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As long as we are concerned only with the pion-
nucleon system, the Lagrangian (A13) contains all
the relevant information. Ke can use it to construct
the vector and axial-vector currents associated with
the generators of the group SU(2) XSU(2). The result
for the vector current is

V„=N„— 4XN„—a'thX(d XN„)
1+a'P' m

4l Xctott
(A16)

(1+"~')"
and for the axial-vector current

am 28 PL7r

yxN, —qx QxN, ')
f 1+a'&' f

m, ct $ m, Qx (ctrxc)og)
+ + a' . (A17)

2f 1+a'4 s f (1+a'4 s)'

Here we have used the abbreviations

and
(A18)

(A19)

Since the Lagrangian is invariant under isospin trans-
formations, the vector current is conserved. The axial-
vector current satisfies a partial conservation equation,
the exact form of which depends on the choice of the
symmetry breaking term J3. The 6rst terms in the
expansion of Eqs. (A16) and (A17) are, respectively,

V„=Ny„rN y—xa„—y+ ~ ~ (A20)
and

2„=(f/am. )Ny„ys ', rN+ (1/-2a)c)„y+ . (A21)

Comparing the coefFicients of these two expressions
with those of (A13) one obtains once more the Gold-
berger- Treiman relation and the Adler-eisberger
relation.
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The linear parametrization of the hadron-hadron total-scattering cross sections at high energy given by
the additive quark model are compared with experiment by a least-squares analysis using several different
kinematic assumptions. Expressions for the corrections due to shadowing and double scattering are obtained,
and the corrections are shown to be large enough to be important. A nonlinear parametrization obtained
from the expression for the shadowing correction is compared with experiment by a least-squares analysis.
The agreement is good under two diGerent kinematic assumptions. Agreement is also good using the linear
parametrization with the kinematic assumptions of James and Watson. In all cases studied, the amplitude
for scattering of the 'A quark from a nonstrange quark is signi6cantly lower than the amplitude for scattering
of two nonstrange quarks. The amplitude for the scattering of the nonstrange quark and antiquark in an iso-
singlet state is both significantly larger and much more energy-dependent than any of the other amplitudes.

I. INTRODUCTION

sINCR Gell-Mann' and Zweig' introduced quarks as
an explicit realization of the fundamental represen-

tation of SU(3), many calculations of properties of
hadrons have been done in the quark model. Among
these calculations are relations among the high-energy
total cross sections, using the additivity hypothesis 6rst
introduced by Levin and Frankfurt, ' Anisovich, 4 and

' Research sponsored by the Air Force Ofhce of Scientific Re-
search, Once of Aerospace Research, U. S.Air Force, under AFOSR
Contract AF49(638)-1389.

' M. Gell-Mann, Phys. Letters S, 214 (1964).
' 6. Zweig, CERN report TH. 412, 1964 (unpublished).' E. M. Levin and L. I. Frankfurt, JETP Pisma v Redaktsiyu

2, 105 (1965) LEnglish transL: JETP Letters 2, 65 (1965)j.
4 V. V. Anisovich, JETP Pisma v Redaktsiyu 2, 439 (1965)

/English transL: JETP Letters 2, 272 (1965)J.

Lipkin and Scheck. ' Many authors' have analyzed
the total cross sections on this basis, and it has been pos-
sible to make statements about the amount of SU(3)
symmetry-breaking present in the amplitudes by ex-
amining the relative successes of the various sum rules. '

' H J Lipkin and F. Scheck, Phys. Rev. Letters 16, 71 (1966).' V. Barger and L. Durand III, Phys. Rev. 156, 1525 (1967);
C. H. Chan, ibid. 152, 1244 {1966);Y. T. Chiu and J. Schechter,
Nuovo Cimento 46A, 548 (1966); M. Imachi and S. Sawada,
Nagoya University report (unpublished); J.J.J. Kokkedee, Phys.
Letters 22, 88 (1966);J.J.J. Kokkedee and L. Van Hove, Nuovo
Cimento 42A 711 (1966); J. J. J. Kokkedee and L. Van Hove,
Nucl. Phys. 1, 169 (1967); C. A. Levinson, H. S. Wall, and
H. J. Lipkin, Phys. Rev. Letters 17, 1122 (1966); H. J. Lipkin,
ibid. 16, 1015 (1966); L Van Hove, in Proceedings of the Stony
Brook Conference on High-Energy Two-Body Reactions (unpub-
lished); L.Van Hove, CERN report TH. 676 (unpublished). There
have also been a number of papers on inelastic processes.' H. J. Lipkin, Ref. 6.



TABLE I. Kvaluation of A —&. The quantity -', (A —8) is evaluated in two di8erent ways, using Kqs. (2), for various
laboratory momenta. The data are from Galbraith ef u/. " Momenta are in BeV/c; cross sections in mb.

Momentum

(PP) —(P)
(@+p)—{z+~)

—2,0~2.3—0.5+0.4
—1.8&2.3—0.3~0.4

10

—1.6~2.3—0.2~0.4

12 14

—1.0~2.3 —1.1m 2,3—0.3+0.4 —0.1+0.4

16 18 20

—1.5+2.3 —1.5+2.3 —0.3+2.3—0.4~0.4 —0.5~0.4 —0.2+0.4

a Reference 10.

It is necessary to make certain kinematic assumptions in
comparing the sum rules with experiment, and. there are
more than one set of assumptions in Use. It has also been
generally assumed that strict linearitys wiB be true at
high energies; thus processes like Glaubcr shadowing
have been ignored. It will be the purpose of this paper
to evaluate the shadowing correction and to shovr that
the agreement with experiment can be improved if the
correction is included. At the same time we will evaluate
thc quark amphtudcs numerically under scveI'Rl klnc-
matic assumptions to see the e6cct of various ways
of comparing the quark-model expressions vrith

experiment.
In the quark-model parametrization of high-energy

scattering, one assumes that the Rmphtude for hadron-
hRdI'on scatteI'lng ls R SUIn of thc amplitudes fox' scRttcl-
ing of the individual quarks. One normally assumes that
isospin is R good symmetry for the quarks so that the
quark-quark. amplitudes are'

(O a)= (Xx)=&, (+&)=-'(D+~),
(p~) =-;(g+8), (PX)= (%O') =&,

(M )= (y~) =C, ($,6') = (XK)=F,
vrhere 8 and D are isoscalar amplitudes and A and E,

are isovector amplitudes. The hadron-hadron ampli-
tudes Rlc obtaiIled by summing ovcl RB posslblc ways
of selecting a pair of quarks with one coming from each
hadron. Thc lcsultlng parametrization of thc cxpcI'l-

ments for vrhich there are experimental data is

(pp) ='/2+28,
(pe) = (13/2)A+ ',8, -
(pp) = ID+ (13/2)~

(pN) =2D+7F. ,

(~+p) = 252+ ',8+', D+52F-, --

(m p)=2A+8+D+2E,
(K+p) = SA+ ',8+3F, --
(E p) =3C+D+2F., (2)

(IC+n) =2A+8+3F,
(X I)=3C+ ', D+ ', E, --

Since there are tcn experiments Rnd only six parameters,
there are already four sum rules available; morc are pos-

sible lf varloUs RInplltudes Rrc sct equal. CoIQparlson

8 J, J. J. Kokkedee and L. Van Hove LNucl. Phys. M, 169
(1/67)j have argued that the contribution of annihilation should
not be included in the the pp and pn cross sections when comparing
quark-model predictions with experiment, Unfortunately there
are insuKcient high-energy data to permit an extensive use of this
suggestion.

9%'e use P and e for the proton and neutron and 5' and "X for
the nonstrange quarks; ) is the strange quark. (AB} means either
the amplitude for forward elastic scattering, assumed imaginary,
for A incident on 8 in the laboratory, or, through the optical
theorem, the total cross section for that process.

with experiment is done with total-cross-section meas-
urernents, using the optical theorem. %C will use the
experimental data of Galbraith et al."

To sec why the results of the shadowing analysis
might be interesting, we will present the results of R

numerical analysis of the linear theory. It is possible to
remove one of the arbitrary parameters by a relatively
simple analysis of the data. %C observe that it is pos-
sible to solve for A-8 from Eq. (2) in two different ways:

k(~ —8)=(pp) —(pl) =(&'p) —%'~) (3)

In Table I we present the results of using the experi-
mental data of Qalbraith ef gl. ' to evaluate 3—B.It is
clear that the data are completely consistent with
g —3=0. %e will therefore, for the remainder of this
paper, work in the restricted parametrization obtained
by setting A equal to 8.

H we assume for the moment that we shouM compare
experiments at equal values of the total energy in the
ccnteI' 0'f mass of thc two hadrons wc may do R lcRst-
squares analysis to obtain the best possible 6t of the
quark-model parametrization to the experimental data.
This has been done using the data of Galbraith et al. ,
interpolated as necessary, weighting the data by the
inverse square of the quoted error. The amplitudes that
are obtained by this procedure are plotted in I'ig. 1(a),"
and the 6fth column of Table II gives the di6crence
b(hn) between a typical set of best-fit values and the
corresponding experimental values.

As may be seen from the table, the ht is not especially
impressive. In particular, the best-6t values are con-
sistently lovr for the baryon-baryon data and even lower
for th.c baryon-antibaryon data. The meson data are
fairly well 6t primarily because they are heavily
weighted by the least-squares procedure.

At least tvro C6ects have been inadequately handled
in the analysis above. First, it has been assumed that
the amplitudes are strictly additive. This does not seem

10 XV. Galbraith, E. W. Jenkins, F. F. Kycia, 8. A. Leontic, R.
H. Phillips, A. L. Read, and R. Rubinstein, Phys. Rev. 138,
B913 (1965).

11 At this point. it may be well to point out that the only ampli-
tu.de with appreciable energy dependence is D, the T=0, non-
strange quark-antiquark amplitude. This particular characteristic
of the dependence of the amplitudes on the energy will prove to
be true for all the cases we will investigate. Khy this amphtude
should be distinguished is,not understood at present. --
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likely even if the interaction is linear in the quarks,
because of the possibility of the shadowing of one quark
by the others in the system. This effect has been dis-
cussed by Glauber" for scattering processes involving
the deuteron, where one nucleon shadows the other. In
the next section we shall extend Glauber's treatment to
cover the quark model and apply the results to the ex-
perimental data in Sec. V.

The other question that must be handled more care-
fully ls thc sclcctlon of thc plopcr cncrgics at which thc
various scattering systems should be compared. A criter-
ion for the selection has been obtained recently by James
and Watson"; in the fourth section we will rederive
their results and point out the possibility of a second
prescription being obtained from their analysis. The
criterion obtained by James and Watson does not allow

comparison of all of the ten available experiments imul-

taneously, but the kaon scattering experiments can be
compared separately to the baryon experiments and to
the pion experiments. This also will be done in Sec. V.

System

(PP)
(P)
(uP)
(P&)
(~+P)
(~ P)
(X+P)
(~-P)
(X+~)
(E e)

16
16
16
16
16.5
16.5
16.4
16.4
16.4
16.4

Total cross
section
(meas. }

38.7
40.2
49.2
52.7
23.4
25.1
17.0
21.2
17.4
20.3

0.6
1.7
0.8
3.7
0.2
0.3
0.1
0.5
0.4
0.7

b(lin) b(shad)

3%5
—5.0
—6.7

13t1
0.6
1.7
0.0
0.7

-0.4
1t3

0.0
-1.5

0.4
—5.1

0.1
—0.2

0.0
0.2

—0.4
—1.0

TABLE II. Quality of 6t for two parametrizations with spy held
constant, The second column gives PJ, the laboratory momentum
of the projectile, in BeVjc; the third column gives the interpolated
experimental value of the total cross section in mb; the fourth
column gives 6, the experimental error; the 6fth column gives the
difference b(lin) between the theoretical values in a linear 6t and
the experimental measurements; the sixth column gives g(shad),
the same quantity for a parametrization including the shadowing
correction. The data are from Galbraith et al." interpolated as
necessary. Both cases have 6ve adjustable parameters.

A E C F 0 g P
0 1 a a V 0 k

Cb)

III. CORRECTIONS DUE TO SHADOWING

A. Bla.ck-Syhere Model

As was pointed out by Glauber in his original paper, "
the essential results of the theory of shadowing may be
obtained from the model in which the cross section for
an interaction is estimated by assuming a black. -sphere
absorption. Then the absorption cross section is ma',

a Reference 10.

where a is the radius of the sphere, and

0 f'Jofi 2g 8138—2~a 2

Some of the projectiles that would be expected to inter-
act with a given particle in the target mill be removed
from the incident beam by having 6rst interacted with
one of the other components of the target. The probabil-
ity of a projectile having been removed from the beam
before reaching the second of two particles in the target
is just the solid angle subtended by the second black
sphere at the first particle, divided by 4z, or

II& ll-
9-
7

6 8 lo l2 l4 l6 l8 9
CN)t & ~ ~ t t I

L Cc)

a

l2 l5 l8

p= (~a2(4~a')-') = (8~) '~t t(Z-2), -

where (Z ') is the expectation value of the inverse
square of the distance betmeen the two particles in the
target. To get the total correction we must sum over all
ways of choosing qualks in 'thc plojcctilc arid 'Es the
target. If we denote the total cross section for interaction
of the jth quark in the projectile with the ~th quark in
the target by fT;;, we get a correction SENT to the total cross
section'4 of

tt 0

'7-
0

+

O

4

0 O

5

80,+ba2 ———p (Str) '0;;o.,';(R ')g

—Z (8~) '~'~t (&-')a, (&)

Fxo. 1. Values obtained for the parameters in various analyses.
The total cross sections A, C, D, E, and Ii are given in mb, the
parameters n and P are given in mb '. The analyses are (a) holding
spy constant in a linear 6t, (b) holding the quark momentum con-
stant in a linear 6t, (c) holding sg~ constant including shadowing,
(d) holding the quark momentum constant including shadowing.
The results are plotted as a function of the laboratory momentum
used in nucleon-nucleon scattering, in BeV/c, and the vertical
scale is in mb for the cross sections and 10 ' mb ' for a and P.

where we have called the projectile A and the target

"R.J. Glauber, Phys. Rev. 100, 242 (1955)."P.B. James and H. D. D. watson, Phys. Rev. Letters 18,
179 (1967).

~4 The Qux factors necessary to obtain the cross section from
the probability of interaction are the same on both sides of the
equation.
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for the four choices of 0» and 02 independently less than
Or greater than —',x, we have a total probability of

p~pd~ L4]rR](R12 p2)1/2j —1
p gp dP

y L4~R2(Rg' —p")'"j ]8[a'—(8—8')'j (9)

dP

F»G. 2. Geometrical relations for discussion of double-counting
corrections. p =R sino is the projection of R in the scattering plane
xy. See text.

B."The quantity (R ')~ is the expectation value of the
inverse square of the interquark distance in A.

So far we have included only terms involving one

quark from one system and two quarks from the other;
other terms involving the interaction of two pairs of

quarks will be discussed in a moment. First we wish to
estimate the size of the correction. If we take each of
the ]T;; to be about 4 mb, and estimate (R ') from the
mean-square radius of the proton of about 0.8 F' de-

termined from electron scattering, we have a correction
of the order of 3 mb for baryon-baryon scattering. The
correction wiB be higher if the radius is smaller, but in

any case it is large enough to be seen.
There is a second set of correction terms which are not

present in the scattering of an elementary particle from
the deuteron and which we have not yet considered. We
must subtract off the probability that two different

pairs of quarks from the two systems interact. Two
simultaneous interactions are each counted separately

by the linear theory, but they make only a single contri-

bution to the total cross section. A correction for this
double-counting error may also be estimated in the
black-sphere model. We require the probability that,
given an interaction between one pair of quarks, another

pair of quarks will pass within a distance a of each other
and thus interact. If in Fig. 2, 0 and cp are considered to
be the angles of the radius vector between two quarks

(taken to be at a f'ized distance from each other) in

spherical coordinates, all spherical angles are equally

probable and we have

P(8, (p)=(4]r) ]dQ=(4]r) 'sin8888]]]. (7)

Converting to a function of p and q, still taking 6xed

R, we have for the probability that the second member

of a pair will be in the shaded region of Fig. 2

P(p, (p) =p5pby/[4]rR(R' p')]]'$. —

I inally, we require the probability that the second mem-

bers of the two pairs strike the scattering plane (plane

xy in Fig. 2) within a distance a of each other. Allowing

"We will always use i and i' to label quarks in A and J and J'
to label quarks in B.

for fixed Ri and Ru, where 8(x) is 1 when x is positive
and 0 otherwise. We will take the appropriate averages
over E» and R2 in a moment. If we substitute y= y' —g
and assume that the range of the interaction is small
compared to the size of the composite particle so that
y& a«E2, p'&E~, and p&R», then to lowest approxima-
tion there is no dependence on y or y', and we may do
those integrations and the integration over dy to get

P=a'(4R]Rp) ' in'(R]+R2)(R] —R.) ]i, (11)

regardless of the relative sizes of E» and R2.
To 6nish the expression, we multiply by the cross sec-

tion for the interaction of the 6rst pair of quarks, sub-
stitute for a' in terms of the cross section for interaction
of the second pair of quarks, multiply by the radial wave
functions in the two composites and integrate over all
values of the radii, and 6nally sum over aD distinct ways
of choosing the quarks from the two systems, to get a
correction bfT3 to the cross section of

8o]= —Q" 2(8]r) '0" 0" Igs (12)

IgQ (4]l ) /ER]dRp R]
~
Ipg(R])

~
R2

~
Ip]](R2)

gin
~
(R,+R,) (R,—R,)

—'
~, (13)

where &pz(R&) is the radial wave function of system A

and the double prime on the summation denotes omit-
ting terms with either i =i' or j= j'. %e have implicitly
assumed that both composites have over-aO S-state
wave functions.

If we make the substitution x= ~ (Ri+R2) and
y=-', (Ri—R2), the integral becomes

I~s=2(4~)' dx ~y
~
„,(x+y) ~2

&& I v~(x —y) ~'(x' —y') in[xy-][. (14)

If the wave functions are slowly varying functions at
y= 0, the integral over y is dominated by the divergence
in the logarithm; the wave functions can then be re-
moved from the integral over y and the remaining in-

P=u'(2RiR2) '
pdp (Ri2—p2) ]]2(R22—p2) ]]2 (1O)

0

where M is the smaller of E» and R2. The remaining in-
tegral can be done and yields
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tegral evaluated to give

I»= (32/9)(4~)' d»'I ~~(x) I'I ~~(x) I'

No further reduction is possible without specific knowl-

edge of the form of the wave functions.
Altogether we have a Anal expression for the total

cross section of hadron A incident on hadron 8 of

"'(A 8)=Q;;+8 +8 +8 (16)

p' ——$a' Ri—R2 Ri R2+a-
ln

2mR1E2 a R1—E.2—a

where bar+50~ is given in Kq. (6) and b0.3 is given in

Eqs. (12) and (15).
Il, It is necessary to discuss our approximations a little
more carefully. The expression for I' in Eq. (11)cannot
be correct as R1 approaches R2, since a probability
greater than 1 results. The problem is that the approxi-
mations mad. e in going from Eq. (9) to Eq. (10) are not
valid for E1—E2&u. The divergence in P must be cut
ofI' somewhere in this region; the cuto6 will be late
enough that the peak in P, although 6nite, will still be
present, so that Kq. (13) survives. It is in fact possible
to obtain an expression for P valid in the restricted re-

gion Ri—R2«Ri+R~ (where the trouble arises) which

does not suffer from the incorrect approximations. In
the region Ri—Rg«Ri+R2 there is an additional term
P' in P given by

B. Derivation of the Correction in
Eikonal Ayyroximatton

The forms we have obtained for the nonlinear correc-
tions to the additive quark model due to shadowing may
be obtained somewhat more generally by making use
of the eikonal approximation. One must assume that
the interaction region is small compared to the radius
of the composite (an assumption we have already made).
If the forward amplitudes are purely imaginary, we re-
cover our previous results. The dependence of the cor-
rection on the real part of the amplitude is also obtained.

The derivation parallels the work of Glauber. "We
start from the eikonal representation of the scattering
amplitude"

f(k', k) = i&(2~)
—' I'(b) expI i(k —k') .bjd'b,

(17)

I'(b) = 1—expL —iX(b)],

where b is perpendicular to the direction of incidence,
k is the incident momentum, and k' is the final momen-
tum. The optical theorem is

Imf(k k) =—Imf(0) = k(4n-) —'o'"(0)

If r; is the radius vector from the center of mass of A to
the position of the ith quark in A, and if the projection
of r; in the scattering plane is y;, and if s, and y; are the
corresponding quantities for the jth quark in 8,"and
if b is the vector from the projection in the scattering
plane of the center of mass of A to the projection of the
center of mass of 8, we write the total scattering ampli-
tude in terms of X~,~ which is assumed to be

(Ri—R2)' —a'
+in

R12 ~22
—2

X,.g(b, yi yg, ai . aa)=P X,,(b—y,+e,), (1g)

where $ is of order unity and is a function of R&—R2

which, to lowest order, is the same in the limits R1—+ R2
and R1—R2 —+ +ao.

If we assume that
I y~(x+a) I

~
I p~(x) I

', the deriva-
tion of Eq. (15) is changed only by the addition of an
integral of P' over y from —x to x. This integral yields
terms that are of order u4. Since we have already ne-

glected terms of this order in ignoring triple-scattering
corrections, we may safely ignore P'.

We are not able to obtain explicit results for these
higher-order terms in the eikonal-approximation discus-
sion in the next section without assuming an explicit
expression for the quark-quark interaction. The deriva-
tion of P' depends on doing the angular integrals by
using the 8 function in Eq. (9), and the point of the
eikonal-approximation derivation is to avoid using an
explicit expression for the amplitudes. If the 0-function
form of the interaction were to be assumed, the discus-
sion of the preceding paragraphs would apply.

when there are A quarks in A and 8 quarks in 8. I' is
now to be thought of as an operator, inducing various
transitions, so to get the full amplitude for elastic scat-
tering we must write

J"(k', k) = ik(2m. )
—' expI i(k k') b jd—'b

X I4~(ri r~) I'

where dv.~ and d~~ represent all independent coordinates
of A and 8, respectively, not including the center-of-
mass coordinates, and where P~ and P~ are the full time-
independent wave functions of A and 8, respectively.

6 Equation (17) is valid only for small-angle scattering. 'See I..
I. Schi8 I Phys. Rev. 103, 443 (1956)g where an expression which
is also valid for large angles is derived.
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lng 0f the simultaneous
(Iuarks.

e haveIn case (I we

/p~I'/pB['dr~drB80'l= Re P A
~Ã'

o. I'g (b—p;+oj (24)d'b r;j(b—p;+oj);j

(28)

to obtain (rjj.—')B.
We can handle case

m
letel analogous(2) in a coinpletey

armer, obtaining

' ((r" ')~ Reef'j(O)f'ho~ ——4lr(2 ') ' r;,'

a inary and%' lf %'C Rssumrllc tllat tile fjj~ are purely irn g'
I'e 1oducc q. )

um tlons of the ac
The correction j.n case

to bc takenmeans thRt g ls
'

h t s
' 'on of the new'varia

where the pnme'.Witht esunequalto j . h t s

d'bBo'3= RC flpg
/ flpB] dr~dTB d b

s=-,'(s„+s;),
t= (sj—s'),

C= g Cg CÃp

no dependence 0of the in.-RIlcl. b =b—gi e, w no e

; other t antegrals on g; . t n

$2'n

denotes the re-e sum now enle rime ont ewhere the d.oub e p

cool dlIlates 0
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necessary set of substitutions is

r=k(r'+r') e=k(e~+t').=(;—;), ~=(~;-~;),
dTg=87'~ d N1

dTg=dTgg d $,

If we again assume that the f;; are pure imaginary and
apply the optical theorem, we reproduce the black-
sphere results of Eq. (12).

IV. CHOICE OF ENERGY FOR THE COMPAMSON
s=k(s;+s,'), o= l(o+~'),

I 2 ~(u) I'=

t=(s,—s,'), ~=(o/ —o;), I vs(t) I'= I&~I'd~~',

b'= b—y+o. (31)

Ba2———Re P"
I pg(u) I'I 22/2(t) I

d22dg t2

d'b' I'' Lb' —k(1t—v)]1'' '[b'+k(t —v)] (32)

We may again exploit the assumed lack of angular de-
pendence of

I 1/&~ I' and
I &ps I

' by making the replace-
ments d't=tdtd2r (t'—r2) '/' and

After making the substitutions we have the expression

We are stiH. faced with the serious question of the
choice of the energies of the various experiments to be
used in applying the quark model. This question is com-
plicated by the possible dependence of the amplitudes
on the quark masses, which may or may not be renor-
malized by the symmetry-breaking interaction, and by
the possible direct dependence of the amplitudes on the
strength of the binding; but these possible effects must
be ignored. , since there is at present no way of estimating
them.

James anti Watson" have argued that the most
reasonable choice is to take constant s"=(p "+p.")'
where i and j are quark labels. This quantity is rather
easily evaluated in terms of s~~, the equivalent quantity
for the composite hadrons. If we assume that we may
neglect the momentum of the quarks relative to the
center of mass of the hadron, we 6nd, in the hadron rest
frame, "

d'I=2/dud2/2 (u2 /12) '/', —
to get

/102= —4 Re g" dtdl d2/1d2rd2b

p,&= (2/2;, 0)= (222;/2/2g) pg~,

p,~= (m;,0)= (2N;/2/2~) p~~.
(36)

~tl2~(2»I'I2s(t) I'
X I';/[b —k(y —v)]

(t2 ~2) 1/2(N2 ~2) 1/b

&&I''t [b+k(v —v)], (33)

where the integration regions are given by 0&I, f& ~,
p&N, and a&I,. Ke may now neglect the variation of
the factor in brackets over the interaction region.
This region is given by the requirement that both
lb —k(p —~) (a and lb+k(1t —s) l(o, which together
imply that —,'{t2—s) l(a. Thus if we write (t2—v2)
= [t2 ((~—t2)+t2) 2]—we see that neglecting r—/2 with
respect to p, gives t' —7'= t' —p'. Defining v= p—g, we
have

Nt
I 2 ~(N) I'I 2 e(t) I'

$02 ———4 Re p" dtdld2/1
(t2 p2) 1/2(g2 ~2) 1/2

d2f d2p I';, (b—kv) I';.; (b+-', v) . (34)

The integrals over d2b and d2/ grve the f;; factors, and
the integral over d'p is the same integral that appears in
Eq. (10), so we have

802= 22r(2k2) ' Q" Re[f;,(0)f,", (0)] 42rudg

««tl~~(N) I'Ivy(»l'»l(N+t)(1 —t) 'I (»)

S;/= (2N;2/2g 1pg"+2/t/m// 1p///')2,

(S;, 2N' —2/2')/—(2/2 2/2 )
= (~~// —2/2~2 —2/2/12)/(2mg2/2//) .

(3&)

If hadron A is incident on hadron 8 in the laboratory
with momentum pz, and if we neglect the hadron masses
compared to momenta and energies, we have

Pz,(A)/Ez(A') =20~/m~, no renormalization. (39)

If, however, we assume that the masses are renormalized
from system to system, then we take m;= 2'm~ if A is a
meson (and k—2/2~ if A is a baryon). We may further as-
sume that all m; may be neglected with respect to mo-
menta and energies, and the equivalent of Eq. (39) is

pz(A)/I'z(A') =A/A',

quark masses renormahzerl, (40)

wliere 3 ls the numbei of quarks jn hadron g Tbjs pre

sggg mgmg s;&—m; —
m&

2m' m,m; 2m~

Now we have two choices. James an11 Watson choose
to assume that the symmetry-breaking interaction does
not renormalize the quark masses. In this case we hold
sg—m —m,' constant, and for A and A' incident on 8
we have
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TABLK III. Quality of 6t with and without shadowing colrectlon
with momentum in the quark-quark c.m. frame held constant.
See Table II for explanation of symbols. There are Gve adjustable
parameters.

System

(PP)
(P~)
(sp)
(p~)
(x+P)
(x P}
(E-'P)
(E P)
(E+~)
(x-~)

15,2
15.2
15.2
15.2

9
9.9

10
10
10
10

Total cross
section
(meas. }

38.9
40.2
49.8
53.0
24.8
26.6
17.3
22.5
17.5
20.6

0.6
1.7
0.8
3.7
0.2
0.3
0.1
0.2
0.4
0.4

g(lin) 5(shad}

—2.6
—39
—5.1

—10.8
0.5
1.2
0.0
0.1

—0.2
—0.5

0.0
—1.3

0.3
—4.8

0.1
—0.2

0.0
0.1

—0.2
—0.5

V. HUMEMCAL ANALYSIS

In this section we will present the results of a least-
squares 6tting of the experimental data under various
kinematic assumptions, including the shadowing cor-
rection whenever the amount of usable data permits.
The results of such an analysis for a linear parametriza-
tion hoMing sg~ constant from experiment to experi-
ment has already been presented. [see Table II: and. Fig.
1(a)j.

In the 6rst analysis to be presented. in this section wc
mill hold. the momentum in the quark-quark center-of-
momcntum frame constant. This prescription is almost
the„same as that contained in Eq. (40); it differs from
that prcscllptlon by tcrIQS of the same order as those

j' See Ref. 6.

scription has been extensively used by Kokkedee and
Van Hove "

Because of the structure of the sum rules, James and
Watson could only apply their prescription to the
rclatloQs

(pp)+(pm) = 2(~ p)+(~+p),
(41)

(f~)+(pp) =(~ p)+2(~'p),

for which there is no overlapping data; they were able
to compare the left-hand sides only with extrapolations
of the right-hand. sides, obtaining satisfactory agree-
ment. However, the kaon-scattering data can bc com-

pared, using their prescription [Eq. (39)j, with both
pion-scattcllQg experiments and bar'yoQ-scattcllQg ex-
periments, if a numerical analysis is used. %C shall make
this comparison in the next section, and m'e will 6nd. that
adequate agreement is obtained. Somewhat better
agreement is obtained. by using Eq. (40) in conjunction
with a parametrization including the shadoming cor-
rection. Unfortunately, the parametrization obtained, by
including the shadowing correction is rather Aexible, so
it is not clear that the rather good 6t to the data is really
signi6cant.

t»t have been neglected in the derivation of Eq. (40),
and the quality of the 6t is not afI'ected by the difference
between the two prescriptions. The results for a linear
pararnetrization, Eq. (2) with A =8, are given in Table
III and Fig. 1(b). The baryon-baryon scattering data
are still not very well reproduced, although the 6t is
somewhat better than that obtained, in Sec. II.

Before me can include the shadowing correction in an
cGort to Improve thc agrecmcntq wc Inust, rcducc the

b of p alncters. Ke h 6 plit d; Eq.
(6) contains two additional parameters, (R-2) for the
meson and, for the baryon; and the double-counting cor-
rection in Eq. (12) has three parameters, I~~ with A
and 8 both baryons, both mesons, or one a baryon and
one a meson. Thus there are ten parameters for ten
experiments and no predictions are obtained. %C intend
to ignore the double-counting terms, Eq. (12). The size
of these terms cannot be estimated without knowing
details of the internal quark wave functions; their ne-
glect can be justified only in terms of the success of the
resulting parametrization. %c also intend, to apply the
Pomeranchuk theorem to the quark amplitudes to
justify taking A=E and C=F; it may be seen from
Fig. 1 that these relations are consistent with the results
of the linear analyses.

%'c are left mith 6ve parameters. If me evaluate the
correction terms from Eq. (6) and add. them to the linear
terms from Eq. (2) we have

(pp) = (pl) =I—36',
(P1 )= (13/2)&+lD 1Sp&' —16p~D—2pD, —
(pe) = 7A+2D —21' 2 14PgD PD—2, —

(~'P) = (11/2)~+2D (&n+—10P)a' (n+2—P)aD,
(~ p) =SA+D [4n+-(17/2)pgg~-

—(2n+Bp)AD —',pD2,

(E"P)= (&'I)=3~+BC 6p&' 6naC —6pC2, —(42)—
(&-p) =»+Bc+D—-',p~' —4 ac

BPAD 6PC 2—nCD &—PD2- —
(E n) = ,'A+BC+ ,'D-4'-& 5gc-— —

2P~D 6PC—' nCD—, —
n=—((SmR') ')~,
P=—((Ss.E') ')s.

The results of the least-square analysis with the
parametrization in Eq. (42) are given in Fig. 1(d), and
a typical set of best-6t values is compared with experi-
ment and with the linear 6t in Table III. As may be
seen, the 6t is quite good. Moreover, there is no ap-
preciable energy dependence in n or P, which is as it
should be. H we take the values for a and. P seriously
(which may well be dangerous) we get values of S.S
I ' and 2 I 'for the expectation values of 8, 2 for the
meson and. for the baryon, respectively. Hence the mag-
nitudes of a and P are not unreasonable.
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Since the parametrization including the shadowing
correction is nonlinear, it is not clear exactly how
flexible the parametrization is. Thus the significance of
the rather good fit we have obtained is doubtful. This
is especially true considering the large number of ad-
justable parameters we have. To check on this situation,
we have done the analysis keeping s~~ constant from
experiment to experiment, giving a somewhat different
set of experimental numbers to be fit. A typical set of
best-fit values are given in Table II, and the resulting
parameters are given in Fig. 1(c). The fit is embarras-
singly good; the only feature of this fit that is less than
ideal is a slight energy dependence of n and P. The
problem is that the parametrization of the meson-
baryon data depends almost entirely on the linear com-
bination n+2P, leaving P as a free parameter to achieve
agreement of the baryon-baryon data. Since the meson
data are already well fit by a linear analysis, it is not
surprising that a good fit is obtained when shadowing
is included. We conclude that it is not possible to decide
whether or not shadowing is present by examining the
results of the numerical analysis.

Finally, we present the results of an analysis using the
prescription for choice of energy given by James and
Watson [our Eq. (39)].Since with this criterion we can-
not use all of the experiments in any one analysis, a
three-parameter linear analysis has been used (inde-
pendent parameters A, C, and D). For reasonably high
energies, only three distinct sets of experimental data
are available. The results of the analysis for all three
are given in Table IV. It may be seen that the fit is good,
although not quite as good as the fit with the shadow-

ing correction and holding quark-quark momentum
constant. '8

VI. CONCLUSIONS

We have seen that, under a wide variety of kinematic
assumptions, the meson-baryon total cross sections are
well represented by a.quark-model parametrization
while the baryon-baryon 'data may or may not be well

represented. In all cases, the cross sections involving
one strange quark are smaller than the cross sections
involving nonstrange quarks; thus SU(3) is broken. In
addition, the cross section for the T= 0, state of the non-

strange quark and nonstrange antiquark is appreciably

"We have deliberately avoided using p' with so few degrees of
freedom and the nonlinear parametrization. However, for what-
ever it may be worth, the average value of x' divided by the
degrees of freedom in the fit with momentum constant was 1.5;
for the present analysis the values are 6.4 for a kaon momentum of
6 BeV/c, 4 for 8 BeV/c, and 0.1 for 20 BeV/c.

TABLE IV. Parameters and quality of fit using James-Watson
prescription oi pr(A')/ps(A)=my /mz. The iirst ten lines are
arranged similarly to Tables II and III; the last six lines give the
laboratory mornenta used (in BeV/c) and the results for the pa-
rameters (in mb). The column labeled 6 gives the experimental
error; the column labeled b gives the difference between the ex-
perimental measurement and the best-fit value. Data are from
Galbraith et gl.' with slight interpolation and extrapolation.

System

(pp)
(Pa)
(pp)
(pn)
{m+p)

(~ p)
(E+p) 0.1
(Z-p) 0.3
(E+n) 0.4
(X ) 0.4
pl. kaon

pl, nucleon

pL, pion

C
D

0.6
1.7
0.8
3.7

—1.0 0.6
242 1y7

2.3 0.9
—2.8 3.7

Not available
Not available

0.2 0.1
—0.4 0.2
—0.3 0.4
—1.5 0.4

6
11.3

~ ~ ~

4.29+0.14
1.43+0.15

10.8 +0.6

—0.8
—21

2.7
—3.3

0.1
—0.4
—0.2

0.6
8

15
~ ~ ~

4.23+0.11
1.56+0.12

10.1 +0.4

Not available
Not available
Not available
Not available
0.2 0.0
0.3 0.0
0.1 0.0
4.6 —0.2
0.4 —0.2
1.6 —0.5

20
~ ~ ~

5.6
4.01+0.03
1.83+0.03
8.66+0.02

& Reference 10.

larger and more energy-dependent than the other cross
sections.

If we use the kinematic prescription of equal s;; with
unrenormalized masses given by James and Watson"
we can obtain a fairly good agreement of the quark-
model parametrization with experiment using three pa-
rameters in a simple, linear relation. If we assume that
the quark masses are renormalized from system to sys-
tem, we must use a parametrization based on including
a correction for the shadowing of one quark by others in
the composite, but if we use this parametrization we get
impressive agreement with the data. The agreement is
marred by the apparent flexibility of the parametriza-
tion. Neglecting the double-counting terms of Eq. (12)
we can obtain estimates of hadron sizes which are en-
tirely reasonable ((R ')=2 F ' for a nucleon). It ap-
pears that the'quark model, with physically reasonable
assumptions, is quite flexible enough to avoid contradic-
tion with experiments of the present accuracy.
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