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threshold. A term of the form (19) may be thought of as
arising from two #-plane poles, one at #=qa and another
at n=—a—2. The symmetry conditions (13) make it
plausible that poles do appear in such pairs. Although
(19) is better behaved near threshold than (18), it
could not be an accurate representation of the amplitude
at low energy. Any s-plane analytic structure—res-
onances, inelastic thresholds, etc.—could arise only
from a complicated set of n-plane singularities. In
particular, we know that branch points are to be
expected in the # plane.

Finally, we suggest that by representing asymptotic
terms in the form (19) and by including direct-channel
resonances in the fashion described by Barger and
Cline,® it may be possible to obtain better fits to total

6V. Barger and D. Cline, Phys. Rev. Letters 16, 913 (19606).
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cross sections and forward differential cross sections” at
“intermediate” energies than would be possible with
asymptotic terms different from (19). The idea is simply
that asymptotic behaviors beneath the leading one,
which may be moderately significant at these energies,
will be properly handled in this way. The success of this
approach depends, however, on the leading branch
points in the # plane being sufficiently weak, the absence
of other poles, and the effect of double counting, which
is intrinsic to this approach, also being negligible. The
ultimate test of whether (19)—or suitably modified
forms in cases with spin—is better than other asymp-
totic expressions can really be determined only through
a direct confrontation with experimental data.

7 As a practical matter it is preferable to consider total cross
section differences or forward processes that do not contain
vacuum contributions.
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It is shown that if the photon propagator is set equal to 1/%2 in the expression for the vacuum polarization,
then Z3™ (where Z; is the photon wave-function renormalization constant) diverges like a single power of
the logarithm of an ultraviolet cutoff in all orders of perturbation theory. The implication of this result upon

the possible finiteness of ordinary quantum electrodynamics is discussed.

I. INTRODUCTION AND SUMMARY OF RESULTS

N a previous paper! we developed a method to solve
the Schwinger-Dyson equation for the unrenor-
malized electron propagator S(p) in the asymptotic
off-mass-shell region p>>m. We found that the solution
1/S(p)=~p+Z(p) had the property 3_(p) — 0 as p>>m,
and from 2 a finite electromagnetic mass for the particle
was obtained. The following assumptions were made:
(a) the mechanical (bare) mass of the particle was
zero; (b)

(1.1)
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AT-(30-1)-3829.
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1
lim D(k%)=—,
k2

k2-»c0

where D(k?) is the unrenormalized photon propagator.
In this paper we wish to study the second require-
ment, Eq. (1.1) In order that (1.1) be consistent,
the photon wave-function renormalization constant Z;
calculated with the same hypothesis must be finite,
Thus, if (1.1) is valid, then we may put D(k?)=1/k? in
order to calculate the dominant contribution to Z;
(that is, the part which diverges in perturbation theory).
In this paper we shall show that if D(k?) is set equal to
1/k? in the calculation of Z;1, then

dp?

1
—=1+4 f(ag) X / i+ﬁnite part,
z P

3

(1.2)

where f(ao) is a function of the unrenormalized fine-
structure constant ao=€¢?/4w. Thus, we shall prove that
if D(k*)=1/k? then 1/Z; diverges like a single power
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of the logarithm of an ultraviolet cutoff in all orders
of perturbation theory, just as it does in the lowest
order. Consequently, if as k2—o, D(k?) — 1/k?%, and
if there is a nonvanishing value of >0 for which
f(c0)=0, then for that value of a, 1/Z; is finite.?

Further, we shall show that when g obeys this
‘“‘eigenvalue” condition f(ao)=0, the leading correction
to (1.1) is given by const.X (1/k2)(m?/k2) ) where
k(ao) is also a function of a. If the solution to the equa-
tion f(ag)=0 has the property that a1, then k(ao)
= —ao*(d/dao)[ flao)/eo]. Thus, if the additional re-
quirement k(ag)>0 is satisfied, hypothesis (1.1) is
self-consistent. In this case, namely, for ap such that
f(ao)=0 and k(ap) >0, we find that the unrenormalized
equations of quantum electrodynamics have completely
finite solutions. The divergences would then simply be
the result of using perturbation theory to compute re-
normalization constants, which is unjustified.

We have obtained the following formula for the
function f(ao):

flaw) = (ero/2m)[3+-g(ew) 1, (1.3)

where
fl(ao)+2f2(ao)+f22(°‘0)

1= fi(ow)

The functions fi(ao), fo(ao), and fs(ao) are defined
in terms of the asymptotic Bethe-Salpeter kernel
K“(P,p,k) =K°(P+%ky;p" %k,;b,"i‘%k;?l“%k) for elec-
tron-position scattering by the following formulas:

{ fs (Oto) . (1 4)

8\ao)=

fi(ao)= 1 / a‘p’ Tr(va’w—ww’va)
48/ (2r)8 Iz
XK ,p) Vv pYa—rvavpvs), (1.5)
1 [fdy 11
fo(ao) 5 / ) 4Tr;pn;;K (')
X (YavpYe—va¥PYW), (1.6)
fa(vzo)=i / 24 Tr——w—l-Km“(;b’,P)vaP, (1.7)
487 (2m)* vp' Y
where _ _
Ka(p,p)=K“(p,p' k)0, (1.8)
Ko(p',p)= aZaK “(psp'k)e=0, (1.9)
- 2 o
Ko (p,p)= Ro(p,p'k)x=0- (1.10)

2 The fact that quantum electrodynamics may be a finite theory
only for certain values of the bare charge e was understood by
Gell-Mann and Low from the point of view of the renormaliza-
Eior}s g)roup. See M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300

1954). i
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T16. 1. Some perturbation-theory diagrams for Ke.
The asymptotic kernel K is determined from the exact
Bethe-Salpeter kernel K by setting all internal electron

propagators S(p) equal to 1/vp and all internal photon
propagators D,, equal to D,,% where

EANL bk
k2 >E B

Dpv0= (guv_ (1.11)

The gauge constant b is fixed by the condition that the
vertex function T be finite.

The essential point of the proof of formula (1.2) is the
demonstration that the integrals (1.6), (1.7), and (1.8)
converge. We have shown this to be true if Ke is ex-
panded in a power series in a to any finite order of
perturbation theory. Thus the generality of our proof
of (1.2) is restricted to a perturbation treatment of K-

The Feynman diagrams representing some of the first
terms in the perturbation series for K@ are depicted in
Fig. 1. Since by definition the kernel K determines the
equation for the vertex function T', [see Eq. (3.1) of
Sec. IIT], it does not contain one-photon annihilation
diagrams. This is because such diagrams would give
rise to nonproper vertex parts.

The 2 in the brackets of formula (1.3) yields the weak-
coupling limit for Z;~! (the Landau approximation?).
Our result shows that if D(?) is set equal to 1/k2, then
no higher powers of InA appear in the exact expression
for Zs~1. Furthermore the coefficient of InA is obtained
by replacing 2 by 2%-+g(as). The self-consistency
requirement

$+gla)=0 (1.12)

means that the weak-coupling result is just cancelled
by all the higher-order effects. We can calculate g(ao)

3 1. D. Landau, A. A. Abrikosov, and I. M. Halatnikov, Dokl.
Akad.> Nauk. SSSR 95, 497 (1954); 95, 773 (1954); 95, 1177
(1954).
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via Eq. (1.4) and formulas (1.5), (1.6), and (1.7) for
f17f2’ a.l’ldfg. .

If we use lowest-order perturbation theory for K<
[Fig. 1(a)], then the resulting expression (1.4) for g(ao)
represents the sum of the contributions to Zs™! arising
from all uncrossed ladder graphs as depicted in Fig. 2.
In this case we find fi=ao/2m, fo=f3=0 (see Appendix
D). Hence in this first approximation,

glao) = (awo/2m) /(1= o/ 27) , (1.13)

and there is no positive ap for which glag)=—3%. The
values of f1, fs, and f; corresponding to the fourth-order
diagrams for K¢ [Figs. 1(b) and 1(c)] have been cal-
culated by Rosner.? He obtained the results

Fic. 2. Simple ladder diagrams
for Z3™L.

f1“’=(§>+<§>2[—%§(3)—%J, (1.14)

e

2,0 = “”)2[ : (3>+10] (1.15)
f2 _<Z 2( 3 ’ .
4) = ﬂ)z E _.23 1.16
5 (h [4:(3) 6], (1.16)
where .
§(3)=§1;;-

If we insert these results into Eq. (1.4) for gla,) and
expand to order ao?, we obtain

© () oy 1<a0>2
ag)=———(—) .
§ ’ 2w 4\2m

(1.17)

That is, the {(3) terms in the f; cancel when we cal-
culate g(a) and we obtain a simple negative coefficient
—12 for the (ao/27)? contribution to g(ao). This suggests
that the structure of the function g(ao) is much simpler
than the structure of the functions fi(ao), and that any
partial summation of diagrams such as Eq. (1.13) is
likely to give misleading results. In any case the simple
nature and negative sign of Rosner’s 4th g(ao) suggest
the possibility that g(ag) may be calculated in closed
form and that the eigenvalue Eq. (1.12) may have a
root for ap>0.

In the next section we discuss the ideas leading to our
basic result, Eq. (1.2), in the context of perturbation
theory. This crude discussion is for the most part in-
dependent of the detailed derivation which follows in
later sections. It is included in the hope of adding clarity
to the paper.

¢ J. L. Rosner, Phys. Rev. Letters 17, 1190 (1966); Ann. Phys.
(N.Y.) 44, 11, (1967).
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II. ELEMENTARY DISCUSSION OF RESULT (1.2)

We restrict ourselves to gauges for which the photon
propagator D,,(k) can be written as

kuky

kuk, \ b ”1
D, (k)= (guy—-];)D(k )+;e;7e?, (2.1)

where b is an arbitrary constant, and the invariant func-
tion D(k?) is determined by the equations
D) =Fk[1+p(k%)],

where p(k?) is obtained from the polarization operator
11,,(k) by the equation

(k2guv_ k#ky)p(k2) = Huv(k2>

d*p
1:602 /
(2m)

XTI (p+3k,p—3k)S(p—3k) -

(2.2)

I

4Tr'YpS (? +%k)
(2.3)

In perturbation theory, superficially, the integrals
for II,,(%) diverge quadratically, but a correct gauge-
invariant calculation gives II,,(k) the tensor structure
indicated in Eq. (2.3), and the resultant integrals for
p(k?) diverge logarithmically. From Egs. (2.2) and (2.3)
we see that

12 2
Zit=14p(0) = 14— — —Tu(B) limo.  (24)
4 ok

a -2

We rotate Eq. (2.3) to Euclidean coordinates, writing®
S & J(p)=i S P2 f(p)=i,/ pdp 25 f($)) Then,
using Eq. (2.4), we obtain the following expression
for Zs1:

Zit=1+ / dppe(p?), 2.5)
[:]
where
2 aoT<2 2 S(p18)
a(p?)=—Tr{ — » 1
P er N\am ap ot
XFu(P+%k,P—%k)S(?—%k)> 2.6)
pl k=0«

The full S(p) appearing in Eq. (2.6) differs from 1/yp
by terms depending upon the electron physical mass #.
From dimensional arguments the resulting dependence
of o(p?) upon m can be expressed as p’s(p?)=(1/p?)

8 Since we consider spacelike values of k2 (k2>0), we can rotate
the contour of integration in Eq. (2.3) so that the integral refers
to a Euclidean four-vector d%p and the functions S(p) and
Tu(p+3k,p—3k) refer to external Euclidean variables. See J. D.
Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw-
Hill Book Company, Inc., New York, 1965), p. 314.
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Fi1c. 3. Some perturbation-theory diagrams for II,,(k).

X f(p*/m?), where f is a dimensionless function of
p?/m?. Therefore we can obtain the high-p? limit of
p%(p?) by letting m approach zero, and result (1.2)
follows if expression (2.6) for o(p?) evaluated at m=0
is finite. We must thus show that in the perturbation-
theory expansion of p%s(p?) the m=0 integrals are free
of both ultraviolet and infrared divergences.

Some typical perturbation-theory graphs for II,.(k)
are depicted in Fig. 3. Since we are calculating I1,,(k)
under the assumption D(k*)=1/k?, the photon prop-
agator appearing in these diagrams is D% given by
Eq. (1.11). I,(k) does not depend upon the value of
the gauge constant b. We choose & so that I' is finite.
We shall see that this greatly simplifies our work.

The diagram depicted in Fig. 4(A) is not included in
11, because it represents a photon self-energy correction
to the internal photon propagator. If Z;~* turns out to be
finite, then the use of the full propagator for the internal
photon line [ Fig. 4(B)] will produce a contribution to
the asymptotic form for p%(p?) which is proportional
to the contribution of diagram 3(B). In this case use of
perturbation theory [Fig. 4(A)] would yield a spurious
contribution to Z51.

From Egs. (2.4) and (2.5) we see that in order to cal-
culate Z; or o(p?) all internal lines carrying momentum
k must be differentiated twice. Figure 5 shows some of
the contributions to Zs~! arising from differentiating

~(o O~

A

Fic. 4. Photon self-energy corrections

to I, (k).

B
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the diagrams of Fig. 3(B). A line with one (two) dashes
through it represents a propagator which has been
differentiated once (twice).

Graph A; of Fig. 5 gives the usual result of lowest-

order perturbation theory, i.e.,

o 1
Pza(ﬁz)—— - 2.7)

3 p2
In order to calculate p%¢(p?) to order ap?, we choose

b=0 (the Landau gauge). Diagrams B; of Fig. 5 yields
an integral of the form

1 1 1
Jori
p (p—1)*p"

for the quantity p%(p?). Equation (2.8) is a once-
differentiated vertex correction. We have kept track
only of the correct powers of p and p’, since factors,

(D

A

p p'

(2.8)

Ir6. 5. Some second- and fourth-
order diagrams for Zg™L.

—C-

B,

spinor, and vector indices are irrelevant for our con-
siderations. Now we see by inspection that the integral
(2.8) contains neither infrared (p’ — 0) nor ultraviolet
(p' — ) divergences. Hence from dimensional argu-
ments it follows that the integral (2.8) is equal to con-
stant/p?; ie., graph By yields the result

p?e(p)?=const./p?, (2.9

as desired.
Diagram B of Fig. 5 yields an integral of the form

1 a1
(p—) 1

for p%(p?). Integral (2.10) is a second-order vertex
correction which is ultraviolet finite in the Landau
gauge, and by inspection it is infrared finite in any
gauge. Hence from dimensional arguments, it follows

(2.10)
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that in the Landau gauge the integral (2.10) equals
const./p?; ie., in the Landau-gauge graph B, also
yields a result for p%¢(p?) of the desired form (2.9).

The integral over the internal photon line in graph
C of Fig. 3 converges in the Landau gauge with m=0.
By dimensional arguments it follows that in this case
the resulting correction to the internal electron prop-
agator is of the form const./yp. Hence the contribution
of graph C is proportional to the contribution of graph
A and when differentiated yields a p?o(p?) of the desired
form (2.9).

Thus in the Landau gauge the contributions of dia-
grams Bi, By, and C separately have the desired form

- -
P>
< <
- ~ap-

F1G. 6. Some sixth-order diagrams for Z;™1.

(2.9). In any other gauge the contributions of the dia-
grams B, and C would contain divergences which have
to cancel when added because of the gauge independence
of Z5 L.

Likewise, in order to simplify the sixth-order cal-
culation of Z5~!, we choose the gauge b=>5® =3ay/4,
in which T',® is finite. Then the sixth-order contribu-
tions to II,,(k) arise not only from diagrams like D, E,
F, and G of Fig. 3 calculated in the Landau gauge, but
also from gauge corrections to diagrams B and C cal-
culated with the photon propagator equal to b®k,k,/k*.
Some of the sixth-order contributions which arise from
differentiating diagrams D, E, and F are depicted in
Fig. 6. By counting the powers of momentum in the
integrands for ¢(p?) corresponding to the contributions
of diagrams Dj, D;, D4, and Fy, we find that these
integrals [like integral (2.8) which corresponds. to
diagram Bi] contain neither ultraviolet nor infrared
divergences. Hence by dimensional arguments they
also give contributions to p2s(p?) of the desired form
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F16. 7. Some eighth-order 3-photon
diagrams for IL,, (k).
I

(2.9). The same is true for diagrams E; and F,, once we
realize that the second-order vertex insertions which
they contain are finite in the Landau gauge. Diagram
D, contains a divergent fourth-order vertex insertion.
However, the sum of diagram D, and the gauge cor-
rection to diagram B, of Fig. 5 contains a finite vertex
correction. This sum then yields a p?0(p?) of the desired
form (2.9). Likewise the gauge correction to diagram C
of Fig. 3 removes the infinite electron self-energy in-
sertion contained in diagram G of Fig. 3.

Let us summarize this discussion of perturbation
theory. In order to calculate p%(p?) to order 2n we
choose the gauge in which I' is finite to order 2(z—1). In
our expression for p%(p?) there will be diagrams like
B, Dy, and D3 which donot contain any undifferentiated
vertex or self-energy insertions. By a direct power-
counting argument, it can be shown that the contribu-
tions of such diagrams to p%(p? do not contain any
divergences. Hence they yield a p%(p?) of the desired
form (2.9). Dangerous diagrams like By and Ds, which
contain undifferentiated vertex insertions, are rendered
harmless by the choice of gauge.

However, the above-mentioned power-counting argu-
ment is not completely general. Diagrams which con-

~(HD-

H,

H,

-~

Hs

(LD

Fi1c. 8. Some eighth-order 3-photon
diagrams for Zs™1.
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tain three-photon intermediate states appear as ex-
ceptions (and the only exceptions). However, one can
resort directly to gauge invariance in order to show
that the contribution of such diagrams to p%(p?) is
of the form (2.9). Consider the simplest examples of such
a case, diagrams H and T of Fig. 7. Some typical con-
tributions to p%(p?) which arise from differentiating
diagram H are depicted in Fig. 8. To these contribu-
tions we must add the corresponding contributions ob-
tained by differentiating diagram I. It is easy to show
from direct power-counting arguments that diagram H,
gives a contribution of the form (2.9) to p%(p?). How-
ever, such an argument is not applicable to diagrams
H; and H;. (The integral over the doubly differentiated
photon line in diagram Hj, for example, clearly diverges
in the infrared region.) However, diagrams Hy, H;, and
H, each contain a photon-photon scattering-amplitude
insertion, where one of the photons (the external one)
has zero momentum. We know from gauge invariance
that such an amplitude must vanish. Hence if the
photon-photon scattering amplitude appearing in dia-
grams Hi, H;, and H, is calculated in a gauge-invariant
manner,S the contributions from these diagrams must
vanish.

We now list the correspondence between the above
perturbation-theory diagrams and the functions of fj,
f2, and f3 [which describe the exact behavior of p%(p?)
for large p?]. Diagrams like By, Di, and H, which
contain only undifferentiated Bethe-Salpeter kernels
contribute to fi [see Eq. (1.5)]. Diagrams like D4 (Ds),
which contain a once (twice) differentiated kernel con-
tribute to f2 (fs). Diagrams like F; which contain
iterations of an undifferentiated kernel give rise to
contributions to g(a,) via the f; in the denominator of
Eq. (1.4). Because of Ward’s identity, diagrams like
B., which contain undifferentiated external vertex cor-
rections, give contributions to g(a,) which are exactly
cancelled by the contributions of diagrams containing
electron self-energy corrections. All electron propagators
and the two external vertices thus appear uncorrected
in the formulas for fi, fs, and f;. Furthermore, the
direct power-counting arguments previously mentioned

P P
( :> K >Jw
% Py

k

o~

Fi16. 9. Graphical rep-
resentation of the inte-
gral equation for T'y.

8 For example, use of a correct gauge-invariant current produces
a counter term in the photon-photon scattering amplitude which
guarantees that it has a gauge-invariant structure.
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in the discussion of perturbation-theory diagrams form
the basis of the proof that the integrals defining fi, fo,
and f; converge.

Having thus outlined the general nature of our result,
we now give a detailed derivation of Eq. (1.2).

III. GENERAL EXPRESSION FOR Z;!

In order to calculate Zs™! from Eqgs. (2.3) and (2.4)
we must know the vertex function T,(p+3k,p—3k).
This function satisfies the integral equation

I N—_— / ap’ K '
w(DsD-) =Y (2m)4 ARy Sy NNy )

XS )Tulpr',p-)S(0-), (3.1)

where

pr=pt+3k, p-=p—3k,

b/ =p'+3k, p'=p—3%k.
The Bethe-Salpeter kernel K includes all diagrams
which contain neither a single electron-positron pair
nor a single-photon intermediate state. (See Fig. 1.)
Equation (3.1) is depicted graphically in Fig. 9. It is
convenient to write Eq. (2.3) for II,,(k) and Eq. (3.1)
for T'y(p4,p-) in the following matrix notation:

I, = —1ie? Try,GT,,

Ty=v,+KGT,,

(2.3

3.1
where

P+ |GTu| p)=S(p) T, p-)S(p-).

We designate the process of differentiation with re-
spect to k., by the index a, e.g., T..=(3/0k,)T,,
Go=(9/0ka)G, etc. Differentiation of Eq. (3.1') then
yields the following equation for T'y,:

Tpa=K oG+ KGol'y+ KGT a. (3.2)

Differentiating Eq. (2.3") and using Eqgs. (3.1) and
(3.2), we obtain the following expression for II,, .(k):

Huv.a<k) = ieoz ’rr{ F#Gapv““ P“GK.!GI‘,,} . (33)

The result (3.3) for II,,, is easily understood if we ex-
pand IT,, in powers of G and K and then differentiate.
T',G.T, includes the contributions of all terms in which
G is differentiated and I',GK,GT, includes all terms in
which K is differentiated. See Fig. 10 for a graphical
representation of Eq. (3.3). One can keep track of the
sign of k in the various terms in Eq. (3.3) by referring
to Fig. 10. For example, the I',G which appears on the
left in the expression I',GK,GT, means S(p_)T'u(p—,ps)
XS(p4). The equation for I'y(p_,p,) can be written as

d4P, S( / P !’ /
(27(‘)‘ P— ) p(P— ’P+ )

Ty ?—’?+) =yt /

X S(P-l-l)K(P—’)P-F,rP—:P-i-) ’
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Py Py

Fic. 10. Graphical representation of Eq. (33) for I, a-

or in matrix notation
T,=v,+T.GK.

We now differentiate Eq. (3.3) and obtain the following
expression for I, uee=(8/0ka)(9/ k)¢

ypaa=— 60> TH{T,G aalyF TuGK 0aGTy+ 2T 0GaT',
+2T,GK T+ 2T,GK oG} . (3.4)

Equation (3.4), evaluated at k=0, gives us an exact
expression for Z;! and o(p?) as defined in Eq. (2.5).
Our problem is to obtain an exact expression for the
high-p? behavior of p%r(p?) under the assumption that
D(k*)=1/k?, ie., D, (k)=D, (k) given by (1.11). The
individual terms which appear on the right-hand side of
Eq. (3.4) depend upon the choice of the gauge constant
b. We have shown in Ref. 1 that if D=1/k?, a value of
b= "y, can be found such that T', is finite in perturbation
theory. In order to make our present analysis of all the
terms in Eq. (3.4) as complete and explicit as possible,
in Sec. IV we shall give an independent proof of this
result. In Sec. V we will analyze Eq. (3.4) in the gauge
b="bpm.

IV. EQUATION FOR I'.(p,p)

In order to study the possible infinities in Eq. (3.1),
it is sufficient to consider the equation for I',(p,p). We
set k=0in Eq. (3.1) and rotate to Euclidean coordinates,
thereby obtaining the equation

eodplz
TW(p,8) =it / e, (4.1)
where
Fpt) e
o GREGISOTE IS (4
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Now in order that T', be finite it is necessary that
F,— 0as p' —co. We have calculated F,(p,p") directly
in lowest-order perturbation theory, where S(p)=1/v,
Tu=7,, K= —1ieo®y,D, ,, and find that

. % P
lim 7,®(p,p")= b“’Yu+O<-.> |
P!> 4r

o 4.3)
From Eq. (4.3) we obtain the well-known result that
the second-order vertex I'® is finite in the Landau
gauge (b=0). With =0, Eqs. (4.1) and (4.2) yield the

result
Tu®(p,p)= (143ao/87)yy. (44)

We now want to show that if photon self-energy cor-
rections are neglected (i.e., if D=1/k2), then one can
find a value of b for which

lim F,(p,p")=0.
p’ >0

We prove this by induction. We already know that in
the gauge b="0,=0,

lim F,0(p,) =04

and I',® is finite. Let us assume that constants ay=0,
@1, ***, @n1 can be found so that in the gauge b,
=aot 0100+« * -+ Eaae™ Y, T is finite. We will now
show that one can find a constant @, such that in the
gauge ba=>by_1+ anco”,

lim F,R20+01(p 5) — 0.
/>

K@D T, 20401 and FI2(+D) depend upon the elec-
tron mass via their dependence upon the electron prop-
agator S (p). The mass-dependent terms in S (p)
must of course be calculated according to the scheme of
Ref. 1. However, in order to calculate the high ' limit
of F,12(m+D1(p,»"), one can neglect dependence upon elec-
tron mass. Let the values of K (py,p_,p./,p_ "), Tu(ps,p),
and F,(p,p") obtained by setting the electron mass =0

be written KG(P+7P—)17+I)P—,): Pu“(?h?-—)) and F#“(PI,P)-
Fe then assumes the form

reo) (D)),
V4 P° ?

where F; and F, are dimensionless functions of the ratio
p/p’. We can therefore determine the behavior of
Fu(p,p") for p’ — from its behavior for p — 0. From
Eq. (4.2) we see that the dependence of F,, upon p arises
solely from Ke(p,p’).

In Appendix A we study the infrared region of the
perturbation-theory integrals and show that Kel2(+1] ig
finite at p=0. Hence

Iim Fﬂ[z(n+1)] (P:?,)
s

=F,,a[2 (M‘U](O,?’)EF[Z (n+l)]7/‘ , (4.6)
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where FI2(»+D1 is a finite constant. From Eq. (4.3) we
see that the gauge term ana¢® gives a contribution
(cto/47)anae™ to the constant Fi2(+D],

We can thus choose a, so that

Flr+Dl =, @.7)
[If Fi(p/p’) had contained terms of the form
[n(p/p') %, it would clearly have been impossible to
remove them with an appropriate choice of the con-
stant a,. The absence of such terms is guaranteed by
the finiteness of K¢(0,p").]

With a, determined from Eq. (4.7), T,20+DI(p p) is
finite and takes on the asymptotic form

1
im T, [2(+D] =
}'1_{1; » (0:0) Clztrn] Yu

1 v
——Pu—[), (4.8)
(C’)[Z(nﬂ)l 1)2
where the finite constants C2(+D1 and C/R2+D1 are
determined by setting m=0 in the expression for
I, 2a+D1(p p), At large p the corresponding electron
propagator SR@+DI(p) behaves like

(C”) (D))
lim StHDI(p) =

P> ,Yp

(4.9)

From Ward’s identity 8571/dp.=Tu(p,p"), it follows
that

(CyRHD = Cl2(+D] (4.10a)

1

—=0. (4.10b)
(C") 21

[Actually the value of the constant (C"’) 2*+D! depends
upon the choice of the variables of integration used in the
perturbation-theory evaluation of SB+I(p)] For this
reason, requirement (4.10a) just serves to remove this
ambiguity in (C")E2+D],

Thus we see that in an appropriately chosen gauge

lim
p->w,k fixe

1
" Pu(?ﬁ?—) = }’1_210 P#(P+:P—) =E'YM , (411)

1
lim S(p)=C—, (4.12)

p->0 ,YP

where C is a finite constant.
It is now convenient to rescale Eq. (3.1) for T',(p,p-).
We define

(4.13)
(4.14)

S(v,p)=1/C)S(v,p) »
Tu(pisp—) = CTu(py,p-) -
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Then
_ 1
lim S(y,p) =, (4.15)
poaco vp
;l,i—>nelc Fn(?+;?—) =Y, (416>
and Eq. (3.1') for Tu(py,p-)=T, becomes
I'=Cv,+KST,S, 4.17)
where _
K=CK. (4.18)
Now _ _
K=C(K(S,I)=K((S,1), (4.19)

ie., K is the same functional of S and T' as K is of S
and I

Condition (4.7) determines @», and hence the gauge
constant b is conveniently expressed in terms of

_ 1
Ro=(CK o= K(———,'I"") (4.20)
YP

as follows:

B 1 1
<Ka[2(n+1>1(0’p/)—7“—~> =0. (4.21)
vp' v

Also the constant C, appearing in Eq. (4.17) for T',, is
conveniently determined by setting k=0 in Eq. (4.17)
and taking the limit p —o0. This yields the equation

iy 1 1
(1 - C)'Yu:/ KG(P:P/)‘_;YM_‘ . (422)
(2m)* ¢ vy

In calculating the constant C to order aol2®+D] from
Eq. (4.22), we need know only T',s®®, The latter is
determined from Eq. (4.17) in terms of C@», [From
Eq. (4.4) we see that C® =1—3a0/8.]

We repeat that the results of this section depend
upon the fact that Kel2(+VI(0,p") is finite provided
I', @ is finite. The proof of this fact involves the study
of the infrared behavior of the perturbation-theory
integrals for Kel2(+D1(0,4"). (See Appendix A.)

V. BASIC RESULT FOR Z;!

We shall now evaluate Z;~! using Eqs. (3.4) and (2.6),
and assuming that D=1/k2 The sum of all the terms on
the right-hand side of Eq. (3.4) is gauge-invariant,
and for convenience we choose to evaluate Eq. (3.4) in
the gauge for which I is finite.

We begin by re-expressing Il,uqq(0) in terms of S,
T, and K.

ILy; aa(0) = —ie? Tr{T,Gaalut T'\GR 1aGT 42T aGa L,
+20,GR .G 0,4+ 2T, GKGT o} kim0, (5.1)
where G=G/C.
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The term —ieo? Tr{T,Gaals}s~0 yields the con-
tribution (1/p2)(ao/2m) f@(p%/m?) to pPe(p?), where
FO(p2/m?) is the following function of p2/m? (the
only available dimensionless parameter):

RE
><S<p+§)m<p,p>5<p—}§)>plk=o. (52)

Now in the gauge we have chosen, we know [ Egs. (4.15)
and (4.16)] that

2
u(?;?)é}e‘; —6—/3—

) 1
im T.(p,p)="vuw, Um S(y,p)=—-.
p->0 D> ’YP

Hence in the large-p limit, Eq. (5.2) coincides with
lowest-order perturbation theory, i.e.,

P\,
o)

The second term, —ieq? Tr(T,GK 1oGT )10, yields the
contribution (1/$%)(aoe/2m) f®(p2/m?) to p2a(p?), where
asp’
1‘/ S(PI)PM(P ")

P2> p4
(€6)) —T
d <m2 48 (2m)¢

X8R aa®(0' s 2)SB)Tu(p,)S(8) | 10 -

()

(5.3)

(5.4)

Hence

pz
lim f (3>< >— lim
P20 mz m—0

P / 2 L Rt )
—Yi—Kaa (P, )
48 @m)typ" vp P vp

th (55)

provided that integral (5.5) converges. In Appendix B
we show that integral (5.5), defining the constant f3,
converges if K* is expanded in a power series in ay to
any finite order of perturbation theory. This result is
derived from the same infrared properties of perturba-
tion theory as are used in order to show that Ke(p,p’)
is finite at p=0. Hence the limit (5.5) exists, and the
second term on the right-hand side of Eq. (5.1) gives
a contribution (1/p%(ae/27)f; to the high-p* behavior
of p*a(p?).

In order to evaluate the contribution of the third
and fifth terms of Eq. (5.1) to lim,e., p2(p?%), we must
calculate

2
Fﬂa(P,P)E_a;r‘#(P—ap'l—) , k=0

a
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in the limit m — 0. The equation for T',.(p,p) is given by

Tua(p,p) = { TG+ T,GR o+ T,lGR Y 1 o.  (5.6)
If limypo Tua(p,p) exists, then
- (7 YPYa—YYPY )
lim ()= Tl P (s
m—0 2p2

where I” is a finite constant. The spinor structure of
Tue(p,p), given by Eq. (5.7), is an immediate con-
sequence of PT invariance, as shown in Appendix C.

We will now show that the above limit (5.7) exists, and
we will determine the constant I". In the =0 limit the
inhomogeneous terms I'yGoK|i—o and T,GK,.|r—o in
Eq. (5.6) take on the forms

e~ o " VYYD Vi— YYD Y -
fn (B6Rn0= [ 2 s S
(’Y 'Yp’Ya’_'Ya'YP’Yu)
= filag) (5.8)
2p?
. e e a'p
31123 (PuGKa)k=0=/ (272')4“—7 Ko (P 0)
(VY PYa—YaYPVi)
= folo)— S 59)

2p?
In integrals (5.8) and (5.9) we used the definition

2 _
I_:'”Ga I k:oE“-S(j)—
ok

a

%k) Pu(P;P)S(P+%k) [ k=0,

and the limits (4.15) and (4.16) to obtain

. - = YYDV~ VY PYa
Iim (PuGa)k=0=".'~”_"—"
p->0 or m—>0 2p4

. (5.10)

In Appendix B we show that limits (5.8) and (5.9) exist
for K* expanded to any finite order of perturbation
theory. Hence they define finite constants fi(a,) and
fa(ao). [These results follow almost as a direct con-
sequence of the convergence of integral (5.5) for f3(as).]
Assuming that limit (5.7) exists, and using Eq. (5.8), we
find that the m=0 limit of the homogeneous term
(T4a@K) = in Eq. (5.6) is

o a1
lim (P“aGK)k___(): F// _—
n0 (2m)typ’
(7 VP Ya—Va¥P'Va) 1
—— —Re(p'p)
2p v’

VYpYa—ravPYL)

=T"f1(ao)
2p?

(5.11)
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From Egs. (5.6)-(5.9) and (5.11) we obtain for I’ the
equation

I'= fut Sk ',
P'=(f1+f2)/1—f1. (5.13)

Thus in the limit p — 0, or equivalently m — 0, Eq.
(5.6) for T',a(p,p) has the finite solution (5.7) with I
given by Eq. (5.13).

We can now express the contribution of the last three
terms in Eq. (5.1) to limyz., p%(p?) in terms of the
constants fi(ae) and falag). The term —iep? Tr2
X (TGal )0 yields the contribution (1/p?)(ao/27)
X f®(p2/m?) to p’a(p?), where f®(p?/m?) is the follow-
ing function of the ratio p?/m?:

(5.12)
and hence

Pt 2 .
D(p2 2 =—T I‘na ) _S +j?1‘k
F@ @/ m?) e (Pﬁ)aka (p+3k)

XTu(p,p)S(p—3k). (5.14)

Hence
Jim FO(p2/m?) = lirr(l] 952/ m?)
pi->0 m->
P (VavpYa—vavhY)
=—Tr—
48 27
(VivpYa—YaY DY)
X =
2p*
Similarly, the contribution of the term
—1e? Tr2(f”GKaéaF”)k=o

to p%(p?) can be written as (1/p?)(ao/2m) f@(p*/m?),
where

. (5.15)

p4 /‘ 4#’ _ _ - _
®(p*/m?)=—T S(p")T )8 ,Ka(ly)
10 my= T | o SEOTE SR
2 _ _ _
X;}‘;S(ﬁ‘f'%k) Tu(p,0)S(p—3k) | k=0. (5.16)
Hence’ *
lém f(4)(P2/m2)= },}E% f(4)(P2/m2)
4 ayp’ 1 1 _
="P_Tr/ — K (p',p)
48 2m)typ" vy’
X(’Yy‘YP’Ya“"Ya’YP‘/u) (5.17)
2p*
E(’vwﬁw—vwmﬂ)
48 2p?
7#7?7:1_"70171’7#
(T

= p*fa(ew)

>= falaw). (5.18)

2p*

7 When T',G appears on the left, the sign of  is reversed com-
pared to the case in which GT, appears on the right. Hence
(TuGo)mo= —G.T,. This accounts for the reversed positions of
the indices # and « in Egs. (5.10) and (5.17).
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Finally, the contribution of —iee? Tr2T,GK oG T e k=0
to p?a(p?) is (1/p*)(ao/2m) f®(p?/m?), where

P4 / 4P,- _ N
FO(p2/12) =T ST ' NS(p
1O m)= e | Z S S@ORE 5)

XK o(p' p)SB)Tua(p)S(p) . (5.19)

PZ
()
p* /d“p’ 11 1
== Tr K o, p)—T"
48 ) m)typ vy vp

« (YaYDYu—Y iV DY) 1

Hence?

: AN
lim f®{—)=lm
o0 m2 m->0

2p* vp
4 —
=P—Trfz(ao)<7—————-wma 7mﬁ%’)r’
48 2p?

YYPYa™YYPVu
><<—~—P—————p—7>= Fala)T”. (5.20)
2pt

Hence from (5.3), (5.5), (5.15), (5.18), and (5.20) we
obtain

1 a
lim p%(p)=— —[3+ fulao)+ foleo
pPo>w p* 2w
+I'(1+ fa(ew)) ]
Using Eq. (5.13) for I" we obtain our desired result

(5.21)

1 (671}
lim po(p)=— —[3+gl)],  (5.22)
P 22
where g(a) is defined by Eq. (1.5). Formulas (1.6), (1.7),
and (1.8) for fi, fo, and f; follow immediately from
Eqgs. (5.5), (5.8), and (5.9).

We repeat that our result (5.22) depends upon the
analysis of the perturbation expansion of K¢ This is
carried out in Appendices A and B. We use the fact
that K¢ contains no photon self-energy insertions in
order to obtain the results in these Appendices, and

hence the assumption D=1/k?is essential for obtaining
Eq. (5.22).

VI. DISCUSSION OF ASYMPTOTIC
CORRECTIONS TO D(k2)

In this section we will discuss the equation for the
finite part of D(k?%), supposing that there exists a solu-
tion of the self-consistency requirement, Eq. (1.12).

8 We remember that the T, which appears on the right in
Eq. (5.19), equals (8/0ka)Tu(p4,p—)k—o. Hence its value for
m=0 is opposite to that given by Eq. (5.7) for (8/8ke)T%
X (PyP4) | k=0,m=0. (See Fig. 10.)
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We first note that we can obtain the high-£? limit of
p(k?) from our result, Eq. (1.3). Using Eq. (2.3) we ex-
press p(k?) as an integral of the form

p(k) = / AP po(p k), 6.1)
0

where o(p2,k?) is defined in terms of S and T from Eq.
(2.3). In perturbation theory the dominant contribu-
tion to p(k%) for large k2 arises from that region of
integration in (6.1) for which p=>k2. Thus, since

o(p*k?*)=lim o(p%,0) = f(@a)/p*, (6.2)

;o2->uo Icz fixed

it follows that
© dPZ mZ
lim p(k2)=f(ao)/ —+c0nst.+0<—> . (6.3)
k2> it p2 k2

The region of integration where k2~ p?in Eq. (6.1) gives
rise to the constant contribution to p(k?) in Eq. (6.3).
From Eq. (2.2) we see that for f(ag)=0, the constant
term in Eq. (6.3) produces a D(k?) which behaves like
const./k? for large k2. For this reason let us formulate
our consistency requirement to allow for this con-
tingency. We first note that the Schwinger-Dyson
equations of the theory always involve D(k?) and ap in
the combination aD(%?), aside from the equation which
relates D to p, namely,

L <1 1 ka))
ozoD(k"’)n~ Qg I aop\ '
Thus, (1/a0)p(k?) involves ap only in the combination

aoD, that is, we may write

(1/a0) p(k?) = p(k?; aeD(g?)) , (6.5)

where in p((k2; €eD(g?) we exhibit a functional depend-
ence on D(g?). In this case (6.4) becomes

(6.4)

1
aoD(kz)
We have shown that with D(¢®)=1/¢* and kZ>m?,

=k2[;1—0+p(/e2; w60

o(8%) = fla) / —+c+o( ) (6.7)

or more precisely, with a cutoff AZ>EE>m?,

A2 gp2 m
(k%) — f(ao)/ ——I—C—I—O(———z) .
52 pZ k2

In terms of the functional p defined above,

(6.8)

(a()) A2d 2
o83 /) — / ?

C m?
_;+_+0<—];;> . (6.9)

Qg r P*
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Consequently, we see that even if f(ap)=0,

1 1
—_ k2< 8 C> R
aoD(k?) Qo
so k2D(k%) + 1.

To take the above into account let us suppose that
as k?—ow,

(6.10)

1 k?
-, (6.11)
aoD(R?) &

where & is a finite constant to be determined by the
requirement of self-consistency. Replacing aq by @ in
Eq. (6.9), we see that when AZ>EZ>m?,

f@) rzdp* C mz)
k% &/ q%) — F—+0( — .
p(k*; @/ q?) fk 0<k2 , (6.12)

&g 2 pz &g

where C is the same function of k2/ap as C is of ao. If
we then take & to satisfy our eigenvalue equation

fl@)=0, (6.13)
we find that
1 k2<1 . C’)
g 6.14
D) \av ' (614
So with _
1 1 C
—=— (6.15)
Q) Qp O

the assumed asymptotic behavior (6.11) is self-
consistent. Indeed, let us define

_ ¢
ok 3D) = p(k?; auD)——,

(6.16)
o
where @D=a,D defines D so that
——1—=—1~_=k2<—1—+me(k2;aoﬁ)> (6.17)
aD  aD do

relates D to pg/. Then, as k2 — o,

f( 0) AdeZ m
L Y
pr(k?; &/ q%) = ﬁ ?2+ <k2 (6.18)

o7} 2

So when f(&@)=0,
pr(k*; &0/ q%) — O(m?/k?)

for %>m?. We now see that ao no longer plays any role
in our equations since (6.17) involves only the param-

eter @& and the boundary condition that pr—0 as
k2— o0,
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With these refinements, we may turn to the calcula-
tion of the leading corrections to the asymptotic
behavior of D:

D(E) — 1/k2 as kZ>m?. (6.19)

We have shown that pr(k?;&@/q%)~0(m?/k?). However,
pr(k?; @D) may vanish much more slowly than m2/2,
because of the corrections to the asymptotic behavior of
D given by pg. If we assume that pr(k2;&@D) — 0 as
kZ>m?, then we may write

D@k~ (1/k)[1~aopr(k*;3D)]

when kZ>m? Now, we assume that to compute the
leading term in pr(k2;&@D) for kZ>m?, it is sufficient to
use (6.20) in the functional dependence of pr on D?;
that is, for kZ>m?,

pr(k;@D)~pr(k?; (@0/¢?)[1—aopr(g®a@D)]). (6.21)

We will expand the functional to first order in pg so that

(6.20)

dpr(k?)
3D(¢?

or(k?; &GD)&PR(H; &0/92)+/

D=1/q
&

X[——;;m(g“’) ]d“q . (6.22)
q

Equation (6.22) has been written in a Euclidean metric
for q and k. The first term in (6.22) is of order m?/k2.
We shall assume that the second term vanishes more
slowly than the first, that is, we assume that

pr(k?;&@D)>>pr(k?; a0/ g%) ~O(m?/k?)

when k2>m?, and when the self-consistency require-
ment f(&)=0 is met. In this case pr obeys a homoge-
neous equation asymptotically,

(6.23)

1
pr(k?)~ad f K (k,q)g;px(qz)(d‘*q), (6.24)

where
dpr(k%; @D)

— (6.25)
3D(¢%)

K(k7Q) =—-

D=1/q*

If @?<1, the only way that (6.24) can be satisfied is
if the integral is very slowly convergent, so that it is of
order 1/@>>1. Therefore the only part of the kernel
needed is the form when ¢>>k. Now if we recall that

m
+0<_2> ’
k2

9 This assumption can be justified to every order of the expan-
sion of the functional p as a power series in D.

pr(k?; &/q*)~

@o

fi@) /@_

zpz
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we see that
9 dpr(k?) 1
—PR(kz;&o/92)=/ - X—(d*)
0o 8D(¢*) 1 5ersg ¢
d (f@)\ r**dp*  m
=——< >f -—+()<—z> . (6.26)
6&0 &0 @ n2 q2
Consequently,
_ g'(@) 1
K(k? ¢)~~ — for ¢=>kTOmM.  (6.27)
28 @2
In this case (6.24) becomes
@o? * dq¢?
pr(k)>——g' (@) [ —pr(g?). (6.28)
2 @2
Solving (6.28) we obtain
pr(q?)~ const. X (m?/g?)~F2 254’ (a0 (6.29)

when @><1. The consistency of this solution requires
that g'(@)<0. Tt is not unreasonable to suppose that
this will happen, since g starts from 0 at ap=0, and falls
to —% at the self-consistent value of &.

If @? is not small, more detailed information about
K (k%q?) than we can determine from (6.26) is required.
Let us introduce the dimensionless function %(x):

K (k%)= (1/g)k(R?/q) X1 /7, ¢>k

=(g*/kNk(¢¥/ k)X 1/x?, k>q,
where
k(0)= —g'(a)/ 2. (6.30)

This form for K(k%¢?) is valid for k2>m? and ¢Z>m?.
The validity of (6.30) under such conditions follows from
the fact that o, (k%)/6Daps(¢?) is the Bethe-Salpeter
kernel for scattering of light by light and is symmetric
in £ and ¢. In this case the solution to (6.24) has the
same form:

or(k%) = const. X (m?/k2)¢, (6.31)
but with e obtained from the solution of the equation

1

1=&02X/ dx k(x) (- ted-x1¢) ., (6.32)

Since %(0) is finite, (6.32) requires that e — 0, as@o? — 0.
Thus for @?*— 0, (6.32) gives us the condition

%(0)

1 =c‘z02|:-—€0-+0( 1):| . (6.33)

Therefore, when &?«<1,
e=ao’k(0) = —as*[¢' @)/27],

which reproduces our approximation discussed above.
We also find that the fundamental function g(@) can be



163 VACUUM POLARIZATION
determined from the Bethe-Salpeter kernel for the
scattering of light by light.

In order to determine the arbitrary constant in the
solution (6.31), we must of course join the asymptotic
solution to the solution of the equations for D in the
nonasymptotic region. It is at least plausible that this
can be done for any value of the constant in Eq. (6.31)
if we appropriately adjust the renormalized charge a
which characterizes the theory in the nonasymptotic
region. That is, the free parameter in the theory, a,
may remain. In this case, the equation &=a/Zs()
would be an identity in « .

We may remark here that some years ago Gell-Mann
and Low? reached a similar conclusion about the theory
using what is now called the “renormalization group.”
We shall discuss the relation between their results and
ours in a later publication.

VII. CONCLUSION

We have found that unrenormalized quantum elec-
trodynamics may be a consistent and finite theory pro-
vided that the unrenormalized charge & (defined in
Sec. VI) obeys an eigenvalue equation g(&)+2%=0,
which must of course have a real, positive solution.!
We have not been able to establish that such a root of
the equation exists. An accurate calculation of g(&o),
the fundamental function in quantum electrodynamics,
remains to be done.
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APPENDIX A. CONVERGENCE OF K¢(0,p")

We will show®:!! that K #l2(+D1((, ") is finite provided
I',@™ is finite. The contribution of a given Feynman
diagram to Ke2(»+D1(0,p") can be written as

KeD)(0,p") = /d“ql- A falgrgmp’), (Al)

where the integrand fn(g1,gs: - -¢np’) is a product of
numerators and denominators. We need only keep track
of the correct powers of $’ and the integration variables
¢; in order to discuss the convergence of (A1). We per-

10 For a short summary and discussion of the results of this
paper, see K. Johnson, R. Willey, and M. Baker, Zh. Eksperim. i
Teor. Fiz. 52, 318 (1967) [English transl.: Soviet Phys.—JETP
25, 205 (1967)].

11 The ideas behind the proofs in Appendices A and B are due
to J. D. Bjorken. J. D. Bjorken (private communication).
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form a rotation of the contour of integration in (A1) so
that all integrals d*qi, d%q.---d%, refer to Euclidean
four-vectors. This rotation is permitted since the ex-
ternal momenta are chosen to be spacelike vectors
throughout.®

We know that the only ultraviolet divergences in the
perturbation expansion for K¢ arise from vertex and
self-energy insertions. Since by definition K¢2(»+D] ¢on-
tains no self-energy insertions and since by assumption
the vertex insertion I',®" is finite, the integrals for
Kal2+D] converge in the ultraviolet region. However,
since K¢ does not contain the electron mass, all the
denominators in fn(¢1-+ -¢ap) which do not contain p
vanish if some or all of the integration variables ¢;
vanish. Such vanishing denominators could give rise
to infrared divergences. We now seek the precise condi-
tions for the occurrence of this kind of divergence in a
given integral.

For a given diagram the integrand f.(gi:--¢n,p")
depends upon the choice of the integration variables
q1* - *¢n. We will consider all the functions f, which cor-
respond to the various possible choices of the ¢; in a
particular diagram. Then for a given integrand f, we
need only consider the possibility that the non-p-
containing factors of f, vanish. In order that the re-
sulting integral (A1) converge (superficially) in the
infrared region, it is necessary that

Ai—d>0, (A2)
where 7(d) is the number of powers of ¢ in the numera-
tor (denominator) of those factors in the integrand of
(A1) which do not contain p. In order that integral (A1)
converge absolutely it is sufficient that all subintegrals
of (A1) obtained by fixing any subset ¢i,- - -gi, of the
variables g7 also converge superficially. Before we ex-
amine these subintegrals we will first show that condi-
tion (A2) is satisfied for all K¢ diagrams except those
containing 3-photon intermediate states.

Let us calculate 7i— d for a given diagram and a given
choice of integration variables. The variable p’ will
follow a certain path L which in general contains both
internal boson and internal fermion lines. Let f(b) be the
number of fermion (boson) lines which connect L to the

0 P’
pOWE
() p'

Fic. 11. Decomposition of graph

for K2(0,p"). f fermion lines g
<
ob boso

o
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0 p'
F16. 12. A reduced diagram
for K4(0,p’).

o '
6§_ P
"( '

0 f+blines ~ P

remaining part of the diagram, which we denote by X.
This decomposition is depicted in Fig. 11. By definition,
the value of i—d refers to the number of powers of the
integration variables in that part of the integrand which
corresponds to all lines except those forming the line L.
Consider the reduced diagram Kpr depicted in Fig. 12
obtained from the K¢ diagram of Fig. 11 by contracting
the line L to a point. The value of n—d for the K¢
diagram of Fig. 11 is then equal to the value of i—d
for the K g diagram of Fig. 12, where # and d refer to the
powers of the integration variables in the complete
integrand. The value of (i—d)x, is the sum of the
contribution (7i—d)x of the internal lines in X and the
contribution (i—d)sys of the f+b connecting lines. X
is a diagram with f42 external fermion lines and &
external boson lines. Hence

(fi—d)x=4—3(f+2)—", (A3)

while clearly
(fi—d) o= — f—2b+4(f+0—1),

since there are f+b—1 independent integrations over
the connecting lines. Adding (A3) and (A4) we find

(i—d)g*= (fi—d)gp=1+3f+b—4.

Result (AS) is valid even if X is a disconnected dia-
gram such as that depicted in Fig. 13. Diagram X’
of Fig. 13 has 4 fewer external fermion lines than dia-
gram X. On the other hand, the corresponding reduced
diagram Kp of Fig. 13 has 2 fewer integrations over
internal connecting boson lines. These facts add terms
+(4)(8) and —(8—2), respectively, to (A3) and (A4),
so that the sum (AS) remains unchanged.

We note that Eq. (AS) for (i— d)x* depends upon the
number f(b) of fermions (bosons) which appear in inter-
mediate states. This dependence upon the internal

o=, @
f+b lines f+b-2lines

0

(A4)

(AS)

e,
Ce

I'16. 13. An example of a reduced diagram with degenerate X.

[¢]
Then
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structure of the diagram is to be contrasted with the
structure-independent value —2 for (n—d)g. From
(AS) we thus conclude that if a given diagram contains
an intermediate state in which

3 f+b—4<0,

then that diagram diverges in the infrared region.

Equation (A6) is satisfied if f=0, b=3. Thus dia-
grams containing 3-photon intermediate states possess
infrared divergences. However, as we mentioned in
Sec. II, such diagrams yield non-gauge-invariant re-
sults and the use of a properly gauge-invariant current
yields terms which cancel these divergences. We now
show that K¢ contains no other diagrams for which
(A6) is satisfied. We know that f has to be even. This
means f=0 or 2.

(A6)

Fic. 14. A reduced diagram
for K+(0,p') when some of the
integration variables are held
fixed.

f+b lines
P
f, + bylines

®f,+ bzlines

If f=0, then Eq. (A6) is satisfied if =0, 1, 2, or 3.

(a) The case b=0 does not occur since K¢ does not
contain disconnected diagrams.

(b) The case b=1 does not occur since K¢ does not
contain 1-photon annihilation diagrams.

(c) The case b=2 does not occur, because such dia-
grams do not contribute to the vertex by virtue of
Furry’s theorem.

(d) The case =23 was just discussed.

If f=2, then Eq. (A6) is satisfied if 6=0. This case
also does not occur since K* does not contain any
2-particle electron-positron intermediate state.

We thus conclude that K¢ possesses no over-all in-
frared divergence. We now fix a certain subset ¢;,- - - ¢,
of the variables ¢; and investigate the infrared properties
of the resulting subintegral of (A1) over the remaining
¢i- In order that this subintegral converge in the in-
frared region it is necessary that

(i— ) giprqiy>0, (A7)

where (i—d) 4 p-aiy Tefers to the powers of the remain-
ing ¢; in those factors of f, which do not contain
gir- - +qir of p'. Let us suppose that the fixed subset
gii* - +gs; or variables form % independent loops L;
(1=1,2,---,k) in our diagram. To be considered in-
dependent a loop L must not overlap the line L con-
taining the variable p. Then (i—d) gi,...q:, equals (n— d)
for the reduced diagram K ggi,...qi;- This is the diagram
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F16. 15. An example of a reduced diagram with degenerate X.

(depicted in Fig. 14) in which the line L and the loops
L; are contracted to a point. Let f;(b;) denote the num-
ber of fermion (boson) lines which connect the loop L;
to the remaining part of the diagram Xy. Then, follow-
ing the same reasoning that led to Eq. (AS) we obtain
the result

(7i—d) giyeqiy=1+3f+b— 4+z Gfitbi—4). (A8)

=1

Equation (A8), like Eq. (AS), is valid even if X is a
disconnected diagram such as depicted in Fig. 15.

We have already shown that § f4+5—4>0 for all
relevant diagrams. We will now show that K¢ contains
no diagrams for which

2 fitb:—4<0. (A9)

Equation (A9) is satisfied if f;=0 and ;=0, 1, 2, or 3
orif f;=2 and b;=0.

(a) The case f;=b;,=0 does not occur since K¢ does
not contain disconnected diagrams.

(b) The case f;=0, b; odd, does not occur because
of Furry’s theorem.

(c) The case f;=0, b;=2, does not occur because K¢
does not contain photon self-energy insertions.

(d) The case b;=0, f;=2, does not occur because K*
does not contain electron self -energy insertions.

We thus conclude that Eq. (A9) is never satisfied and
hence that Eq. (A7) is satisfied for all choices of the
fixed variables ¢;;- - ¢is. Thus integral (A1) for Kal2(r+D]
converges absolutely (in the infrared region).

APPENDIX B. CONVERGENCE OF INTEGRALS
(5.8), (5.9), AND (5.5)

We shall show that the integrals (5.8), (5.9), and
(5.5), defining constants fi, fs, and fs, converge when
K< is expanded to any finite order of perturbation
theory. In order to obtain these integrals we must dif-
ferentiate with respect to & once or twice various parts
of the vertex integral depicted by the Feynman dia-
gram of Fig. 16. After differentiation we set £=0 and
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¥16. 16. Basic vertex diagram.

consider all possible choices of internal variables {g:}
for the resulting integrals. Thus, as in the case of (A1),
it is sufficient to investigate the convergence of these
integrals in the infrared region where some or all of the
integration variables ¢; vanish.

The diagram of Fig. 16 contains an intermediate state
consisting of a single electron-positron pair. If this pair
of propagators were differentiated twice, the resulting
integral S'd%p’/p'*K(p’,p) would clearly diverge for
small p’. Of course none of the integrals (5.8), (5.9), or
(5.5) is obtained by twice differentiating the electron-
positron pair in Fig. 16. We will now show that dif-
ferentiation of any other part of the integral of Fig. 16
yields convergent integrals.

We proceed precisely as in Appendix A. Let us fix
a certain subset g3, --gi, of variables and calculate
(i—d) gi - qiy ToOr the diagram deplcted in Fig. 16 with
k=0. As before, (i—d)qip.qi; I8 equal to the value
of (i—d) for the reduced diagram in which all the in-
ternal lines in Fig. 16 containing p or the fixed variables

i, -qi,, are contracted to a point. This reduced dia-
gram is depicted as Fig. 17. The reduced diagram of
Fig. 17 differs from the reduced diagram of Fig. 14 in
that a pair of external zero-momentum electron lines
has been replaced by an external zero-momentum
photon line. This simply means that in (i—d)giy...qi; &
term (—3) has been replaced by (—1). This difference
of 4+2 is just what is needed in order to differentiate
twice the integral depicted in Fig. 16 without encounter-
ing difficulties. That is, adding 2 to the value of
(fi—d) giy.--aiy given by Eq (A8), we immediately obtain
the value of (i—d)giy... .¢iy for the desired integral of
Fig. 16:

(i) girereqiy=1+3 f+b— 4+z Gfitbi—4)+2, (B1)

1==1

where f, b, fi, and b; are the number of connecting lines
in Fig. 17. Equation (B1) is reduced by 1 when we dif-
ferentiate a propagator corresponding to one of the
internal lines of the reduced diagram in Fig. 17. Hence
from (B1) we obtain the following expressions for
(Ai—d)’ gipeqi; and (i—d)" gip--qiy corresponding to the
once and twice differentiated integrals (5.8), (5.9),

f +blines
F1c. 17.. Reduced vertex p

diagram. f, +b, lines
fo+ bzlines
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P F1c. 18. Reduced vertex diagram
with /=2, 5=0.
[
and (5.5)

k
(ﬁ_d)/qiz---qifz 1““% +b"”4+z (%fi+bi_4>+1;
7=l
(B2)

k
(ﬁ—(Z)”qu---quZ 1+%f+b_4+ Z (%f1+b1—4) M (BS)

i=1

Equations (B2) and (B3) become equalities when the
differentiated propagators are not contracted to a point

in Fig. 17.
Thus if there are no diagrams for which
§f+6—4<0, (B4)
or
3fitbi—4<0, (B5)
then

(Ai—a)" girreais>0, (B6)

and integral (5.5) converges in the infrared region. The

f=0,b=3

Fic. 19. Reduced vertex diagram
. with f=0, =3.
f,+ Db, lines

f,+Db,lines

requirement
(i—a)' gijoeeais>0, (B7)

which guarantees the convergence of integrals (5.8)
and (5.9), is met if there are no diagrams for which
(BS) is satisfied or for which

3fHb—4<—1.

The arguments following Eq. (A9) can be applied
without modification to the diagram of Fig. 17 in order
to show that K¢ contains no diagrams for which (B5)
is satisfied. In considering (B4) or (B8), the arguments
following (A6) can be repeated with the following
trivial qualifications.

(B8)

(a) Since the diagram of Fig. 16 contains one elec-
tron-positron intermediate state, the reduced diagram
of Fig. 17 can take on the form depicted in Fig. 18 for
which (—d)gi,..qi;=2. However, since all the dif-
ferentiated propagators in integral (5.5) are contracted

Frc. 20. A degenerate case of Fig. 19
with f=0, b=3, f;=b;=0.

JOHNSON, WILLEY, AND BAKER

163

b=3,{=0

Tic. 21. Nondegenerate [=0),
P b=3, reduced diagram.

to a point, (i—d)"" is also equal to 2. Besides this trivial
diagram of Fig. 18, there are no other reduced diagrams
for which f=2 and 6=0.

(b) The case b=3, f=0, can occur for diagrams
which are not true 3-photon intermediate states—for
example, when X is the disconnected diagram giving
rise to the reduced diagram depicted in Fig. 19. In
general such a diagram contains a photon self-energy
insertion and hence does not contribute to K% However,
when f;=0,=0, the degenerate reduced diagram of
Fig. 20 does not contain a photon self-energy insertion.
[Tt is trivial to show that our general formula (B1) for
(A—d) qip--qi; also applies to such a degenerate case.]
If the denominator of the internal photon line in the
diagram of Fig. 20 were differentiated twice, (fi—d)”’
would equal zero, thus giving rise to an infrared diver-
gence. However, in all diagrams for K* not containing
multiphoton intermediate states, it is always possible
to choose the integration variables so that no photon
line carries the external photon momentum k. Thus this
possible way of obtaining (i—d)”’=0 can be realized
only by photon-annihilation diagrams. However, in
such diagrams, there always appears an undifferentiated
multiphoton scattering amplitude with one zero-
momentum external photon. Hence by gauge invariance
the contribution of such a diagram to f; must vanish.

(c) Finally we consider nondegenerate reduced dia-
grams such as that depicted in Fig. 21 for which 6=3,
f=0. But again from gauge invariance it follows that
the contribution of such diagrams to f, and f; must
vanish.

APPENDIX C. DERIVATION OF EQ. (5.7)

When m is set equal to zero, the only terms which con-
tribute to I',(p—,p;) are those containing an odd num-
ber of vy matrices. Hence

IVM“(P-~>P+) = FMX(P;k)'YX"I"Fuks(f):k)')’ﬂ’a s

where Fu(p,k) is a tensor function of the vectors p
and & and F,)\® is a pseudotensor function of p and k.
Now CPT invariance implies

(C1)

Lu(psp ) =7sTu(—p—y— p1) 5. (C2)
Also C invariance implies
=T (= pa—p-)=CT'Tu(p-,p)C,  (C3)

where T',7 represents the transposed matrix, and the
charge-conjugation matrix C satisfies
Cvl=—v.",

ClysC=1sT, (C4)
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where v5'=—1v;, vs=—1. Then PT invariance gives
us the condition

Tu(pisp-) = —vsC~ T (p—yp1) Cys. (Cs)

Using Egs. (C1), (C4), and (C5) we immediately ob-
tain the conditions

Fun(p,— k) =F(p,k), (Co)
FM)\5 P:'—k) = _FM)\E(P)—I-k) . (C7)
Hence from (C1), (C6), and (C7), we obtain
d i)
Lua®=——T,%p—,p1) | kmo=——F 2\*(p,k) | k=ovrys. (C8)
ko Okq

Now (3/0ka)F (k)| k=0 is a pseudotensor function of
the vector p. The only such function is of the form
const. X exunnps/ p2. Hence

(C9)

Puaa < Ga“)\xpx'Y)\'Y;S: const.

(’Y#'YP'Ya - 'Ya’YP'Yn)
X .

APPENDIX D. LOWEST-ORDER
CALCULATION OF f,

In lowest-order perturbation theory

K®(p,p',k)

(P"P')u(ﬁ‘?')b)Y 1
(b—p)* p-p)

Since K@ does not depend upon %, fo= f;=0; and from
Eq. (1.6)

= —ie027“<g,,b— (D1)

_ e / ap’ Tr(vav;b"n—'mi)’va)
48 (2m)* 2"
(YWY DY a—Y Y PY)
(p—1')*

(p—1)a(p—2")s
X| gop—— ). (D2
<g (p—p)? ) (b2

Ya

VACUUM POLARIZATION IN QUANTUM ELECTRODYNAMICS

1715

If we evaluate the trace of the g, contribution to
(D2), we obtain
© /2 N
flﬂab=_?_£(.) ip_ P ? > R
2r)o P2 Np—p)/ »

(D3)

The angular average (p-p'/(p—p’)?), is easily carried
out with the result

( a4 >=lm>’—1—(1’—<) (D4
(=20 7 pi\ps/’ |
where
p<=p i p<p’,
=p" if p'<p,
and
p>=p" it p>p
=p" i p'>p.
From (D3) and (D4) we obtain
fifer=q,/2rr. (D5)

Carrying out the trace of the (p—p)a(p—p")s/
(p—9')? contribution to (D2), we find

(?‘P')a(ﬁ—?’)z):_ﬂ ~ap®
(o2

2r Jo p'?
. 2 ’2...( . ’)2
XK(Z—Z’V _§<P P(p-—j’)f > } =

However,

f1<due to

=)\ 3P’
< >= . (D7)
(p—21")* 4p>*
Hence from (D4), (D6), and (D7) we find that
f1<due to w> =0, (Dg)
(p—1)*

The fact that we can obtain the correct value of f;
from a calculation in the g, gauge is just an accident
of the lowest-order calculation.



