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As long as we are concerned only with the pion-
nucleon system, the Lagrangian (A13) contains all
the relevant information. We can use it to construct
the vector and axial-vector currents associated with
the generators of the group SU(2)XSU(2). The result
for the vector current is

f
Vu=N,— [——¢XNM5~‘1’2¢X (¢szu)]
1+a%pim,
Xa
_ ¢ X 9o ’ 16)
(14-a%?)?
and for the axial-vector current
aMmx 202 M
A,.=N,,5—- |:'—'¢XN14_¢X (¢><Nu5)]
f 1+a%" f
r 0 M X (pX 0.0
m e , 2¢ ( W ) . (A17)
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Here we have used the abbreviations
N,=Ny3N (A18)
and B
NS=Nvuys37N. (A19)

Since the Lagrangian is invariant under isospin trans-
formations, the vector current is conserved. The axial-
vector current satisfies a partial conservation equation,
the exact form of which depends on the choice of the
symmetry breaking term L; The first terms in the
expansion of Eqs. (A16) and (A17) are, respectively,

V“=N7“%TN—¢X3“¢+ tr (AZO)
and

Ay=(f/am)Nyys3tN+ (1/20)0,9+ - - . (A21)

Comparing the coefficients of these two expressions
with those of (A13) one obtains once more the Gold-
berger-Treiman relation and the Adler-Weisberger
relation.
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The linear parametrization of the hadron-hadron total-scattering cross sections at high energy given by
the additive quark model are compared with experiment by a least-squares analysis using several different
kinematic assumptions. Expressions for the corrections due to shadowing and double scattering are obtained,
and the corrections are shown to be large enough to be important. A nonlinear parametrization obtained
from the expression for the shadowing correction is compared with experiment by a least-squares analysis.
The agreement is good under two different kinematic assumptions. Agreement is also good using the linear
parametrization with the kinematic assumptions of James and Watson. In all cases studied, the amplitude
for scattering of the N quark from a nonstrange quark is significantly lower than the amplitude for scattering
of two nonstrange quarks. The amplitude for the scattering of the nonstrange quark and antiquark in an iso-
singlet state is both significantly larger and much more energy-dependent than any of the other amplitudes.

1. INTRODUCTION

INCE Gell-Mann! and Zweig? introduced quarks as

an explicit realization of the fundamental represen-
tation of SU(3), many calculations of properties of
hadrons have been done in the quark model. Among
these calculations are relations among the high-energy
total cross sections, using the additivity hypothesis first
introduced by Levin and Frankfurt,® Anisovich,* and

* Research sponsored by the Air Force Office of Scientific Re-
search, Office of Aerospace Research, U. S. Air Force, under AFOSR
Contract AF49(638)-1389.

1 M. Gell-Mann, Phys. Letters 8, 214 (1964).

2 G. Zweig, CERN report TH. 412, 1964 (unpublished).

3E. M. Levin and L. I. Frankfurt, JETP Pisma v Redaktsiyu
2, 105 (1965) [English transl.: JETP Letters 2, 65 (1965)].

4V, V. Anisovich, JETP Pisma v Redaktsiyu 2, 439 (1965)
[English transl.: JETP Letters 2, 272 (1965)].

Lipkin and Scheck.® Many authors® have analyzed
the total cross sections on this basis, and it has been pos-
sible to make statements about the amount of SU(3)
symmetry-breaking present in the amplitudes by ex-
amining the relative successes of the various sum rules.”

¢ H. J. Lipkin and F. Scheck, Phys. Rev. Letters 16, 71 (1966).

¢ V. Barger and L. Durand III, Phys. Rev. 156, 1525 (1967);
C. H. Chan, ibid. 152, 1244 (1966); Y. T. Chiu and J. Schechter,
Nuovo Cimento 46A, 548 (1966); M. Imachi and S. Sawada,
Nagoya University report (unpublished); J. J. J. Kokkedee, Phys.
Letters 22, 88 (1966); J. J. J. Kokkedee and L. Van Hove, Nuovo
Cimento 42A, 711 (1966); J. J. J. Kokkedee and L. Van Hove,
Nucl. Phys. B, 169 (1967); C. A. Levinson, H. S. Wall, and
H. J. Lipkin, Phys. Rev. Letters 17, 1122 (1966); H. J. Lipkin,
ibid. 16, 1015 (1966); L. Van Hove, in Proceedings of the Stony
Brook Conference on High-Energy Two-Body Reactions (unpub-
lished) ; L. Van Hove, CERN report TH. 676 (unpublished). There
have also been a number of papers on inelastic processes.

7 H. J. Lipkin, Ref. 6.
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TasiLE 1. Evaluation of 4 —B. The quantity (4 —B) is evaluated in two different ways, using Eqs. (2), for various
laboratory momenta. The data are from Galbraith et a.* Momenta are in BeV/c; cross sections in mb.
Momentum 6 8 10 12 14 16 18 20
(pp)— (pn) —2.042.3 —1.842.3 —1.64£2.3 —1.042.3 —1.1+2.3 —1.54+£2.3 —1.5£2.3 —0.34+2.3
(Ktp)—(K*nm) —0.5+£0.4 —0.3+£0.4 —0.2+0.4 —0.3+£0.4 —0.1+£0.4 —0.4£0.4 —0.5+£0.4 —0.20.4

a Reference 10.

It is necessary to make certain kinematic assumptions in
comparing the sum rules with experiment, and there are
more than one set of assumptions in use. It has also been
generally assumed that strict linearity® will be true at
high energies; thus processes like Glauber shadowing
have been ignored. It will be the purpose of this paper
to evaluate the shadowing correction and to show that
the agreement with experiment can be improved if the
correction is included. At the same time we will evaluate
the quark amplitudes numerically under several kine-
matic assumptions to see the effect of various ways
of comparing the quark-model expressions with
experiment.

In the quark-model parametrization of high-energy
scattering, one assumes that the amplitude for hadron-
hadron scattering is a sum of the amplitudes for scatter-
ing of the individual quarks. One normally assumes that
isospin is a good symmetry for the quarks so that the
quark-quark amplitudes are®

(@F)=(RN)=4,

(e3)=%(4+B),

(\@)=(0)=C,
where B and D are isoscalar amplitudes and 4 and E
are isovector amplitudes. The hadron-hadron ampli-
tudes are obtained by summing over all possible ways
of selecting a pair of quarks with one coming from each

hadron. The resulting parametrization of the experi-
ments for which there are experimental data is

(pp)=T4+2B, 7 p)=24+B+D+2E,
(pm)=(13/2)A+5B, (K*p)=34+3B+3F,
(p)=3D+(13/2)E, (K=p)=3C+D+2E, (2)
(pn)=2D+TE, (K*+n)=24+B43F,
(atp)=34+5B+3D+3E, (Kn)=3C+3D+3E.
Since there are ten experiments and only six parameters,

there are already four sum rules available; more are pos-
sible if various amplitudes are set equal. Comparison

(00)=3(D+E),
(®)=(e)=E, (1
(A\®)=(Rn)=F,

8]. J. J. Kokkedee and L. Van Hove [Nucl. Phys. B1, 169
(1967)] have argued that the contribution of annihilation should
not be included in the the i and P cross sections when comparing
quark-model predictions with experiment. Unfortunately there
are insufficient high-energy data to permit an extensive use of this

estion.
Su%gVVe use $ and # for the proton and neutron and @ and 9 for
the nonstrange quarks; \ is the strange quark. (AB) means either
the amplitude for forward elastic scattering, assumed imaginary,
for A incident on B in the laboratory, or, through the optical
theorem, the total cross section for that process.

with experiment is done with total-cross-section meas-
urements, using the optical theorem. We will use the
experimental data of Galbraith ef al.1

II. NUMERICAL RESULTS IN THE
LINEAR THEORY

To see why the results of the shadowing analysis
might be interesting, we will present the results of a
numerical analysis of the linear theory. It is possible to
remove one of the arbitrary parameters by a relatively
simple analysis of the data. We observe that it is pos-
sible to solve for 4-B from Eq. (2) in two different ways:

3(A=B)=(pp)—(pn)=(K*p)—(K+n).  (3)

In Table I we present the results of using the experi-
mental data of Galbraith e al.'° to evaluate A— B. Tt is
clear that the data are completely consistent with
A—B=0. We will therefore, for the remainder of this
paper, work in the restricted parametrization obtained
by setting 4 equal to B.

If we assume for the moment that we should compare
experiments at equal values of the total energy in the
center of mass of the two hadrons, we may do a least-
squares analysis to obtain the best possible fit of the
quark-model parametrization to the experimental data.
This has been done using the data of Galbraith et al.,
interpolated as necessary, weighting the data by the
inverse square of the quoted error. The amplitudes that
are obtained by this procedure are plotted in Fig. 1(a),*
and the fifth column of Table II gives the difference
6(lin) between a typical set of best-fit values and the
corresponding experimental values.

As may be seen from the table, the fit is not especially
impressive. In particular, the best-fit values are con-
sistently low for the baryon-baryon data and even lower
for the baryon-antibaryon data. The meson data are
fairly well fit primarily because they are heavily
weighted by the least-squares procedure.

At least two effects have been inadequately handled
in the analysis above. First, it has been assumed that
the amplitudes are strictly additive. This does not seem

1 W. Galbraith, E. W. Jenkins, F. F. Kycia, B. A. Leontic, R.
H. Phillips, A. L. Read, and R. Rubinstein, Phys. Rev. 138,
B913 (1965).

I At this point it may be well to point out that the only ampli-
tude with appreciable energy dependence is D), the T=0, non-
strange quark-antiquark amplitude. This particular characteristic
of the dependence of the amplitudes on the energy will prove to
be true for all the cases we will investigate. Why this amplitude
should be distinguished is not understood at present.
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likely even if the interaction is linear in the quarks,
because of the possibility of the shadowing of one quark
by the others in the system. This effect has been dis-
cussed by Glauber!? for scattering processes involving
the deuteron, where one nucleon shadows the other. In
the next section we shall extend Glauber’s treatment to
cover the quark model and apply the results to the ex-
perimental data in Sec. V.

The other question that must be handled more care-
fully is the selection of the proper energies at which the
various scattering systems should be compared. A criter-
ion for the selection has been obtained recently by James
and Watson!3; in the fourth section we will rederive
their results and point out the possibility of a second
prescription being obtained from their analysis. The
criterion obtained by James and Watson does not allow
comparison of all of the ten available experiments .imul-
taneously, but the kaon scattering experiments can be
compared separately to the baryon experiments and to
the pion experiments. This also will be done in Sec. V.

III. CORRECTIONS DUE TO SHADOWING
A. Black-Sphere Model

As was pointed out by Glauber in his original paper,?
the essential results of the theory of shadowing may be
obtained from the model in which the cross section for
an interaction is estimated by assuming a black-sphere
absorption. Then the absorption cross section is mwa?
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Fi1c. 1. Values obtained for the parameters in various analyses.
The total cross sections 4, C, D, E, and F are given in mb, the
parameters« and B are given in mb™1. The analyses are (a) holding
s4p constant in a linear fit, (b) holding the quark momentum con-
stant in a linear fit, (c) holding s4p constant including shadowing,
(d) holding the quark momentum constant including shadowing.
The results are plotted as a function of the laboratory momentum
used in nucleon-nucleon scattering, in BeV/c, and the vertical
scale is in mb for the cross sections and 102 mb™~! for « and 8.
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TasrE IL. Quality of fit for two parametrizations with s4p held
constant. The second column gives p;, the laboratory momentum
of the projectile, in BeV /c; the third column gives the interpolated
experimental value of the total cross section in mb; the fourth
column gives A, the experimental error; the fifth column gives the
difference 8(lin) between the theoretical values in a linear fit and
the experimental measurements; the sixth column gives §(shad),
the same quantity for a parametrization including the shadowing
correction. The data are from Galbraith e @l interpolated as
necessary. Both cases have five adjustable parameters.

Total cross

section
System L (meas.) A 8(lin) 8(shad)
) 16 387 06 —3.5 0.0
(pn) 16 40.2 1.7 —5.0 —1.5
) 16 492 08 —6.7 0.4
(pn) 16 52.7 3.7 —13.1 —5.1
(7p) 16.5 234 0.2 0.6 0.1
(wp) 16.5 25.1 0.3 1.7 —0.2
(K*p) 16.4 17.0 0.1 0.0 0.0
(K~p) 16.4 21.2 0.5 0.7 0.2
(K*n) 16.4 174 0.4 —-0.4 —~0.4
(K~n) 16.4 20.3 0.7 —-1.3 -1.0
a Reference 10.
where @ is the radius of the sphere, and
otot=2g%s=27rq?, (4)

Some of the projectiles that would be expected to inter-
act with a given particle in the target will be removed
from the incident beam by having first interacted with
one of the other components of the target. The probabil-
ity of a projectile having been removed from the beam
before reaching the second of two particles in the target
is just the solid angle subtended by the second black
sphere at the first particle, divided by 4, or

p=(maUrR) )= )RS, ()

where_(R~2) is the expectation value of the inverse
square of the distance between the two particles in the
target. To get the total correction we must sum over all
ways of choosing quarks in the projectile and in the
target. If we denote the total cross section for interaction
of the jth quark in the projectile with the ith quark in
the target by ¢, we get a correction do to the total cross
section!* of

o001+ 002= — Z (87!‘)"—10‘,']'0'1'/]'<R—2>A
1,4,
i
— 2 (&m)loyoi(R)5, (6)
o

where we have called the projectile 4 and the target

12R. J. Glauber, Phys. Rev. 100, 242 (1955).

3P, B. James and H. D. D. Watson, Phys. Rev. Letters 18,
179 (1967).

14 The flux factors necessary to obtain the cross section from
the probability of interaction are the same on both sides of the
equation.
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F16. 2. Geometrical relations for discussion of double-counting
corrections. p= R sing is the projection of R in the scattering plane
xy. See text.

B.15 The quantity (R~2)4 is the expectation value of the
inverse square of the interquark distance in 4.

So far we have included only terms involving one
quark from one system and two quarks from the other;
other terms involving the interaction of two pairs of
quarks will be discussed in a moment. First we wish to
estimate the size of the correction. If we take each of
the o;; to be about 4 mb, and estimate (R~2) from the
mean-square radius of the proton of about 0.8 F? de-
termined from electron scattering, we have a correction
of the order of 3 mb for baryon-baryon scattering. The
correction will be higher if the radius is smaller, but in
any case it is large enough to be seen.

There is a second set of correction terms which are not
present in the scattering of an elementary particle from
the deuteron and which we have not yet considered. We
must subtract off the probability that two different
pairs of quarks from the two systems interact. Two
simultaneous interactions are each counted separately
by the linear theory, but they make only a single contri-
bution to the total cross section. A correction for this
double-counting error may also be estimated in the
black-sphere model. We require the probability that,
given an interaction between one pair of quarks, another
pair of quarks will pass within a distance @ of each other
and thus interact. If in Fig. 2, 6 and ¢ are considered to
be the angles of the radius vector between two quarks
(taken to be at a fixed distance from each other) in
spherical coordinates, all spherical angles are equally
probable and we have

P(8,¢) = (4n)1d2= (4r)~ sinf30d . 1)

Converting to a function of p and ¢, still taking fixed
R, we have for the probability that the second member
of a pair will be in the shaded region of Fig. 2

P(p,¢)=pbpdo/[4mR(R*—p*)'/*]. ®)

Finally, we require the probability that the second mem-
bers of the two pairs strike the scattering plane (plane
xy in Fig. 2) within a distance a of each other. Allowing

18 We will always use ¢ and ¢’ to label quarks in 4 and j and j
to label quarks in B.
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for the four choices of 8; and 6, independently less than
ov greater than 4, we have a total probability of

P=4 / pdpdd [4mRi(R*—p?)H/2 ] / p'dp'd¢’

X[47Ro(R2—p') 20 a2 — (p—¢)?], (9)

for fixed R; and Rs, where 6(x) is 1 when % is positive
and 0 otherwise. We will take the appropriate averages
over Ry and R; in a moment. If we substitute y=9'—p
and assume that the range of the interaction is small
compared to the size of the composite particle so that
y< a<<Rs, p’ <R3, and p< Ry, then to lowest approxima-
tion there is no dependence on ¢ or ¢’, and we may do
those integrations and the integration over dy to get

M
P=a%ﬂnkﬁj/ pdp (Rii—p?)12(Ry?—p?)-112, (10)
0

where M is the smaller of R and R,. The remaining in-
tegral can be done and yields

P= 02(4R1R2)—1 lnl (R1+R2)(]€1—R2)~ll , (11)
regardless of the relative sizes of R; and R,.

To finish the expression, we multiply by the cross sec-
tion for the interaction of the first pair of quarks, sub-
stitute for a? in terms of the cross section for interaction
of the second pair of quarks, multiply by the radial wave
functions in the two composites and integrate over all
values of the radii, and finally sum over all distinct ways
of choosing the quarks from the two systems, to get a
correction o3 to the cross section of

bos=— X" Y8 losriLas, (12
iji'y’
Iap= (4W)Z/dR1dR2 Rl' ea(Ry)| 2R2| ¢n(Ro)[*
XIn|(Rit-Ro)(Ri—Ro)™|, (13)

where ¢4(Ry) is the radial wave function of system 4
and the double prime on the summation denotes omit-
ting terms with either =4’ or j= 5. We have implicitly
assumed that both composites have over-all S-state
wave functions.

If we make the substitution x=3%(R;+R,) and
y=%(R1—R,), the integral becomes

Tap= 2(47!')2/ d.%/ dy ] (;;A(x—}—y) l 2
0 -

X | os(x—y) |2(a?—y?) Infxyt[. (14)

If the wave functions are slowly varying functions at
y=0, the integral over y is dominated by the divergence
in the logarithm; the wave functions can then be re-
moved from the integral over ¥ and the remaining in-
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tegral evaluated to give

0

IAB=(32/9)(4W)2f iz 1| 04 (0) |2 0s() |2, (15)

0

No further reduction is possible without specific knowl-
edge of the form of the wave functions.

Altogether we have a final expression for the total
cross section of hadron 4 incident on hadron B of

o*"(A4,B)=2_ aij+ 801+ d0s+dos, (16)

where 8g1+ 80, is given in Eq. (6) and éos is given in
Egs. (12) and (15).

f It is necessary to discuss our approximations a little
more carefully. The expression for P in Eq. (11) cannot
be correct as R; approaches R, since a probability
greater than 1 results. The problem is that the approxi-
mations made in going from Eq. (9) to Eq. (10) are not
valid for R;— R, a. The divergence in P must be cut
off somewhere in this region; the cutoff will be late
enough that the peak in P, although finite, will still be
present, so that Eq. (13) survives. It is in fact possible
to obtain an expression for P valid in the restricted re-
gion Ry— Ry&R;+ R, (where the trouble arises) which
does not suffer from the incorrect approximations. In
the region R;— R<KR1+ R, there is an additional term
P’ in P given by

ta? rRl—Rz Ri—Rs+a
= — In
mRRL @  |Ri—Ri—a
(Ri—R;)*—a?
+In|—— ——2:| ,
R12_R22

where £ is of order unity and is a function of Ri—R»
which, to lowest order, is the same in the limits R; — R,
and Ry—Ry— =,

If we assume that | o4 (%) | 22| p4(x) | 2, the deriva-
tion of Eq. (15) is changed only by the addition of an
integral of P’ over y from —x to «. This integral yields
terms that are of order a* Since we have already ne-
glected terms of this order in ignoring triple-scattering
corrections, we may safely ignore P’

We are not able to obtain explicit results for these
higher-order terms in the eikonal-approximation discus-
sion in the next section without assuming an explicit
expression for the quark-quark interaction. The deriva-
tion of P’ depends on doing the angular integrals by
using the 6 function in Eq. (9), and the point of the
eikonal-approximation derivation is to avoid using an
explicit expression for the amplitudes. If the §-function
form of the interaction were to be assumed, the discus-
sion of the preceding paragraphs would apply.
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B. Derivation of the Correction in
Eikonal Approximation

The forms we have obtained for the nonlinear correc-
tions to the additive quark model due to shadowing may
be obtained somewhat more generally by making use
of the eikonal approximation. One must assume that
the interaction region is small compared to the radius
of the composite (an assumption we have already made).
If the forward amplitudes are purely imaginary, we re-
cover our previous results. The dependence of the cor-
rection on the real part of the amplitude is also obtained.

The derivation parallels the work of Glauber.!? We
start from the eikonal representation of the scattering
amplitude!®

FKK) = ik (2m) / ) eplit—k) b3,

I'(b)=1—exp[—ix(b)],

where b is perpendicular to the direction of incidence,
k is the incident momentum, and Kk’ is the final momen-
tum. The optical theorem is

Tm f(k, k) =Tm(0) = k(4r)~lo%(k).

If r; is the radius vector from the center of mass of 4 to
the position of the ith quark in 4, and if the projection
of r; in the scattering plane is g4, and if s; and g; are the
corresponding quantities for the jth quark in B, and
if b is the vector from the projection in the scattering
plane of the center of mass of 4 to the projection of the
center of mass of B, we write the total scattering ampli-
tude in terms of Xy which is assumed to be

Xsot(b,01° - 04,01 - - 08) =2 X;(b—pi+0;), (18)
Y

when there are 4 quarks in 4 and B quarks in B. T' is
now to be thought of as an operator, inducing various
transitions, so to get the full amplitude for elastic scat-
tering we must write

Fk' k)= ik(27r)_1/ exp[i(k—Kk’)-bd%

x [ Watr ol

X |¢¥n(s1+ - +58) |*Teot( - - )dradrs, (19)
where dr4 and drp represent all independent coordinates
of 4 and B, respectively, not including the center-of-
mass coordinates, and where ¥ 4 and ¥ are the full time-
independent wave functions of 4 and B, respectively.

16 Equation (17) is valid only for small-angle scattering. See L.
1. Schiff [Phys. Rev. 103, 443 (1956)] where an expression which
is also valid for large angles is derived.
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We can now write 'y in terms of the Ty,
Tioi(b01- - 04,01 - - 05)

=1-] [1—-Ti(b—git+0y)], (20)

where the product contains factors labeled by all ¢ and
4, with 7 and j chosen independently. If we expand the
product, neglecting products of more than two I';’s and
substitute in Eq. (19), taking k=/#', we get

F(0) =ik(21r)“1/ [Wa(ri- - -7a)|2|¥s(s1e - - sB) | 2dTadTs
X/d2b [2 Tij(b—eito))

—% 2" Iyj(b—oit0))Tij(b—pst0;)],

8’ 3’

(21)

where the double prime on the sum means to omit
terms for which both ¢=4' and j= 7. If we substitute
b’=b—g;+0; in the first term, all the integrals in that
term may be done, yielding simply f;;(0). Then, apply-
ing the optical theorem, we have

UAB:,Z. 0',-]--}—50', (22)
50’2—Re/ltPAlz]x//BPdTAdTB/d%
X X Tij(b—gito;)Tyjy(b—prtoy). (23)

i’ ji’

At this point it is most convenient to take three
special cases, corresponding to the three corrections to
the cross section in the black-sphere model: (1) i=7,
(2) j=4', and 3) s%¢’ and j#j'. The first two cases
correspond to the shadowing correction and the last
case corresponds to the correction for the double count-
ing of the simultaneous interaction of two pairs of
quarks.

In case (1) we have

bo1= —Re 3 / Va2 P ad

5 / % Tiy(b—pit-0)Tis (b—eitay), (24)

where the prime on the sum means that j is to be taken
unequal to j/. With the substitution of the new variables

o=3(o+05),

= ("j"‘ o),

S=%(Sj+ sf'))

t=(s;—s;),

and b’=b—p;+ e, we have no dependence of the in-
tegrals on g; other than through the wave functions;

BARNHILL ITI 163
thus we may write doy in terms of the function defined
by

drg=drg'd*,

(25)
[ Wstas--sn) 2= et
The resulting expression for doy is
do1=—Re 2%’ /!w;(t)]?
XTy;(b—%%)Tij (b+31x)d?d?. (26)

Now if ¢ is an over-all S-wave function, |es(t)|? is
independent of the angles of t and it is advantageous to
change variables to

t=rx+t1z,

If at the same time we assume that the range of the in-
teraction is small compared to the average separation
of the quarks in a system so that we may neglect r with
respect to ¢ in the factor (12— 72)~V/2 we get

d*t= d*rdg=tdld*r (1*— 7?)~1/2,

0

bri=—2ReX [ dt |on(d)]?

i’ J o
X/dzT d%Fﬁ(b*%‘t)Pﬁ'(b-’-%v)

=4m(2k%)71 2 {{ri ) Re[[£:(0) fi(0) ]} -

175"

27

We have used Eq. (17) to obtain the f;(0) and the
relation

(rip=("%)= / a® 72| op(t) |2, (28)

to obtain (r;;2).
We can handle case (2) in a completely analogous
manner, obtaining

Sa2=4m(2k2)1 Z,/~ {(rs=)a Re[ fi;(0) f;(0)]}.  (29)

i’g

Now if we assume that the fi; are purely imaginary and
apply the optical theorem, we reproduce Eq. (6), which
was obtained previously under the somewhat more re-
strictive assumptions of the black-sphere model.

The correction in case (3) is

50’3=—RC/I¢A12]|PB|2dTAdTB/d2b

X2 Tij(b—git6,)Te;(b—psto;), (30)

Wi’ 33

where the double prime on the sum now denotes the re-
striction ¢5£4’ and ;5 4’. The reduction in this case is
somewhat complicated by having to integrate over the
coordinates of two quarks instead of just one. The
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necessary set of substitutions is

r=3(ri+r1.), o=3%(oitow),
u=(ri—rs), w=(ei—ow),

o=3(ort0,), | palw)|®= / Wal2dr,

dTA= dTA,d3M s

drp=drs'd¥,
s=3(s;+s),

w=(o;—0;), lfpzﬁ(t)|2=/|1//3|2drg’,
b'’=b—p+o.

t=(s;—s;),
(31)
After making the substitutions we have the expression

sors=—Re X / [ oa(w) 2| o5(t) | 2d3ud?

W37
X / a2 Ty’ —5(u—=) JTuy[b'+3(u—2)]. (32)

We may again exploit the assumed lack of angular de-
pendence of | ¢4|? and | ¢s|? by making the replace-
ments d3= tdid?*r (12— 7%)~12 and

dPu=udud®u (u2—u2)~12,
to get

dos=—4 Re 2" / didu d*ud*rd*

i’ 33!

x[”‘l ea(u)[?| o5(0)[?
(tz_ 72)1/2(142_M2>1/2
XTyp[b+3(u—=)],

where the integration regions are given by 0<#, (<,
u<u, and 7<{ We may now neglect the variation of
the factor in brackets over the interaction region.
This region is given by the requirement that both
|b—%(u—=)| <eand |b+3(u—=)| <e, which together
imply that |3(u—=)|<a. Thus if we write (2—72)
=[#2—{(x—u)+u}?] we see that neglecting r—u with
respect to u gives 12— 72=2—pu? Defining v=u—rz, we
have

bo3=—4 Re " / didud [“" eat)|’] wa(t)fz]

by (12— p2) V2 (02— p2) 112

]rﬁ[b—%@—eu

(33)

X/dedzv I‘,-,-(b—%v)I‘;r,v(b—l—%v). (34)

The integrals over d% and d% give the f;; factors, and
the integral over du is the same integral that appears in
Eq. (10), so we have

do3= 271'(2/82)—1 Z” Re[f”(())f;'_«,'(())]/ drudu

i’ 5i

x[ " drtdt] ) 12] 00 |* In] (e um0) ] (35)
']
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If we again assume that the f;; are pure imaginary and
apply the optical theorem, we reproduce the black-
sphere results of Eq. (12).

IV. CHOICE OF ENERGY FOR THE COMPARISON

We are still faced with the serious question of the
choice of the energies of the various experiments to be
used in applying the quark model. This question is com-
plicated by the possible dependence of the amplitudes
on the quark masses, which may or may not be renor-
malized by the symmetry-breaking interaction, and by
the possible direct dependence of the amplitudes on the
strength of the binding; but these possible effects must
be ignored, since there is at present no way of estimating
them.

James and Watson!'® have argued that the most
reasonable choice is to take constant s;=(p#+p*)?,
where ¢ and § are quark labels. This quantity is rather
easily evaluated in terms of 54z, the equivalent quantity
for the composite hadrons. If we assume that we may
neglect the momentum of the quarks relative to the
center of mass of the hadron, we find, in the hadron rest
frame,!5

pit=(mi,0)= (mi/m4)pa*,

36
pi#= (m;,0)= (m;/mz) pr*. ©0
Thus we have
Sij=(mim o= pa*+mmpppr)?,
($i—mi2—m;®) [ (mim;) S

= (sap—ma2—mp?)/(mamz).

If hadron 4 is incident on hadron B in the laboratory
with momentum p;, and if we neglect the hadron masses
compared to momenta and energies, we have

SAB mAmB/s,-j—mﬁ — My
PLz—z .

2mp  mm; \ 2mp

(38)

Now we have two choices. James and Watson choose
to assume that the symmetry-breaking interaction does
not renormalize the quark masses. In this case we hold
sij—mg*—m;? constant, and for 4 and 4’ incident on B
we have

pr(A)/PrL(A)y=ma/m4:,

If, however, we assume that the masses are renormalized
from system to system, then we take m;=1m, if 4 is a
meson (and §m4 if 4 is a baryon). We may further as-
sume that all m; may be neglected with respect to mo-
menta and energies, and the equivalent of Eq. (39) is

pr(4)/Pr(A)=A4/4",

quark masses renormalized ,

no renormalization.  (39)

(40)

where 4 is the number of quarks in hadron 4. This pre-
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TaBvrE III. Quality of fit with and without shadowing correction
with momentum in the quark-quark c.m. frame held constant.
See Table II for explanation of symbols. There are five adjustable
parameters.

Total cross
Lab.  section

System mom. (meas.) A 5(lin) 5 (shad)
(p) 15.2 38.9 0.6 —26 0.0
(pn) 15.2 40.2 1.7 -39 —-1.3
(Pp) 15.2 49.8 0.8 —5.1 0.3
(pn) 15.2 53.0 3.7 —10.8 —4.8
(ntp) 9.9 24.8 0.2 0.5 0.1
(7~ p) 9.9 26.6 0.3 1.2 —0.2
(K*p) 10 17.3 0.1 0.0 0.0
(K=p) 10 22.5 0.2 0.1 0.1
(K*n) 10 17.5 0.4 —0.2 —0.2
(K~n) 10 20.6 0.4 —0.5 —0.5

scription has been extensively used by Kokkedee and
Van Hove.!

Because of the structure of the sum rules, James and
Watson could only apply their prescription to the

relations
(@p)+ (pn)=2(zr=p)+(x*p),
(pn)+(pp)= (x=p)+2(xtp),

for which there is no overlapping data; they were able
to compare the left-hand sides only with extrapolations
of the right-hand sides, obtaining satisfactory agree-
ment. However, the kaon-scattering data can be com-
pared, using their prescription [Eq. (39)], with both
pion-scattering experiments and baryon-scattering ex-
periments, if a numerical analysis is used. We shall make
this comparison in the next section, and we will find that
adequate agreement is obtained. Somewhat better
agreement is obtained by using Eq. (40) in conjunction
with a parametrization including the shadowing cor-
rection. Unfortunately, the parametrization obtained by
including the shadowing correction is rather flexible, so
it is not clear that the rather good fit to the data is really
significant.

(41)

V. NUMERICAL ANALYSIS

In this section we will present the results of a least-
squares fitting of the experimental data under various
kinematic assumptions, including the shadowing cor-
rection whenever the amount of usable data permits.
The results of such an analysis for a linear parametriza-
tion holding s4p constant from experiment to experi-
ment has already been presented [see Table IT and Fig.
1] o

In the first analysis to be presented in this section we
will hold the momentum in the quark-quark center-of-
momentum frame constant. This prescription is almost
the same as that contained in Eq. (40); it differs from
that prescription by terms of the same order as those

17 See Ref. 6.

MAURICE V. BARNHILL III

163

that have been neglected in the derivation of Eq. (40),
and the quality of the fit is not affected by the difference
between the two prescriptions. The results for a linear
parametrization, Eq. (2) with 4 = B, are given in Table
III and Fig. 1(b). The baryon-baryon scattering data
are still not very well reproduced, although the fit is
somewhat better than that obtained in Sec. II.

Before we can include the shadowing correction in an
effort to improve the agreement, we must reduce the
number of parameters. We have five amplitudes; Eq.
(6) contains two additional parameters, (R-2) for the
meson and for the baryon; and the double-counting cor-
rection in Eq. (12) has three parameters, I 45 with 4
and B both baryons, both mesons, or one a baryon and
one a meson. Thus there are ten parameters for ten
experiments and no predictions are obtained. We intend
to ignore the double-counting terms, Eq. (12). The size
of these terms cannot be estimated without knowing
details of the internal quark wave functions; their ne-
glect can be justified only in terms of the success of the
resulting parametrization. We also intend to apply the
Pomeranchuk theorem to the quark amplitudes to
justify taking A=E and C=F; it may be seen from
Fig. 1 that these relations are consistent with the results
of the linear analyses.

We are left with five parameters. If we evaluate the
correction terms from Eq. (6) and add them to the linear
terms from Eq. (2) we have

(pp)=(pn)=94—36842,
(pp)=(13/2)A+35D—1884%— 1684 D—23D?,
(pn)="TA~+2D—218A°—1484D—BD?,
(rtp)=(11/2)A+3D— (Sa+108)A?— (a+28)AD,
(mp) =54+ D—[4a+(17/2)8]A42
—(2a+38)AD—18D?,
(K+p)= (K*n)=34+3C—684°—624C—64C?,
(K=p)=24+43C+D—5B4°—4aAC
—384D—68C—20CD—48D2,
(K—n)=3A4+3C+31D—4842—50AC
—284D—68C?—aCD,
a=((8rR?) V),
ﬁE <(87I’R2)—1>1; .

(42)

The results of the least-square analysis with the
parametrization in Eq. (42) are given in Fig. 1(d), and
a typical set of best-fit values is compared with experi-
ment and with the linear fit in Table III. As may be
seen, the fit is quite good. Moreover, there is no ap-
preciable energy dependence in « or 8, which is as it
should be. If we take the values for @ and 8 seriously
(which may well be dangerous) we get values of 8.5
F~% and 2 F~2 for the expectation values of R~2 for the
meson and for the baryon, respectively. Hence the mag-
nitudes of @ and 8 are not unreasonable.
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Since the parametrization including the shadowing
correction is nonlinear, it is not clear exactly how
flexible the parametrization is. Thus the significance of
the rather good fit we have obtained is doubtful. This
is especially true considering the large number of ad-
justable parameters we have. To check on this situation,
we have done the analysis keeping s4p constant from
experiment to experiment, giving a somewhat different
set of experimental numbers to be fit. A typical set of
best-fit values are given in Table II, and the resulting
parameters are given in Fig. 1(c). The fit is embarras-
singly good; the only feature of this fit that is less than
ideal is a slight energy dependence of o and 8. The
problem is that the parametrization of the meson-
baryon data depends almost entirely on the linear com-
bination a+-2B, leaving 3 as a free parameter to achieve
agreement of the baryon-baryon data. Since the meson
data are already well fit by a linear analysis, it is not
surprising that a good fit is obtained when shadowing
is included. We conclude that it is not possible to decide
whether or not shadowing is present by examining the
results of the numerical analysis.

Finally, we present the results of an analysis using the
prescription for choice of energy given by James and
Watson [our Eq. (39)]. Since with this criterion we can-
not use all of the experiments in any one analysis, a
three-parameter linear analysis has been used (inde-
pendent parameters 4, C, and D). For reasonably high
energies, only three distinct sets of experimental data
are available. The results of the analysis for all three
are given in Table IV. It may be seen that the fit is good,
although not quite as good as the fit with the shadow-
ing correction and holding quark-quark momentum
constant.8

VI. CONCLUSIONS

We have seen that, under a wide variety of kinematic
assumptions, the meson-baryon total cross sections are
well represented by a”quark-model parametrization
while the baryon-baryon data may or may not be well
represented. In all cases, the cross sections involving
one strange quark are smaller than the cross sections
involving nonstrange quarks; thus SU(3) is broken. In
addition, the cross section for the 7'=0, state of the non-
strange quark and nonstrange antiquark is appreciably

18 We have deliberately avoided using x2 with so few degrees of
freedom and the nonlinear parametrization. However, for what-
ever it may be worth, the average value of x? divided by the
degrees of freedom in the fit with momentum constant was 1.5;
for the present analysis the values are 6.4 for a kaon momentum of
6 BeV/c, 4 for 8 BeV/c, and 0.1 for 20 BeV/ec.
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TaBLE IV. Parameters and quality of fit using James-Watson
prescription of $1(4")/pr(A)=ma+/ma. The first ten lines are
arranged similarly to Tables IT and III; the last six lines give the
laboratory momenta used (in BeV/c) and the results for the pa-
rameters (in mb). The column labeled A gives the experimental
error; the column labeled & gives the difference between the ex-
perimental measurement and the best-fit value. Data are from
Galbraith et al.* with slight interpolation and extrapolation.

System A 5 A ] A 5
() 0.6 -10 0.6 —0.8

Not available

(pn) 1.7 —-22 1.7 —2.1  Not available
(pp) 0.8 2.3 0.9 2.7  Not available
(pn) 3.7 —2.8 3.7 —3.3  Not available
(=) Not available 0.2 0.0
(=) Not available 0.3 0.0
(K+p) 0.1 02 01 0.1 0.1 0.0
(K~p) 0.3 -04 02 —-04 46 —0.2
(K*n) 0.4 -03 04 —-02 04 -0.2
(K—n) 0.4 —-1.5 04 0.6 1.6 -0.5
#1 kaon 6 8 20

$r nucleon 11.3 15 e

L pion e cee 5.6

A 4.294-0.14 4.23+0.11 4.01+0.03
C 1.43+0.15 1.56-+0.12 1.83+0.03
D 10.8 0.6 10.1 +0.4 8.6640.02

a Reference 10.

larger and more energy-dependent than the other cross
sections.

If we use the kinematic prescription of equal s;; with
unrenormalized masses given by James and Watson!?
we can obtain a fairly good agreement of the quark-
model parametrization with experiment using three pa-
rameters in a simple, linear relation. If we assume that
the quark masses are renormalized from system to sys-
tem, we must use a parametrization based on including
a correction for the shadowing of one quark by others in
the composite, but if we use this parametrization we get
impressive agreement with the data. The agreement is
marred by the apparent flexibility of the parametriza-
tion. Neglecting the double-counting terms of Eq. (12)
we can obtain estimates of hadron sizes which are en-
tirely reasonable ((R~?)~2 F~2 for a nucleon). It ap-
pears that the quark model, with physically reasonable
assumptions, is quite flexible enough to avoid contradic-
tion with experiments of the present accuracy.
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