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The method of phenomenological nonlinear Lagrangians is described in detail for the case of chiral
SU (2) XSU(2). The complete nonlinear Lagrangian is constructed for a theory oi pions, nucleons, and vector
and axial-vector mesons. The Lagrangian allows a study of the strong and weak interactions of the particles
involved. Relations between masses and coupling constants emerge. A model containing only pions and
nucleons is also described. Finally, the way to generalize the method to SU(3) XSU(3) is indicated.

1. Dt'TRODUCTIOH

W VER the past few years a number of interesting
and successful relations have been derived from

the assumption of (broken) chiral SU(2) XSU(2) and. of
total or partial conservation of currents. ' The techniques
usually employed to derive these results are those of the
algebra of currents, ' supplemented by the idea that
vector, axial-vector, or pseudoscalar states dominate
the Inatrix elements of the currents. s In this paper we
would like to describe a different method, that of the
phenomenological Lagrangians with which it is possible
to derive the consequences of the same physical ideas.
Once one has acquired familarity with this method, one
finds that it is perhaps simpler to use than the tech-
niques of the algebra of currents and that a number of
results can be obtained by means of rather elementary
manipulations on classical field Lagrangians.

The use of Lagrangians in the study of broken chiral
SU(2) XSU(2) is quite old and, as a matter of fact, the
group was first introduced in particle physics in the
context of a Lagrangian theory, the so-called o model. 4

The o. model in its original form has the disadvantage of
assigning the pion to the four-dimensional representa-
tion of SU(2) XSU(2) together with a scalar isoscalar
meson, the o- meson, which appears not to exist in
nature. Furthermore, as long as the symmetry is exact,
the nucleon must have a vanishing mass. Of course one
can argue that, since the symmetry is broken, the o
meson can acquire a very large mass and become highly
unstable and that the nucleon can acquire a finite mass.
However, if this is the case, it is natural to seek a
formulation which does not require a scalar Geld in the

~This work was supported in part by the National Science
Foundation.

On leave from the University of Vienna, Vienna, Austria.' We quote only a iew of the relevant papers: S.L. Adler Phys.
Rev. Letters 14, 1051 (1965); W. I. Weisberger, ikid. 1, 1047
(1966); K. Kawarabayashi and M. Suzuki, ibÃ 16, 255 (1966);
S. Weinbcrg, ibid. 18, 507 (1967).

~ M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63
(1964). Morc recently it has been suggested that the algebra of
currents be replaced with an "algebra of fields": T. D. Lee,
S. Weinberg, and B.Zumino, Phys. Rev. Letters 18, 1029 (1967).

~ The dominance hypothesis has been mostly used in the form
suggested by M. Gell-Mann and F. Zachariascn, Phys. Rev. 124,
953 (1961). For a recent discussion based on Lagrangian field
theory, see N. Kroll, T. D. Lee, and B. Zumino, Phys. Rev. 157,
1376 (1967), where other references are given.

4 J. Schwinger, Ann. Phys. (¹Y.) 2, 407 (195/); M. GeO-Mann
and M. Levy, Nu. ovo pimento 16, 705 (1960).

theory at all. Theories of this kind have been discussed
some time ago by Kramer, Rollnik, and Stech' and by
GQrsey. ' More recently, %einberg, ' starting from the
o- model, eliminated from it the scalar held and obtained
a Lagrangian in which only nucleons and pions occur
and in which the nucleons have a manifestly nonvanish-

ing mass. A transformation analogous to %einberg's
was performed some time ago for a somewhat simpler
model by Giirsey and one of the authors (B.Z.). It
resulted in the introduction of a nucleon 6eld corre-

sponding to the field X of Sec. 2 of this paper and having
a manifestly nonvanishing mass (see the second paper
of Ref. 6). The Lagrangians studied in these papers are

highly nonlinear and, when expanded in terms of the
coupling constant, generate many-particle vertices.

If one performs a transformation of SU(2) XSU(2),
the fields entering the nonlinear Lagrangian undergo
certain (in general, nonlinear) transformations which

are realizations of the group. 8 The nonlinear Lagrangian
consists of parts which are invariant under these
transformations and, if the symmetry is broken, of

parts which have simple transformation properties. In
the present work we formulate the theory by assigning
the fields to specified linear or nonlinear realizations of

SU(2) XSU(2). The nonlinear Lagrangian is then
essentially determined by requirements of invariance
or covariance. The fact that one can limit oneself to a
pion triplet and. does not need to add a scalar meson is
due to the existence of a three-dimensional nonlinear
realization of SU(2)XSU(2), while one knows that
there is no three-dimensional linear representation. The
linear or nonlinear realizations of the group to which

the various fields must be assigned are, of course,
indicated by the agreement with empirical evidence.
It is one of the advantages of the method of nonlinear
phenornenological Lagrangians that this comparison
with the experiments can be carried out very simply by
expanding the Lagrangian in powers of the coupling
constants and by using the various many-particle

5 G. Kramer, H. Rollnik, and B. Stech, Z. Physik 154, 564
(1959).

~ F. Gursey, Nuovo pimento 16, 230 (1960);Ann. Phys. (N. Y.)
12, 91 (1961). These papers and the paper quoted in Ref. 5
contain many of the ideas which have been used in later work.' S. Weinberg, Phys. Rev. Letters 18, 188 (1967).

~Following the mathematical usage we reserve the word
representation for the linear realizations of a group.
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vertices obtained in this way. One then adopts the rule
that each process should be calculated by taking all
graphs which can contribute to it and which have the
topological structure of trees (no internal loops, no
internal integrations). This procedure may perhaps be
justified if the momentum transfers at the vertices are

sufficiently small. This point of view is closely related
to that of some recent work by Schwinger.

The main body of this paper describes a model which
includes, besides nucleons and pions, an isovector vector
meson (p meson) and an isovector axial-vector meson. '
The requirements of invariance or covariance still leave
certain essential parameters in the Lagrangian undeter-
mined. The additional requirement to be imposed
corresponds to that, which is usually made in other
approaches, of vector dominance of certain matrix
elements, or dominance by other meson states such as
axial vectors or pseudoscalars. In phenomenological
Lagrangian field theory this dominance requirement
assumes an extremely simple form. It simply states
that those interactions which can arise through the
exchange of one particle should not also occur directly,
i.e., be represented by their own vertex obtained by
expanding the nonlinear Lagrangian. This requirement
gives restrictions which determine some hitherto
undetermined parameter (see Sec. 4).

The nonlinear realizations of the group by which the
fields transform contain explicitly the coupling constant.
As a result, if one expands the Lagrangian in powers of
the coupling constant, terms of different order are
transformed into each other by the group transforma-
tions and it is only the total nonlinear Lagrangian that
has simple properties of invariance (or covariance). It
is in this way that relations between processes of
diferent order and with different numbers of particles
arise, corresponding to the relations between processes
with different numbers of soft pions which one obtains
in the method of the algebra of currents. "

Knowledge of the Lagrangian permits the calculation
of the vector and axial-vector currents which enter in
the weak interactions. In nonlinear phenomenological
field theory they appear as highly nonlinear functions

of the various fields. From these expressions it is

possible to read off the matrix elements of the currents

between many-particle states and obtain relations
between various weak. -interaction parameters. Alterna-

tively, one may assume that the weak interactions of
hadrons are dominated by the vector and axial-vector
mesons (see Sec. 6).

9This model has also been studied by J. Schwinger, Phys.
Letters 248, 473 (1967). Our own work, like Schwinger's, was
directly stimulated by Weinberg's paper (Ref. 7). Most of the
detailed results described in the present paper were obtained
before we had knowledge of Schwinger's paper. A number of
formulas, such as the expression for the full nonlinear Lagrangian,
Eq. (50) below, appear here for the first time.

"For the current algebra method, see S. Weinberg, Phys. Rev.
Letters 17, 616 (1966).

The phenomenological Lagrangian which satisfies
all the principles described above still contains a number
of arbitrary parameters. The determination of their
values requires principles which go beyond those
embodied in the ideas of SU(2)XSU(2) or of vector
and axial-vector dominance and thus in a very precise
sense go beyond the present approach. %e shall indicate
in Sec. 5 how one can determine some parameter ratios
if one is willing to make use of results of relativistic
SU(6) theory. This follows an idea of Schwinger, who
makes use of his own formulation of relativistic SU(6)."

The ideas and methods described in this paper can be
generalized to SU(3)&(SU(3). The detailed results will

be described separately. However, many formulas of
the present paper are written in such a way that the
generalization to SU(3) &&SU(3) is immediate.

For completeness we describe in the Appendix a model
involving only nucleons and pions which has been.
already studied in detail by other authors, notably
Weinberg and Schwinger. Our purpose here is to write
it in a form which can be directly generalized to SU(3)
XSU(3) and to give some additional results.

2. TRANSFGRMATIO5 PROPERTIES
OF THE FIELDS

As a result, the expressions

R'= o'+s'
and

4 (o+sos~)4

(3)

are invariant.
Following the papers quoted in Refs. 5—7, we replace

the two fields o- and z by two new fields. One is the
invariant R and the other is an isovector field g. They
are defined by

a+st gr =R(1 its&)/(1+i'—s&) . (5)

Using the same notation as before, we denote with ro the
traceless 2X2 matrix f= ( z. The physical interpreta-
tion of f is that it is, up to a multiplicative constant, the
new field of the pion. Clearly p transforms so that

&%so . 1 &ask
g
—2' +5 g

—2A'y5 ~

1+fest I+svsk
(6)

'" J. Schwinger, Phys. Rev. 140, 8158 (1965); Phys. Rev.
Letters 18, 923 (1967).

In the o- model the pion field 7f. and the o. meson Geld
o. belong to the four-dimensional representation of
SU (2) )&SU (2). By a chiral transformation they
transform according to the law

o+iys7r —+ e ' . 'r'(o+iys7r)e ' 'r',

where z and o. are 2&(2 Hermitian traceless matrices,
x=m c and o.=o, z. The corresponding transformation
of the nucleon field is
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when 0, is in6nitesimal this can be written as

(7)

and an axial-vector field

(17)

where
5S=iAÃ, (10)

iA =L1/(1+@) i jLta(1+ $ ) i —B(1+t ) iq (11)

If we now make use of the special properties the matrix

$ has by virtue of its form $= ( ~, we see that Eq. (11)
can also be written as

i~=2LP,~]. (12)

We remark here that Eqs. (6), (7), (10), and (11) are
valid also for SU(3)XSU(3), in which case n and $ are
Hermitian 3X3 matrices (u is traceless while $ isn t),
and E' is a three-component quark field.

We have indicated above how the transformation
properties of the fields $ and N can be obtained from
those of the old fields o, m, and P. However, as explained
in the introduction, we shall now adopt a diGerent
attitude. Without referring any longer to the original
o model, we just postulate the transformation properties
of the fields $ and N and look for Lagrangians having
suitable invariance or covariance properties. The
invariant field R will never occur in the theory. The
identification of the pion with $ (suitably normalized)
has the advantage that only the known pion triplet
occurs in the theory. The identification of the nucleon
with A has the advantage that the chiral transformation
now allows the presence of a nucleon mass term in the
Lagrangian. The matrix A is Hermitian and does not
contain yq. From Eq. (10) and its adjoint

sS= —i'd, (13)

it follows that EE is an invariant. It is obvious that the
transformation properties of $ and N under isospin
transformations are

We also introduce a new nucleon field 37 defined so
that the invariant (4) takes the simple form RVN.
Clearly

1—ivsb "' 1—iv~k
(8)

1+iv~(/ (1+0)"'
The transformation properties of Ã are determined by
those of f and of $. The inverse of Eq. (8) is

a= 3(1+'~.~)/(1+v)"'jN, (9)

and one can easily see that

Coordinate-dependent SU(2) XSU(2) transformations
for such fields have been considered by a number of
authors. "An infinitesimal isospin gauge transformation
can be written as

~p.= D3..j+ (2/g)~.P,

5a„=i[p,a„j,
(18)

(19)

while an infinitesimal chiral gauge transformation has
the form

fop„=i',a„f, (20)

~a~= &L&~pl j+ (2/f)rll ci. (21)

We do not intend the Lagrangian to be invariant under
the coordinate-dependent SU(2)XSU(2) gauge group.
Rather we have in mind a Lagrangian which consists of
a part L~ invariant under the gauge group, a part L2
which breaks the gauge invariance but preserves
invariance under the SU(2)XSU(2) group with con-
stant parameters, and finally a part L3 which reduces
the symmetry to ordinary isospin invariance. L2 will be
chosen of a particularly simple form

1.2 ——-', m'(p„'+a„') . (22)

(25)

Here P is defined in terms of the change of Ls under an
infinitesimal chiral gauge transformation

bL3=P 0.. (26)

In general, P will be a function of the fieMs occurring
in L3. For a particular form of L3, I' will be proportional
to the pion Geld. Although this choice may be partic-
ularly appealing, we must point out that only compar-
ison with the empirical evidence can justify a particular
choice of the symmetry-breaking term L3. In Sec. 4 we
shall discuss the form of L3 in more detail.

This has an interesting consequence which follows
immediately by performing on the total Lagrangian

I =I-i+I-i+La, (23)

an infinitesimal gauge transformation. One can see
easily in this way that the equations of motion will have
as a consequence the two relations

5N=iPN, 5Ã= iNP, —
~k=iD3, $],

(14)

(15)
3. CONSTRUCTION OF INVARIANTS

Our main task is the construction of the gauge-
invariant part Lj of the Lagrangian as a function of the
fields $, N, p„and a„. Four-dimensional covariant curls
can be easily constructed for the fields p„and a„.They

"C.
¹ Yang and F. Mills, Phys. Rev. 96, 191 (1954); R.

Utiyama, ibQ. 101, 1597 (1956); M. Gell-Mann and S. Glashow,
Ann, Phys. (N, Y.) 15, 437 (1961).

where P= g ~.
We shall now allow the group parameters a and P to

be coordinate-dependent. The transformation formulas
given above are still valid but, in addition to the fields
already introduced, we need now as gauge fields a vector
field

Pe= PI '& (16)
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are, respectively,

p» B&pv Bvp& 2Zgp&vpv] $Zg[a&vav] (27)

The transformation of the fields p„' and a„' under an
isospin gauge transformation can be obtained in exactly
the same way. They are

where

Gpv —BpGv Bv p 2Zg[p~)Cv]+ aZg[pv)Gp]

=D„av
bp. '= zB pp']+ (2/g)~A (36)

(37)

2 glJ w

The expression p„„'+a„„z is invariant under the full
SU(2)XSU(2) gauge group. Observe that Eqs. (27)
to (29) can be taken over directly for SU(3)XSU(3).

The construction of invariants containing also the
fields $ and N is greatly facilitated by the introduction
of two auxiliary fields p„' and a„' which can be defined
as the transforms of p„and a„by the same $-dependent
finite chiral gauge transformation which transforms ib

into N, according to Eq. (8). They satisfy, therefore,
the identity

(zing+ 2gpIvj2g yzQy) 0

=Np~(ia„+', gp„'-+-', gaza-„')N (3.0)

In view of Eq. (9), this can be written as

z'yz$ 2z 1+iyz$
p~ +Y&z~ =, plv+y&rid+ ~~ v (31)

(1+5')"' (1+~')"'

or, more explicitly, in the form

We see that these equations have the same form as for
a chiral gauge transformation, except that the matrix P
instead of the matrix A is to be used. Equations (34)
to (37) can also be veri6ed directly from explicit forms
of the fields p„' and a„', such as those given in Eqs. (32)
and (33).

Using the above formulas it is easy to construct. all
functions of the fields $, N, p„, and a„which are invariant
under SU(2)XSU(2) gauge transformations. They are
those functions of the fields E, p„', and. a„' which are
invariant under the isospin gauge transformations (14),
(36), and (37), since these functions will be auto-
matically invariant also under the chiral gauge trans-
formations (10), (13), (34), and (35). Having con-
structed a function of Ã, p„', and a„', invariant under
isospin gauge transformations, one needs only to sub-
stitute the expressions (32) and (33) to solve the
problem. For isospin gauge transformations it is well

known how to construct invariants by use of "co-
variant" derivatives like that defined in Eq. (29).

4. THE PHENOMEHOLOGICAL LAGRANGIANz—v.+tv. ( ~S,v.]+ LZA(l), (»)-
1+2 g

2
v„'= — v„+tv i~[(p„] „a () . ,

—(SS)„
1+2

In the following we find it convenient to use vector
notation for isospin vectors, rather than the 2X2
matrix notation we have used until now. "Furthermore,
for the sake of simplicity, we use ordinary type (not
bold face) for the isospin vectors. A form for the
Lagrangian, which is general enough to contain most
desired interaction terms, in the following:

I.= ,' (rn' m'—) (—a„')'—,'(p„„z+a,—„z)—+iN(y„8„+M)N

+,'gNy„rN p„'+-', aNy„yzrN a-„'+erg(rz„'Xa, ') p„,
'

+„N „„.N p„„' ', ~z(p„'yo—„—)+L,„(3S)
where"

ppv = &ppv Bvpy +gpss Xpv +g+lv X&v

=..+[2/(1+8)]~X(...+~Xp. ) (39)

"The correspondence between the two notations is well known.
If u= a.c, b =b g, then the commutator and the anticommutator
of a and b are given by Pa,b]=2i(aXb) r and (a,b) =2a b.

1' There is a corresponding equation

~p~p +gpss X~p gpp X~p
=.„+t2/(~+e) j~&&(p. +~X.„).

To see that this last expression, as well as the last form of Kq. (39),
are correct, one repeats the argument that led to Eq. (3i). Since
p~' and a„,' have a gauge covariant form, one has here the simpler
relationbp„'=zTA, p„']+ (2/g)B„A, (34)

Bg~ = z)A viz~ ]~ (35)

These equations are valid for SU(3)XSU(3) as well.
For the case of SU(2) XSU(2), the matrix A is given

by Eq. (12).

y r ~ &%&5 ~+&'v&8
PI" +~ &" (j +$2)1/2(P&"+~ I"")(f+]2)1/2

'

The relative simplicity of the expression for p„„' in terms of the
unprimed fields is exactly the reason why we chose to use it in the
Lagrangian, instead of B„p„'—8„p„'+gp„'Xp„' which transforms in
the same way as p„„'.

In deriving these last two equations we have made use
of the particular properties of the matrix
Equations (30) and (31), however, are valid for SU(3)
XSU(3) as well, and equations analogous to (32) and
(33) can also be obtained.

Let us observe that the left-hand side of Eq. (30) is
invariant under a chiral gauge transformation. Then
the right-hand side of the equation must also be
invariant. Since we know the transformation law of
the 6eld N, which is given by Eq. (10), we can immed-

iately infer the transformation properties of the fields
p„' and a„'. We need only observe that A does not
contain yz and therefore Eq. (10) has the form of an
isospingauge tra, nsformation, except for the fact that
the $-dependent matrix A rather than P occurs. It
follows immediately that a chiral gauge transformation
changes p„' and u„' according to
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Except for the last two terms, this Lagrangian is in-
variant under SU(2)XSU(2) gauge transformations.
We have written the coefficient of the (a„')' term, with-
out loss of generality, in a form which will turn out to
be convenient a little later. Let us make use of Eq.
(33), which can also be written as

present in the Lagrangian:

(~xd„) (~XD„~),

(&XD.&)',
and

Ny„rN (&XD„&).

(45)

(46)

(47)

1 2
a„'=a„— —-D„q—2&X (PXa„),

1+@ g

Dp= ~p+gppx ~

On the other hand, the Lagrangian (38) would give rise
(40) to these interactions also through the exchange of a

p meson. In accordance with the formulation of vector
dominance given in the introduction, we must require
that the direct interactions be absent or that

We see that the term (a„')' contains, in addition to
higher nonlinearities, a bilinear interaction proportional
to a„8„$.Such an interaction must be eliminated by
going over to a new axial-vector field d„which is an
appropriate linear combination of a„and 8„$.It is easy
to see that a suitable choice is

2 m2 —m2

a =a ——
g m

1

]+(2
(42)

—,'(m' —m') (a„')'+-',m'a„'

2 m2 m2 1 m2

,'m'd„'+-— —(D.~)'
m' (1+(')' g

(&x&,) (&XD.&)
+2(2m' —m'+m'P) —m'g(PX i1„)'

1+g2

4m' —m' ()XD„$)'
(m2+m2r2) . (43)

g f@ (1+8)'

At the same time p„', which is given by Eq. (32), can
be written in terms of d„as

P~ =P~+
1+]2

In this expression only the coefficient (2/g) (m' —m')/m'
of 8„$is determined by the requirement that the bilines, r
interaction be eliminated. However, the particular
choice of nonlinear terms given in Eq. (42) has the
advantage of simplifying certain terms in the expression
for the nonlinear Lagrangian as a function of 6„and
the other fields and is therefore very convenient. We
now have

m2 2m2

y= (mv2/g)(. (49)

We can now write the final expression for the phenom-
enological Lagrangian (38). Since the detailed expres-
sion is rather lengthy we exhibit explicitly only certain
terms and leave some of the substitutions undone. The
result is

L= —-'(p „'+a „')+iN(y 8 +M)N ,'m'p„'—-,'m'a„—'-
1 1 g2

(D.~)'+ 4X(a,
2 (1+5')' (1+&')'

g2 @2 2 g2

(~XD ~)'
2m'v2 1+p 2m' (1+/)'

+Kg(a„'Xa.') p„,'+2gNy„rN p„'

Here
+-', XNy„ygrlV a„'+pN o„„rlV p„„'+La. (50)

p&.—~I,p.—&p&+gpI. Xp,+ga„Xa,

That this relation ensures the absence of the interactions
(45) and (47) is obvious. To see that the interaction (46)
will also be absent one must combine in Eq. (43) the
term proportional to P(D„))'with the term proportional
to ($XD„()'.From Eq. (43) swe see that rn is the mass
of the axial vector which is correctly described by the
field a„. Therefore Eq. (48) is exactly Weinberg's
relation" between the mass of the axial-vector particle
and the mass m of the p meson. In view of this relation
it is natural to identify the axial vector with the A&

resonance. Making use of Eq. (48) we see from Eq. (43)
that the coefficient of (D„])', to lowest order in the
nonlinear terms, is equal to m2/g'. This shows that the
pion field $ is not normalized. We introduce therefore
the normalized pion field

1
X a„———(2m2 —m2+m2P) D$ . (44)—

g 'fn 1+(2
g 1

+ — (D,gxa, —Dyx&„)
mV21+P

Using the expressions (43) and (44) in the Eq. (38)
and expanding the nonlinear denominators, we see
that among others, the following direct interactions are

g 1
+—- - — D„JXD&, (51)

2m' (1+/)~
"See Weinberg's paper quoted in Ref, 1,
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g
O'X (~~p~ ~~pl+gpuXP~)

zzzl2 1+@

The pseudovector interaction of the nucleon to
lowest order is

gv2 1 f gz

P~ =Pe+ 4X~ tzp— -D,y,
zzz 1+@ 4 2nz'V2 1+(' (60)

The constant X is related to the usual pseudovector
nucleon-pion coupling constant f by

g
~l = ~l + —4 X (4 X~z„)+ pD„p-~

m&21yP'-)
(61)X/2m= f/m.

f'/4zr= 0 08-.
1 3 g

(
One knows that

zzz&2 (1+P)' 2 zzzz (62)

g
l~~.~ I«('.—(1/ )~.~) (»)

+ O'X 944'X%4), (52) The coupling to the axial vector and that to the pion
zzzzv2 (1+&'~'

are related to each other, but they are independent of
the vector coupling to the p meson which is, also to

(53) lowest order,

a„a„=(zzz.'/v2zzz)y+ (56)

Two choices for Js appear particularly simple. One is
Just

The other is a function chosen so that the higher-order
terms indicated by the dots in Eq. (56) are not present.
It is easy to see that this choice is

and p„,
' can be taken from Eq. (39).

The transformation laws of the various fields have
been given in Secs. 2 and 3 in terms of the field $. One
may observe that, if one expresses them in terms of
the normalized field p, they will contain the coupling
constant g, It will also be natural to rescale the group
parameter and use a'= (zzzv2/g)n instead of n.

Ke can now discuss the form of the symmetry-break-
ing term 1.3. The simplest assumption is that I.3 is a
function of the pion field alone. This function is not
completely arbitrary since, when it is expanded in
powers of the pion field, its quadratic term must
reproduce the pion mass term

(55)

I rom Eqs. (25), (26), an.d (55) we see that Eq. (25)
has the general form

As pointed out by Sakurai, " the coupling constant g
can be estimated from nucleon-pion scattering, since
the exchange of a p meson gives rise to the interaction

=(g'/2m')gy rtV (yXB P). (63)

This interaction is responsible for most of the low-energy
nucleon-pion s-wave scattering. The value for the
coupling constant obtained in this way is

g'/4zr=2. 8.

In the Lagrangian (50) the meson-meson interactions
depend upon two parameters, g and If. A particularly
simple (in some sense minimal) form would obtain
for If:=0 and it is interesting to see if this choice is in

agreement with the available experimental information.
The interaction terms in the Lagrangian (50) which

are responsible for p-meson decay into two pions are

I., = —gp„(QX&„$)
—(g/4zzz') (1—2 ) (B„p,—B,p ) (B„QXBp) . (65)

Performing an integration by parts on the second term,
we have the equivalent form

I„..= g( ',+ ', x)p, —(yX-&„y-). (66)

On the other hand, the terms responsible for the decay
of the axial vector into a p meson and a pion are

ziz' g'
I-z ———zzz

'—ln 1+—qP ~.
g' 2zzz' J

(58) I&ip~ = (I+2x) (~pp~ ~~pe) '
(~AJAX trav i14X ized)

2&2 m

The different choices for L,3 give rise by expanding in qP

to different many-pion interactions. These eRects can,
in principle, be compared with the experiments.

S. SOME EXPERIMENTAL CONSEQUENCES

Expanding the I.agrangian (50) in powers of the
coupling constant g, one can generate a number of
interaction terms. We make a few simple observations
on these intera, ctions and establish contact, with previous
work.

g
(rt P~ il P ) 'LAX (~y~zv ~PI)] (67)

2%2 zzz

This expression can be transformed into

r.„,.= (I/W~)g~(1+ 2.)p„.(yX.-„)

.l g
+ x ((&„P„. B-.-P„-)-.LyX-(.B„ri„(7„iz„)j (6—8).

W2 ns

J. J. Sakurai, Ann. Phys. (N, Y.} 11, 1 (1960); Phys. Re@,
Letters 17, 1021 (1966),



g'/4' —3.2, (70)

in reasonably good agreement vrith the other determina-
tion of this coupling constant, Eq. (64). However, this
value of w should not be taken too seriously in view of
the large uncertainties in the experimental data. For
instance, g=o cannot be excluded and even c=—,,' may
still be possible. The corresponding values of g are still
very close to that given by Eq. (70).

It is interesting to observe that the coupling constants

g and f satisfy rather well the SU(6) relation"'

In the rest frame of the axial-vector meson, it is easy
to see that the second term in Eq. (68) can be written
approximately in the same form as the erst term. Using
Eq. (48) for the mass of the axial vector we have

J-~„.-=(1/~2)gm[1 —2.(&2—1)]p„(yXa„). (69)

Equations (66) and (69) can be compared with the
experiments, Taking both the vridth of the p meson and
that of the A~ resonance to be 125 MCV, we obtain
K—4 Rnd

a„=a,„+(1/mv2) [1/(1+/) jD„y.

Neglecting higher nonlinear terms we have

(m'/g) a„= (m'/g) a„+(m/gv2) B„y. (76)

weak interactions are proportional to the Gelds p„and
a„[more precisely, that they are equal, respectively, to
(m'/g)p„and (m'/g)a j and that the weal& interactions
of all hadrons are determined by the strong coupling
to these tvro 6elds. Ke shall follow here this second
approach, which is more convenient when fields such as

p~ Rnd Q~ Rrc present ln thc theory. c give Rn example
of the first approach in the Appendix, vrhere we discuss
a model vrith only pions and nucleons.

Neglecting higher nonlinear terms, the matrix element
for the vector part of the hadronic vreak-interaction
current is approximately

[m'/(k'+m')] (Ey 'rs y-x 8 —y+ ) (74)

where the dots refer to other Qclds. For the axial-vector
current, let us make use of the relation

(71) The coefficient of the B„p term can be immediately
iclRtcd to thc pion-decay constant

where m is the mass of the p meson. Using Eq. (61),
this relation can be vrritten as

P,= (m/g)v2. (77)

Remembering the interaction (59) we obtain for the
matrix element of the axial-vector current between
nucleon states the expression A„„Xy„y57.Ã, where(P2b

SU(6) considerations can also be used to determine the
constants a and p. It is vrell knovrn that one obtains

p = (5/3) (g/2m) . (73)

The SU(6) value of x depen. ds somewhat on the partic-
ular form of relativistic SU(6) one is willing to accept.
A simple version" vrould give x=-,'.

k„k„m' X k„k„
A„„=—g„„+ ——— —.(78)

4g m' k'+m' 4g k'+m. '

This is strongly reminiscent of an expression given by
Xambu, " who did not, however, consider the axial-
vector contribution to the form factor. In the limit of
zero-momentum transfer we obtain the result

6. WEAK INTERACTIONS
A„,= (X/4g)g„,

which, by comparison with Eq. (74), gives

(79)

There are tvro vrays of introducing the vreak interac-
tions. The 6rst is to construct, by means of a well-knovrn
procedure, " the hadronic weak-interaction currents
from the Lagrangian (50). The currents obtained in
this vray are highly nonlinear functions of the 6elds
P, g, p„, and a„. The second way is to postulate" that
the hadronic vector and axial-vector currents of the

~7 F. Gursey, A. Pais, and L. A. Radicati, Phys. Rev. Letters 8,
299 (1964).Actually, in the SU(6) formula instead of the mass of
the p meson there appears an average mass of the multiplet. The
particular form of Kq. (71) vnth the p-meson mass occurs in
Schwinger's version of the SU(6) theory, described in Ref. 11.

"See, for instance, B. Sakita and K. C. Wali, Phys. Rev. 139,
81355 (1965).

~ See N. ¹ Bogoliubov and B.V. Shirkov, INtrodlctiorI Io the
Theory of QNeerised Finds (Interscience Publishers, Inc. , New
York, 1959), pp, 19-26.

"See, for instance, the paper by Lee, Weinberg, and Zumino
quoted in Ref. 2.

Gg X f m fmv2

Gy 2g g wv& g 8$

This equation is equivalent to a relation of Kawara-
bayashi and Suzutu. 22 On the other hand, through
Eqs. (59), (61), and (63), Eq. (80) relates Gz/Gv to
pion-nucleon scattering parameters. It can therefore
be interpreted as a form of the Adler-%eisber ger
relation. 2' Finally, combining Eq. (80) and Eq. (77),

"Y.N b, Phy. R . L tt 4, 380 (1960).
"These authors use the algebra of currents. See their paper

quoted in Ref. 1.
"See the papers by Adler and Weisberger quoted in Ref. 1.

The interpretation in terms of pion-nucleon s-grave scattering
lengths was given by Y. Tomozawa, Nuovo Cimento 46A, '707
(1966); S. Weinberg, Phys. Rev. Letters 17, 616 (1966); J. J.
Sakurai, ibid. 17, 552 (1966).
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G—,/G, = (f/m. )I'. ,

which is the Goldberger-Treiman relation, '4 expressed
in terms of the pseudovector nucleon-pion coupling
constant. If one combines Kqs. (71) and (80) one
obtains

—Gg/GI = 5/3@2,

a relation which agrees with experiment better than
(71)

Note added il proof. The problem of the widths of
the p and of the A I has been discussed recently by H. J.
Schnitzer and S. Weinberg [Phys. Rev. (to be pub-
lished)] using current commutators and a meson-
dominance assumption. They obtain effective vertices
which are essentially equivalent to our interactions (66)
and (67) and concur with our determination /I—x2 (to
identify our results with theirs use Eq. (77) and
b= —2z). It may be worth pointing out that, if one
uses slightly more realistic values for the p width
(I'p=128 MCV) and for the AI width (1'g, =90 MeV),
one obtains a=2 and g2/4r=2. 9, a result which im-

proves the agreement with Eq. (64).
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APPENDIX

In this Appendix we describe brieQy a model involving

only pions and nucleons. It is not dificult to construct
an invariant Lagrangian involving only the fields $ and

g. Since there are now no gauge fields, we restrict
ourselves here to the group with constant parameters.
The transformations of the fields $ and N are the same
as in Sec. 2, but n and P are now coordinate independ-
ent. For constant parameters the expression IPy„r)„$ is
an invariant. In terms of the fields $ and N it takes the
foim

1 iy2$ —1+iy2$
1//'roc)/IQ=N'rpr)pN+N'rp Bp N ~

(1+.(2) 1/2 (1+g2) 1/2

Since we know the transformation property of E under
a chiral transformation [given by Kq. (10)], we can
immediately obtain that of the anti-Hermitian matrix

if we introduce the matrix

1+jy2$ 1 iy2$
Bp

(1+(2) 1/2 (1+(2) 1/2

v„= —(1/2i) (X„+Y„),

p.=+(1/2 )(X.—Y.),
which transform as

R/„= 2[A,I/„]+8„A,

~p.=i[A p.].

(A6)

(A7)

These equations have the same form as Kqs. (34) and

(35), except for a normalization factor. All equations
given so far in this Appendix are valid also for SU(3)
XSU(3). They permit, quite simply, to construct
lnvarl ants.

If we now specialize our results to the case of SU(2)
XSU(2) and $= g. ~ we can transform our expressions
and obtalIl

,=!'([~,~.H/(1+8)), (A10)

p.=V2[~.k/(1+8)] (A11)

An invariant Lagrangian, containing two arbitrary
parameters a and b, can be immediately written. ~'

I.= —(1/2a') p„'+iN (y„r)„+ M) 1V

+NP„I/„/V+ bNP„P„.V (A12).
The first term indicates that the normahzed pion 6eld is

~=(1/ )r
We can rewrite Eq. (A12) in terms of g. Adding a
symmetry-breaking term 1.2 (as discussed in Sec. 4),
we obtain finally in vector notation

I-= l(1+"~')-'(-&.~)'+ N(v.&,+~)N (1+"~')-'-
( (f/m. )Ny„y2rN B„rt/+a2Ny, rN (yXB„&)}

+I2. (A13)
Here we have identi6ed

bY„=i[A,Y„] i—B„A . (A5)

(Ollc ca11 scc It IIlost s1111ply by consldcrlng thc subst1tu-
tion y2 ~ —y2.) It is convenient to introduce the two
Hermitian matrices

Tt is

1—iy2$ 1+iy2$I„= Bp
(1+(2) 1/2 (1+(2) 1/2

bX„=i[A,X„] i 8 „A, —

(A2)

(A3)

ab= f/m„— (A14)

Comparison with Kq. (63) shows that we must also
identify

a'= g'/2m, '.

where A is given by Eq. (11) [or Eq. (12)].Similarly,

~4 M. Goldberger and S.Treiman, Phys. Rev. 110, 1178 (1958);
see also the paper by GeH-Mann and Levy quoted in Ref, 4.

"For the case of SU(3}XSU(3) the analog of the 6rst term in
Kq. (A12) can be written in the form

—(t/2/22)Trp, ' =—(1/Su')Tr(B„UIB„U),

where U = (1—jy6&)/(1+~F5&).



LAGRANGIAN METHOD FOR CH I RAL SYM M ETRIES 1735

As long as we are concerned only with the pion-
nucleon system, the Lagrangian (A13) contains all
the relevant information. Ke can use it to construct
the vector and axial-vector currents associated with
the generators of the group SU(2) XSU(2). The result
for the vector current is

V„=N„— 4XN„—a'thX(d XN„)
1+a'P' m

4l Xctott
(A16)

(1+"~')"
and for the axial-vector current

am 28 PL7r

yxN, —qx QxN, ')
f 1+a'&' f

m, ct $ m, Qx (ctrxc)og)
+ + a' . (A17)

2f 1+a'4 s f (1+a'4 s)'

Here we have used the abbreviations

and
(A18)

(A19)

Since the Lagrangian is invariant under isospin trans-
formations, the vector current is conserved. The axial-
vector current satisfies a partial conservation equation,
the exact form of which depends on the choice of the
symmetry breaking term J3. The 6rst terms in the
expansion of Eqs. (A16) and (A17) are, respectively,

V„=Ny„rN y—xa„—y+ ~ ~ (A20)
and

2„=(f/am. )Ny„ys ', rN+ (1/-2a)c)„y+ . (A21)

Comparing the coefFicients of these two expressions
with those of (A13) one obtains once more the Gold-
berger- Treiman relation and the Adler-eisberger
relation.
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Numerical Analysis of Hadron Total Cross Sections
in the Quark Model*
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The linear parametrization of the hadron-hadron total-scattering cross sections at high energy given by
the additive quark model are compared with experiment by a least-squares analysis using several different
kinematic assumptions. Expressions for the corrections due to shadowing and double scattering are obtained,
and the corrections are shown to be large enough to be important. A nonlinear parametrization obtained
from the expression for the shadowing correction is compared with experiment by a least-squares analysis.
The agreement is good under two diGerent kinematic assumptions. Agreement is also good using the linear
parametrization with the kinematic assumptions of James and Watson. In all cases studied, the amplitude
for scattering of the 'A quark from a nonstrange quark is signi6cantly lower than the amplitude for scattering
of two nonstrange quarks. The amplitude for the scattering of the nonstrange quark and antiquark in an iso-
singlet state is both significantly larger and much more energy-dependent than any of the other amplitudes.

I. INTRODUCTION

sINCR Gell-Mann' and Zweig' introduced quarks as
an explicit realization of the fundamental represen-

tation of SU(3), many calculations of properties of
hadrons have been done in the quark model. Among
these calculations are relations among the high-energy
total cross sections, using the additivity hypothesis 6rst
introduced by Levin and Frankfurt, ' Anisovich, 4 and

' Research sponsored by the Air Force Ofhce of Scientific Re-
search, Once of Aerospace Research, U. S.Air Force, under AFOSR
Contract AF49(638)-1389.

' M. Gell-Mann, Phys. Letters S, 214 (1964).
' 6. Zweig, CERN report TH. 412, 1964 (unpublished).' E. M. Levin and L. I. Frankfurt, JETP Pisma v Redaktsiyu

2, 105 (1965) LEnglish transL: JETP Letters 2, 65 (1965)j.
4 V. V. Anisovich, JETP Pisma v Redaktsiyu 2, 439 (1965)

/English transL: JETP Letters 2, 272 (1965)J.

Lipkin and Scheck. ' Many authors' have analyzed
the total cross sections on this basis, and it has been pos-
sible to make statements about the amount of SU(3)
symmetry-breaking present in the amplitudes by ex-
amining the relative successes of the various sum rules. '

' H J Lipkin and F. Scheck, Phys. Rev. Letters 16, 71 (1966).' V. Barger and L. Durand III, Phys. Rev. 156, 1525 (1967);
C. H. Chan, ibid. 152, 1244 {1966);Y. T. Chiu and J. Schechter,
Nuovo Cimento 46A, 548 (1966); M. Imachi and S. Sawada,
Nagoya University report (unpublished); J.J.J. Kokkedee, Phys.
Letters 22, 88 (1966);J.J.J. Kokkedee and L. Van Hove, Nuovo
Cimento 42A 711 (1966); J. J. J. Kokkedee and L. Van Hove,
Nucl. Phys. 1, 169 (1967); C. A. Levinson, H. S. Wall, and
H. J. Lipkin, Phys. Rev. Letters 17, 1122 (1966); H. J. Lipkin,
ibid. 16, 1015 (1966); L Van Hove, in Proceedings of the Stony
Brook Conference on High-Energy Two-Body Reactions (unpub-
lished); L.Van Hove, CERN report TH. 676 (unpublished). There
have also been a number of papers on inelastic processes.' H. J. Lipkin, Ref. 6.


