (M '—mP) (M,'—mP)
. (2.16}

L(u —uI) (u—ug) (u—u&) (u—u4))»'

III. BOUNDARIES OP THE PHYSICAL REGIONS

The physical region for the s channel is defined by

Stt ~~I
q S~~S4

(and similarly for the t and u channels). The equation
for its boundary can be derived from Eq. (2.8). It is
Stt 1 e

(2.10)

tI= (MI—Mm)', »2= (m1—ma)',

tg ——{m1+m2)', tg= (MI+Mu)'.

'The $-channel equations can be obtained from the s-charl~ej
ones by the replacements s~k~l ~s, MI~m2 —+%2 —+3III,
z, —+ —zt. These are more complicated than the usual ones
(s ~ t, 3fI ~m2) in order that the ordering of s;, t;, and I; be
preserved, arid for the sake of clarity the three sets of' equations
are written out completely. Yo get from I to e channels, the
replacements are s-+S-+e~s, mI-+N~-+m~-+ p@1, z&-+z„.

stu+s(MP mP) (MP—mP)+—u(MP —mP) (MP mP)—
(MPMP mP—m2') (MP+—M22 mP mP) =0.—(3.1—)

The boundaries for the t and I channels are given by
s2 —j.

stu —t(MP —mP) (MP —mP) —s(MP —MP) {mP—mP)—(MPmP —MPmP) {MP—MP —mP+m2g) =0; (3.2)

SQ„ I e

stu+u(M2' —Mp)(m, '—m.p) —t(Mp —m 2)(M 2 m 2)
—(M22mm' —Mpmp)(Mp —Mp+mp —mp)=0. (3.3)
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FIG. 2. Mandelstam diagram for four diferent mass particles.
The three solid curves are the boundaries of the physical regions.
The triplets specify the values of z„z&,and z . (For example,
+, —,+ means that z, =+1,zt= —1) and z =+1.) a means that
the value of a particular variable is not constant. This figure is not
drawn to scale, but is only meant to bring out the important
features.

If the terms linear in u in Eqs. (3.1) and (3.3) are
eliminated by using N=Z —s—t, it is found that all
three expressions are identical. That is, the boundaries
of the physical regions for all three processes are given
by the same equation, e.g., ~s,

~

= ~s,
~

= ~z
~

=1. We
shall now describe the behavior of this curve in the
s, t, I plane.

Figure 2 is a graph of Eqs. (3.1), (3.2), and (3.3)
corresponding to the case where the masses satisfy

my &m2&3f g &M 2

(WhiCh are SatiSGed fOr the reaCtiOn 2r +p -+ 2t+22).
The main features of Fig. 2 are the three open curves

and a loop in the unphysical region where s, t, and I are
all positive. These curves are tangent to the twelve
lines

s=s„ t=t„u=u; (2=1, 2, 3, 4)

at twelve points. Three of these points labeled 2, 8, C
on the diagram correspond to the thresholds for the
three channels. Three other points labeled D, E, Il are
the extrema of the boundaries of the physical regions
in s, t, or I directions.

It is seen that the s channel has only one such point
(F), the t channel none, and. the u channel two (D
and E). From the form of the Eqs. (3.1), (3.2), and
(3.3), as well as the ordering of the masses which is
related to the de6nitions of the channels, one can show
the following:

s= $2)

s= $3)

3fg
—mg

(3.4a)
ml(M2 Ml )+Ml(m2 ml )

)
M1+m1

m2(M p —M22)+M2 (m p m2')—
s= $4)

M2+m2

Ml(M2 ml )+M2(m2 Ml )
F&: t=t~, zsI; ————

SI2—3Eg

m, (mP —3/I P)+ m2( M22 —mP)

(3.4b)
m1(M1 m2 )+m2(M2 ml )S=

m2+m1

Ml(ml M2 )+M2(m2 M1 )8: t= t4) Ng=
3II2+M1

m2(M p mp)+M1(M22 m—22)—
F: s=gy) sp'= —--—

3fg
—mg

m1(M p m22)+M2(M p mp—)'—
Q= N2)

(3.4c)
m, 1(m2' —M2')+M2(Mp —m p)s=-

)
M2+m1

C: N=N4) sg=
m2(ml Ml )+Ml(M2 m2 )

M1+m2

Ke do not name the remaining six points at which the
loop is tangent to the lines mentioned above, because
they are not in physical regions. The significance of
these points is that at each of them, one of the angle

There can be at most three such points (D,E,F) on
boundaries of the physical channels. If the t channel is
defined as the channel in which the two lightest particles
go into the two heaviest particles, then the t channel has
no such extremum points.

The channel m1+M1 —+ m2+M2 for which m2)m1,
M2)M1 has only one such point (F). (m. +p —+2t+22
is our example. )

The third channel m2+Mr~m1+M2 for which
m2) m1 but M1(M2 has two points (D and E).

The values of the other variables at these points can
be found by inserting the axed values of the lines to
which this curve is tangent into Eqs. (3.1), (3.2), and
(3.3).

m, (M2' M—p)+3II2 (m 1' m2—')
D: s=sy) tD=

3I2—m2

m, (MP MP)+ M—,(m22 mP)—
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variables is unde6ned. For example z, is undehned at
A and D; therefore all curves z,=constant pass through
these points. This is a familiar result at the thresholds
A, 8, and C, where the scattering angles have no definite
values, but it is something new at D, E, and F.These are
points in either the backward or forward directions at
definite scattering energies given by Kqs. (3.4a), (3.4b),
and (3.4c).

For the case of two diferent masses, ' e.g., when

m~ —+ns2 and M~ —+3EI2, F coincides with A and D
coincides with C.

The points at which the curves cross the three axes
are also of interest. These are:

s=0,

t=0, u=

(~2 ml ~l m2 )(~1 ~2 ml +m2 )
)

(llew 12 m12) (~22 m22)

(3f 1 ml ~22m2 ) (~1 ~2 +m12 m22)

(3/22 —F12) (m22 —m12)

(lM 12~22 m12m22) (~12+~2 m12 m22)S=-
(M12—m22) (m12 —&22)

I'ro. 3. Three-dimensional diagram of sg

in the Mandelstam plane.

There are many reactions with only three masses
different (for example or+ p —+ p+p or p+p —+ 2
different particles), so it is of interest to investigate the
case where 3I~ —+ M2. The only difference in Fig. 2 in
that case is that t~ —+0 and the two points E and the
intersection of the curve with the t=0 line go to
s= —~, as can be seen from Eqs. (3.4b) and (3.5).

(s——',z)'( (Ml' iv2') (ml' —m2') . —

z& is negative inside the upper branch of this hyperbola.
Inside the lower branch the numerator of Kq. (2.12) is
negative. Therefore z~ itself in the Gve strips has the
phases —,+i, +, i, —.A—bove the s& ——0 hyperbola
it has opposite phases. As t approaches one of the lines

t;, z& approaches ~ with its phase determined according
to the prescriptions given above.

The shape of the z~ surface on the Mandelstam plane
can be seen as follows: We 6x t at the value tp. Let
(fo,so) be a point of the hyperbola s,=0. Then, as can
be seen from Eq. (2.12),

IV. BEHAVIOR OF THE ANGLE VARIABLES ON
THE MANDELSTAM PLANE

A. zg

Because it is most often the case that crossing is
performed from t to s channels, we shall discuss the
behavior of z& most carefully and then give summaries
for z and z

In discussing the values of z& it is very important to
keep in mind how the Mandelstam plane is divided by
certain curves. The four lines

2 (s,to)= f(~o)(s—so),

2tp

f(~o) =
L (~o r 1) (~o ~2) (~o ~2) (~o ~4) 3

(3 3) s, . This curve has asymptotes s=g and 3=0 and does
not exist for

(i=i, 2, 3, 4)

divide it into five strips. From Eq. (2.12) we see that
these are the branch points of the denominator of s&. We
use the natural definition of the first Riemann surface,
so that the square root has the phases+, i, —,—i, +
in the five strips as t varies from +~ to —oo.

In addition to these four lines, the hyperbola

2,=0= (u —21K)2—(s—12K)2

+ (~12 3f 2) (m12 m22) (4 1)

separates the plane into regions of positive and negative

4 I. A. Sakmar, Nuovo Cimento 40, 76 (1965).

Therefore the z~ surface when cut along lines of con-
stant t has a linear cross section going through zero
along the hyperbola and having a slope f(to). This slope
goes to zero at t=0 and t= ~~ and to at t= t;. At
1=0 itself, s&=1, as can be seen from Eq. (2.12). Thus
the s& surface is generated by a line, one point of which
stays on the z&=0 hyperbola, and whose slope depends
only on t. Figure 3 is a three-dimensional drawing of the
z& surface on the Mandelstam plane. For the sake of
clarity the central region between t& and t4 is omitted.
In addition we cut it off for ~s&~)1 in the physical
t channel.

Keeping these points in mind, we now discuss the
behavior of z& in the three channels.
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In the t channel (i.e., t= const) &4), s, varies linearly
with s going through &1 in the forward and backward
directions.

For the s channel we show in Fig. 4 graphs of st, for
two energies. The main features are that inside the
physical region s&& —1, having a minimum which is
close to the forward direction. The position of this
minimum and of the three others shown in Fig. 4 can be
obtained from Eq. (2.12).

dsg/(A= 0:
st4 —t'Las+ —', (b—a') —c]+-',t'(d —ac)

+i[sd c'+ ', (bc ad) j-, -—
—c's+-,'c(ac—d) =0,

(4.2)

b =314+)i/ 3+f134+f233+ 32t4+ t3f4

c= (Mp Mp) (nap m22)—, —
d= gc'(1/tr/1/$2+1/$3+1/f4) .

This equation has a finite, negative solution for t as s
gets very large. This is the minimum in the physical
region, which, because t is finite, becomes more and more
forward at larger and larger scattering energies.

In the physical u channel, the behavior of s& at con-
stant u is different in the two regions u& u~, and u(u~.
For N)N~, s~ starts with the value —1 at s=+~,
increases smoothly, and becomes +1 in the backward
direction of the u channel. Inside the u channel it
continues to increase, reaches a maximum value, and
then drops to +1 on the line 1=0. This maximum is
larger for larger values of u and approaches the forward
direction as u increases. Beyond the line t=0, s& de-

creases to —1 in the forward direction and continues
to decrease, approaching —~ at t= tI.

For u&ug, s& has the same behavior up to the line
t= 0. But between t= 0 and the forward direction of the
u channel st, has a valley. It first drops and then in-
creases to +1 in the forward direction. Beyond the
forward direction s~ increases, becoming +~ at t=t~.

Along the line u=uz, s& behaves similarly except in
the region between t= 0 and the forward direction. Here
it has neither a minimum as was the case for u&u~,
nor does it approach —~ as in the case of u)ug.
Instead it decreases smoothly and ends abruptly on the
line t= t~ where s& equals zero. If point E is approached
along a line other than u=ug, a different value of s& is
obtained.

Ke now brieQy summarize the behavior of s, with the
aid of Fig. 2. Along a line of constant s)s4, s, falls
linearly from +1 to —1 in the physical region, going
to 0 along the hyperbola

() lg)2 (I lg)2 (~~2 ~~2) (~i2 yg22) .

Outside this region it approaches +~ for positive t and
—~ for negative t. Along a line of constant t)t4, s,
takes on the value —1 in both the backward and for-
ward directions for the t channel and. in between is less
than —1 having a minimum which is peaked toward the
line s=0. Outside the physical t region s, rises asymp-
totically to +1 as s ~ —oo. As s —+ sz, s, rises through
+1 at s= 0 and approaches +~ .

In the three regions between s~ and s4 the s, curve
consists of a set of three peaked curves going to +i~,
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—~, and —i ~, respectively, in each of these regions as
s ~ s;. For s) s4, z, drops from +~ and approaches
+1 asymptotically.

The behavior of s, in the u channel is complicated by
the existence of the point D. In general s, has a maxi-
mum&+1 peaked toward the line s= 0, For N less than
that corresponding to the point D, z, =+1 in the back-
ward direction of the u channel, and there is a valley
between this and the line s=0 on which z, =+1.For
N)un, z, rises from +1 in the forward direction,
reaches a maximum, then falls again going to +1 at
s=0. Finally it goes through zero within the backward
cone and becomes —1 in the backward direction.
Between s~ and s4, s, has opposite signs to the case
t& t4. As s —+ +~, s, approaches —1.

C. z„
Even more briefly, z„falls from +1 to —1 in the

physical u channel and approaches +~ as s —+ +~.
In the s channel z„hasa maximum&1 peaked toward
u=0, and takes on the value +1 in the forward direc-
tion and ~1 in the backward direction if s is less than
or greater than sg.

In the t channel z„=—1 on the backward and forward
directions and has a minimum with value less than —1.
Outside the physical regions ~z„~~ ~ along the lines
u=u; with phases determined in the same way as for
z& and z, . Along constant s lines s„—& —1 as u ~ &,
and along constant t lines z„~+1as u ~ +~.

V. DISCUSSIO5

If the values of the angle variables z„~,„areneeded,
they can be obtained by evaluating Eqs. (2.8), (2.12),
and (2.16) anywhere on the Mandelstam plane. How-

ever, if only their general behavior is needed, the
following prescription may be useful:

(1) Draw the twelve lines given by Eqs. (2.7),
(2.11), and (2.15).

(2) Draw the three z, , &,„——0 hyperbolas and label the
regions where s, , &,„arepositive and negative for a
positive value of the denominators of Eqs. (2.8),
(2.12), and (2.16).

(3) Label the thresholds and the three singular
points A through F given by Eqs. (3.4a), (3.4b), and
(3.4c). These are at the intersections of the lines z, =0,
s=s;; z& ——0, t=t;; and s =0, u=u;.

(4) Sketch the boundaries of the physical regions.
These are tangent to the lines of step 1 at the points
given by step 3, and approach the axes for large values
of s, t, andu.

(5) On these boundaries, ~z, , , „~=1.Their signs can
be determined by using the labeling found in step 2. In
addition, note that s~

——1 at t=0 and that z& changes
sign on the boundaries at t= t; (similarly for s and 1).

(6) In the three regions between the lines, t= t, at
either constant s or constant u, z& consists of peaked
curves such as those shown in Fig. 4. In the physical
regions of the s or N channels, ~z&~ has a maximum
which is peaked toward the line t= 0. It has been pointed
out by Kibble in Ref. 1 that the loop which is tangent
to six of the lines of part 1 with i= 2 and 3 bounds the
phase space for decays such as M& —+ M'2+m&+m2 if
M~&3E2+ecq+m2. If this condition is not satisfied,
such a loop still exists and corresponds to decay into
three particles, some of which have negative kinetic
energies.

There are two important features of four-mass
kinematics. The Grst is the fact that all the angle
variables have magnitudes 1 on the boundaries. Second
is the fact that

~
z~

~

in the s or N channels has a max-
imum peaked toward the line t= 0 (and similarly for z,
and z„).As was discussed in Sec. IV, this maximum
occurs at finite t and therefore becomes arbitrarily close
to the forward direction if the energy is much larger
than any of the masses. In this case, the asymptotic
expansion of the Legendre functions for large argu-
ments is valid except for two small regions near the
backward and forward directions. Therefore the same
results for di6erential cross sections are obtained as for
identical particle scattering if the Regge representation
is used. However, for reactions involving large mass
differences and only moderate scattering energies, it
presents no difhculty to experimentally break up the
range of t values so that a peak in z~, such as the one
shown in Fig. 4, should be observable if it induces a
peak in the differential cross section. We have checked
ten cases and found that in four of them such a cor-
respondence does exist. A more detailed analysis of one
of these (see Ref. 2) which includes kinematical factors,
residues, and a variable trajectory gives reasonably
good agreement, not only for the position of the peak,
but also for the entire differential cross section.


