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threshold. A term of the form (19) may be thought of as
arising from two e-plane poles, one at n=n and another
at rz= —n —2. The symmetry conditions (13) make it
plausible that poles do appear in such pairs. Although
(19) is better behaved near threshold than (18), it
could not be an accurate representation of the amplitude
at low energy. Any s-plane analytic structure —res-
onances, inelastic threshoMs, etc.—could arise only
from a complicated set of n-plane singularities. In
particular, we know that branch points are to be
expected in the m plane.

Finally, we suggest that by representing asymptotic
terms in the form (19) and by including direct-channel
resonances in the fashion described by Barger and
Cline, ' it may be possible to obtain better fits to total

V. Barger and D. Cline, Phys. Rev. Letters 16, 913 (1966).

cross sections and forward differential cross sections at
"intermediate" energies than would be possible with
asymptotic terms different from (19).The idea is simply
that asymptotic behaviors beneath the leading one,
which may be moderately significant at these energies,
will be properly handled in this way. The success of this
approach depends, however, on the leading branch
points in the n plane being sufFiciently weak, the absence
of other poles, and the effect of double counting, which
is intrinsic to this approach, also being negligible. The
ultimate test of whether (19)—or suitably modified

forms in cases with spin —is better than other asymp-
totic expressions can really be determined only through
a direct confrontation with experimental data.

~ As a practical matter it is preferable to consider total cross
section differences or forward processes that do not contain
vacuum contributions.
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It is shown that if the photon propagator is set equal to 1/k' in the expression for the vacuum polarization,
then Z3 ' (where Z3 is the photon wave-function renormalization constant) diverges like a single power of
the logarithm of an ultraviolet cutoff in all orders of perturbation theory. The implication of this result upon
the possible finiteness of ordinary quantum electrodynamics is discussed.

I. I5'TRODUCTIOH AHD SUMMARY OF RESULTS

'N a previous paper' we developed a Inethod to solve
- ~ the Schwinger-Dyson equation for the unrenor-
malized electron propagator S(p) in the asymptotic
off-mass-shell region p))m. We found that the solution
1/S(p) =Tp+Z(p) had the property P(p) ~ 0 as p))m,
and from 3 a finite electromagnetic mass for the particle
was obtained. The following assumptions were made:
(a) the mechanical (bare) mass of the particle was
zero; (b)

where D(k') is the unrenormalized photon propagator.
In this paper we wish to study the second require-
ment, Eq. (1.1) In order that (1.1) be consistent,
the photon wave-function renormalization constant Z3
calculated with the same hypothesis must be finite.
Thus, if (1.1) is valid, then we may put D(k') = 1/k' in
order to calculate the dominant contribution to Z3
(that is, the part which diverges in perturbation theory).
In this paper we shall show that if D(k') is set equal to
1/k' in the calculation of Zs ' then

1
lim D(k') =—,

k2~oo p2

1—= I+y(,)X
Z3

dps
+finite pa,rt,

ps
(1 2)

*Supported in part by the U. S. Atomic Energy Commis-
sion under Contract Nos. AT(30-1)-2098, AT(45-2)-13888, and
AT- (30-2)-3829.

~ K. Johnson, M. Baker, and R. Willey, Phys. Rev. 136, 31111
(1964).

where f(ns) is a function of the unrenormalized fine-
structure constant ns ——ess/4z. .Thus, we shall prove that
if D(k') =1/k', then 1/Zs diverges like a single power
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t'i(«)+2f~(«)+f2'(«)
g(«) —= -+f3(«) (1 4)

1—i(«)

The functions fi(«), f2(«), and fg(«) are d«ned
in terms of the asymptotic Bethe-Salpetcr kernel
E (p,p'k) =E~(p+-', k,p 2ik, p'+-', k,—p' ', k) for —e—lec-

tron-position scattering by"the following formulas:

&'p' (v-vp'v, —v,vp'v-)
Tr

(2m)' 2p"

&&& (p' p)(v.v&. v.vW. ) (1—5)

d'p' 1 1
T y„E '(p', p)

(2s-)' yp' yp'

3CCp =—
48

d'p' 1 1

,v. ,&-'(p', p)vps. vp, (1 &)
(2~)' 7p' 7p'

E (p',p)—=E (p,p', k)i, 0,

of the logarithm of an ultraviolet cuto6 in all orders
of perturbation theory, just as it does in the lowest
order. Consequently, if as k'-+~, D(k') —+ 1/k', and
if there is a nonvanishing value of ep)0 for which

f(«) =0, then for that value of no, 1/Z8 is finite. '
Further, we shall show that when np obeys this

"eigenvalue" condition f(«) =0, the leading correction
to (1.1) is given by const. &&(1/k')(m'/k'}'i"0', where

k(«) is also a function of «. If the solution to the equa-
tion f(«) =0 has the property that «(&1, then k(«)
=—no'(d/dao)Lf(«)/«j. Thus, if the additional re-
quirement k(«))0 is satis6ed. , hypothesis (1.1) is
self-consistent. In this case, namely, for np such that
f(«) =0 and k(«))0, we 6nd. that the unrenormalized
equations of quantum electrodynamics have completely
6nite sohltions. Thc divergences would then simply bc
the result of using perturbation theory to compute re-
normallzatlon constants) which. ls unjust16cd.

%e have obtained the following formula for the
function f(«):

(1 3)

FrG. 1. Some perturbation-theory diagrams for E .

The asymptotic kernel E is determined from the exact
Bethe-Salpeter kernel K by setting all internal electron

propagators 5(p) equal to 1/yp and all internal photon
propagators D„„equal to D„„',where

The gauge constant b is Gxed by the condition that the
vertex function I' be 6nite.

The essential point of the proof of formula (1.2) is the
demonstration that the lntegrals (1.6), (1.7), and (1.8)
converge. %e have shown this to be true if K is ex-

panded in a power series in np to any finite order of
perturbation theory. Thus the generality of our proof
of (1.2) is restricted to a perturbation treatment of E'.

The Feynman diagrams representing soIne of the 6rst
terms in the perturbation series for E are depicted in

Fig. 1. Since by definition the k.ernel E determines the
equation for the vertex function I'„ t see Eq. (3.1) of

Sec. IIIJ, it does not contain one-photon annihilation

diagrams. This is because such diagrams would give
rise to nonproper vertex parts.

The 3 ln the braclMts of forTllula (1.3) yields tile weak-

coupling limit for Z,—' (the Landau approximation' ).
Our result shows that if D(k') is set equal to 1/k', then

no higher powers of lnA. appear in the exact expression
for Z3 '. Furthermore the cocKcient of lnA. is obtained

by replacing x2 by —', +g(«). The self-consistency

requirement

3+g(«) =o (1.12)

~ The fact that quantum electrodynamics may be a finite theory
only for certain values of the bare charge e0 was understood by
Gell-Mann and Low from the point of view of the renormaliza-
tion group. See M. Gell-Mann and F.K. Low, Phys. Rev. 95, 1300
(1954).

means that the weak. -couphng result is just cancelled

by all the higher-order effects. We can calculate g(no)

' L. D. Landau, A. A. Abrikosov, and I. M. Halatnikov, Dokl.
Akad. Nauk. SSSR 95, 497 (1954); 95, 773 (1954); 95, 1177
(1954).



Fxo. 2. Simple ladder diagrams
for Zq '.

(CKp Qp)
fi"'=I —+ —

I I:—'l(3) —4j,
2~/

(1.14)

via Eq. (1.4) and formulas (1.5), (1.6), and (1.7) for

f„f„and. f,.
If we use lowest-order perturbation theory for E

LFig. 1(a)J, then the resulting expression (1.4) for g(up)
represents the sum of the contributions to Z3 ' arising
from all uncrossed ladder graphs as depicted in Fig. 2.
In this case we find fi opp/22——r, f2 f2

——0{s——ee Appendix
D). Hence in this first approximation,

g(IIp) = (np/22r)/(1 —Irp/2pr), (1.13)

and there is no positive IIp for which g(np) =—p. The
values of fi, f2, and f2 corresponding to the fourth-order
diagrams for E LFigs. 1(b) and 1(c)$ have been cal-
culated by Rosner. ' He obtained the results

k„k,) fp k„k,
ID(k )+-

k2&
(2.1)

where b is an arbitrary constant, and the invariant func-
tion D(k') is determined by the equations

D-'(k')=k2I 1+p(k')$, (2 2)

where p(k') is obtained from the polarization operator
lip~(k) by tllc cqilatloI1

(k'g„,—k„k,)p(k') = 11„,(k2)

dip
2e p2 Try„s(P+-12k)

(2n-)'

&« (p.+ k2p , 2—k)S(p 2—k) (2 3)

IL ELEMENTARY DISCUSSION OF RESULT (1.2)

We restrict ourselves to gauges for which the photon
propagator D„„(k) can be written as

no ' 10
2f2'"= — 20(3)—+

2~
' 3'

np)2 13 23
f2"'= —

I
—&(3)——

2) (1.16)

In perturbation theory, super6cially, the integrals
foI' Iilpp(k) dlvcrgc qllRdi'RtlcRlly, bll't R colTcct gaugc-
invariant calculation gives II„„(k) the tensor structure
indicated in Eq. (2.3), and the resultant integrals for
p(k ) dlvcrgc logRlitllIllically. From Eqs. (2.2) RIid (23)
we see that

2 2~; = 1+p(o) = 1+— — 11..(k) I.=' (2.4)
24 8k Bk

If we insert these results into Eq. (1.4) for g(IIp) and
expand to order no', we obtain

o!p 1 Gp)
g "I(«)=———

I

We rotate Eq. (2.3) to Euclidean coordinates, writing
J'd'Pf(P) = J'p'dPd~ f(p)= V'P'dp 2 —'{f(P))
u»ng Eq. (2.4), we obtain the following expression

(11)) for zp .

That is, the f'{3) terms in the f; cancel when we cal-
culate g(n) and we obtain a simple negative coefficient
—

4 foi tile (up/2Ir) Colltl"lblltloI1 to g(tlap). T111SSuggests
that the structure of the function g(np) is much simpler
than the structure of the functions f;(np), and that any
partial summation of diagrams such as Eq. (1.13) is
likely to give misleading results. In any case the simple
nature and, negative sign of Rosner's 4th g(np) suggest
'tile possibility tlIRt g(IIp) Iilay bc calculated 111 closed.
form and that the eigenvalue Eq. (1.12) may have a
root for n &0.

In the next section we (4scuss the Boreas leading to oul
basic result, Eq. (1.2), in the context of perturbation
theory. This crude discussion is for the most part in-
dependent of the detailed derivation which follows in
later sections. It is included in the hope of adding clarity
to the paper.

' J. L. Rosner, Phys. Rev. Letters 17, j.190 (1966);Ann. Phys.
(N. Y.) 44, 11, (1967).

Ifppp2O(P2) (2 5)

0!0 2 2
(p') = T — vP(p+-'k)

96vr N Bk

xr„(p+lpp —'.gs(p —'.p)) (~.p)
y k=o ~

The full S(p) appearing in Eq. (2.6) differs from 1/7p
by terms depending upon the electron physical mass m.
From dimensional arguments the resulting dependence
of o(P') upon ppp can be expressed as P'o(P') =(1/P')

' Since we consider spacelike values of k' (k'&0), we can rotate
the contour of integration in Eq. (2.3) so that the integral refers
to a Euclidean four-vector d4p and the functions S(p) and
I"„(P+~&k,P—~k) refer to external Euclidean variables. See J. D.
Bjorken and S. D. Drell, Eelalivivtjc Quantum Fields (McGraw-
Hill Book Company, Inc., New Pork, j.965), p. 314.
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the diagrams of Fig. 3(B).A line with one (two) dashes
through it represents a propagator which has been
differentiated once (twice).

Graph Ay of Fig. 5 gives the usual result of lowest-
order perturbation theory, i.e.,

(2.7)

In order to calculate p'&r(p') to order n04, we choose
b=0 (the Landau gauge). Diagrams B~ of Fig. 5 yields
an integral of the form

$4pf

p (p p')' p"—
(2.8)

F 6
FIG. 3. Some perturbation-theory diagrams for D„,(k}.

Xf(p'/m'), where f is a dimensionless function of
p'/m'. Therefore we can obtain the high-p' limit of
p'0(p') by letting m approach zero, and result, (1.2)
follows if expression (2.6) for 0(p') evaluated at m=0
is finite. We must thus show that in the perturbation-
theory expansion of p'o(p') the m=0 integrals are free
of both ultraviolet and infrared divergences.

Some typical perturbation-theory graphs for II„„(k)
are depicted in Fig. 3. Since we are calculating II„„(k)
under the assumption D(k') =1/k', the photon prop-
agator appearing in these diagrams is D„„o, given by
Eq. (1.11). II„„(k) does not depend upon the value of
the gauge constant b. We choose b so that I' is finite.
We shall see that this greatly simplifies our work.

The diagram depicted in Fig. 4(A) is not included in
II„„because it represents a photon self-energy correction
to the internal photon propagator. If Z3 ' turns out to be
finite, then the use of the full propagator for the internal
photon line [Fig. 4(B)] will produce a contribution to
the asymptotic form for p'0(p') which is proportional
to the contribution of diagram 3(B).In this case use of
perturbation theory [Fig. 4(A)] would yield a spurious
contribution to Z3

From Eqs. (2.4) and (2.5) we see that in order to cal-
culate Z& or 0 (p') all internal lines carrying momentum
k must be differentiated twice. Figure 5 shows some of
the contributions to Z3 ' arising from diAerentiating

for the quantity p'0(p'). Equation (2.8) is a once-
differentiated vertex correction. We have kept track
only of the correct powers of p and p', since factors,

F?G. 5. Some second- and fourth-
order diagrams for Zg '.

spinor and vector indices are irrelevant for our con-
7

lsiderations. Now we see by inspection that the integra
(2.8) contains neither infrared (p'~ 0) nor ultraviolet
(p' —+~) divergences. Hence from dimensional argu-
ments it follows that the integral (2.8) is equal to con-
stant/p', i.e., graph B~ yields the result

p'0 (p)'= const. /p', (2 9)

as desired.
Diagram H~ of Fig. 5 yields an integral of the form

Fxo. 4. Photon sdf-energy corrections
to II~(k).

1 d'p' 1

p (p-p) p"
(2.10)

for p'0(p'). Integral (2.10) is a second-order vertex
correction which is ultraviolet 6nite in the Landau
gauge and by inspection it is infrared Gnite in any7

gauge. Hence from dimensional arguments, it follows



VACUUM POLARIZATION IN QUANTUM ELECTRODYNAM ICS 1703

that in the Landau gauge the integral (2.10) equals
const. /p'; i.e., in the Landau-gauge graph Bs also
yields a result for p'~(p') of the desired form (2.9).

The integral over the internal photon line in graph
C of Fig. 3 converges in the Landau gauge with m=0.
By dimensional arguments it follows that in this case
the resulting correction to the internal electron prop-
agator is of the form const. /yp. Hence the contribution
of graph C is proportional to the contribution of graph
A and when differentiated yields a p'o (p') of the desired
form (2.9).

Thus in the Landau gauge the contributions of dia-
grams B~, B2, and C separately have the desired form

D4

Fi

Fro. 6. Some sixth-order diagrams for Zg '.

FrG. 7. Some eighth-order 3-photon
diagrams for II„„(k).

(2.9). The same is true for diagrams Kq and Fs, once we
realize that the second-order vertex insertions which
they contain are 6nite in the Landau gauge. Diagram
D~ contains a divergent fourth-order vertex insertion.
However, the sum of diagram D2 and the gauge cor-
rection to diagram B2 of Fig. 5 contains a 6nite vertex
correction. This sum then yields a p'o (p') of the desired
form (2.9). Likewise the gauge correction to diagram C
of Fig. 3 removes the in6nite electron self-energy in-
sertion contained in diagram 0 of Fig. 3.

Let us summarize this discussion of perturbation
theory. In order to calculate p'o(p') to order 2m we
choose the gauge in which I' is 6nite to order 2 (I—1).In
our expression for p'o(p') there will be diagrams like
B&,D&, and De which do not contain any undifferentiated
vertex or self-energy insertions. By a direct power-
counting argument, it can be shown that the contribu-
tions of such diagrams to p'o(p') do not contain any
divergences. Hence they yield a p'o(p') of the desired
form (2.9). Dangerous diagrams like Bs and Ds, which
contain undifferentiated vertex insertions, are rendered
harmless by the choice of gauge.

However, the above-mentioned power-counting argu-
ment is not completely general. Diagrams which con-

(2.9). In any other gauge the contributions of the dia-
grams B2 and C would contain divergences which have
to cancel when added because of the gauge independence
of ZB

Likewise, in order to simplify the sixth-order cal-
culation of Zs ', we choose the gauge b=b "&=-,sos/4a;
in which I'„& & is 6nite. Then the sixth-order contribu-
tions to 11„,(k) arise not only from diagrams like D, E,
F, and 0 of Fig. 3 calculated in the Landau gauge, but
also from gauge corrections to diagrams B and C cal-
culated with the photon propagator equal to b&'&b„b„/k4.
Some of the sixth-order contributions which arise from
differentiating diagrams D, E, and F are depicted in
Fig. 6. By counting the powers of momentum in the
integrands for o(p') corresponding to the contributions
of diagrams Dy, D3, D4, and F~, we 6nd that these
integrals [like integral (2.8) which corresponds to
diagram Bqg contain neither ultraviolet nor infrared
divergences. Hence+by dimensional arguments they
also give contributions to p'o(p') of the desired form

Fro. 8. Some eighth-order 3-photon
diagrams for ZI '.
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tain three-photon intermediate states appear as ex-
ceptions (and the only exceptions). However, one can
resort directly to gauge invarianee in order to show
that the contribution of such diagrams to p'o(p') is
of the form (2.9).Consider the simplest examples of such
a case, diagrams H and I of Fig. 7. Some typical con-
tributions to p'0. (p') which arise from differentiating
diagram H are depicted in Pig. 8. To these contribu-
tions we must add the corresponding contributions ob-
tained by differentiating diagram I. It is easy to show
from direct power-counting arguments that diagram H2
gives a contribution of the form (2.9) to p'0(p'). How-
ever, such an argument is not applicable to diagrams
Hl and Ha. (The integral over the doubly differentiated
photon line in diagram H3, for example, clearly diverges
in the infrared region. ) However, diagrams Hl, Hq, and
H4 each contain a photon-photon scattering-amplitude
insertion, where one of the photons (the external one)
has zero momentum. We know from gauge invariance
that such an amplitude must vanish. Hence if the
photon-photon scattering amplitude appearing in dia-

grams HI) H3, and H4 Is calculated in a gauge-lilvailant
manner, ' the contributions from these diagrams must
vanish.

We now list the correspondence between the above
pcrturbatlon-theory dlagraz118 and the functions of f1,
fs, and fs I

which describe the exact behavior of p'0 (p')
for large P'J. Diagrams like Bl, DI, and H~ which
contain only undifferentiated Bethe-Salpeter kernels
contribute to fl I sce Eq. (1.5)).Diagrams like D4 (D3),
which contain a once (twice) differentiated kernel con-
tribute to f2 (f&). Diagram~ like Fl which contain
iterations of an undifferentiated kernel give rise to
contributions to g(no) via the fl in the denominator of

Eq. (1.4). Because of Ward's identity, diagrams like

Bg, which contain undifterentiated external vertex cor-
rect.ions, give contributions to g(no) which are exactly
cancelled by the contributions of diagrams containing
electron self-energy corrections. All electron propagators
and the two external vertices thus appear uncorrected
in the formulas for fl, f~, and f3 Furthermore. , the
direct power-counting arguments previously mentioned

FIo. 9. Graphical rep-
resentation of the inte-
gral equatIon for I p,

in the discussion of perturbation-theory diagrams form
the basis of the proof that the integrals defining fl, fm,
alld fa collvel'gC.

Having thus outlined the general nature of our result,
we now give a detailed derivation of Eq. (1.2).

F.(P+ P )=v.+-E:(P+P P+' P-')-
(2Ir)'

&&~(p+')F.{p+',P ')~(p -') (3-1)

p~=p+ 12k, p -=p——',k,
P+'=P'+k& P '=P-

The Bethe-Salpcter kernel K includes all diagrams
which contain Qclthcl a single clcctioQ-position pail
nor a single-photon intermediate state. (See Fig. 1.)
Equation (3.1) is depicted graphically in Fig. 9. It is
convenient to write Eq. (2.3) for II„„(k) and Eq. (3.1)
for F„(p+,p ) in the following matrix notation:

IIp„=—Mo TI+~61

F„=y„+EGF„,
(2.3')

(3.1')

(&+ I
GF. I P-)=—~(p+)F.(P+ P-)~(p-).

We designate the process of diGerentiation with re-
spect to k by the index n, e.g., F„=(B/Bk )F„,
G —= (8/Bk )G, etc. Differentiation of Eq. {3.1') then
ylclds thc following equation foI' I ~~.

F„=EGF„+EG F„+EGF„„. (3.2)

Differentiating Eq. (2.3') and. using Eqs. (3.1') and
(3.2), we obtain the following expression for II„„,„(k):

II„„,.(k) = —feo'Tr{I'„G.F,+F„GE.GF„}. (3.3)

The result (3.3) for II„„, is easily understood if we ex-
pand &pv In powers of ~ and + and then dl~erentIatc
FAG~I y Incbldcs thc contributions, of all terms ln which
6 is diBerentiated and I"„GE GI'„ includes all terms in
which E is differentiated. See Fig. 10 for a graphical
representation of Eq. (3.3). One can keep track of the
sign of k in the various terms in Eq. (3.3) by referring
to Fig. 10. For example, the F„G which appears on thc
left in the expression F„GE GI'„means S(p )F„(p,p+)
XS(p+). The equation for F„(p,p+) can be written as

III. GENERAL EXPRESSION FOR S3—'

In order to calculate Z3 ' from Eqs. (2.3) and (2.4)
we must know the vertex function F„(p+12k,p —-', k).
This function satisfies the integral equation

' For example, use of a correct gauge-invariant current produces
a counter term in the photon-photon scattering amplitude %which

guarantees that it has a gauge-invariant structure,

d4P/

F.(P ,P+)=7.+ -- - -~(-p )F„{p,p, )
(2n.)'

&&~(p+')&(p ',p+', p ,p+), --



VACUUM POLARIZATION IN QUANTUM ELECTRODYNAM ICS 1705

Now in order that I'„be finite it -is necessary that
F„+0—as p' )eo. We have calculated F„(p,p') directly
in lowest-order perturbation theory, where S(p) = 1/yp,
I p ppy + ~~o ppapv ppy

np p)
lim F„(»(p,p') =b~„+0

p"~
{4.3)

From Eq. (4.3) we obtain the well-known result that
the second-order vertex I'~') is 6nite in the Landau
gauge (b= 0). With b= 0, Eqs. (4.1) and (4.2) yield the
result

1„(»(p,p) = (1+3~,/8~)&„. (4.4)

We now want to show that if photon self-energy cor-
rections are neglected (i.e., if D=1/k'), then one can
find a value of b for which

Flo. 10. Graphical representation of Eq. (33) for 11»,n-

or in matrix notation

I'„=y„+I'„GE'.

We now differentiate Eq. (3.3) and obt»n th«»»wing
expression for II» = (c)/8k )(c)/c)k )II»'

II„„= ieps T—r{I'„G I'„+I'„G& GI"„+2I'naGnI'g

y21„GX.I „y21'„GE.GI'„.). (3.4)

Equatjon (3.4), eva]uatcd Rt k=0, glvcs lls Rn exact
expression for Zs

—' and o(p') as defined ln Eq (2 3).
Our problem is to obtain an exact expression for the
high-p' behavior of p'o(p') under the assumption that
D(k')=1/k', i.e., D„„(k)=D„„'(k)given by (1.11).The
individual terms which appear on the right-hand side of
Eq. {3.4) depend upon the choice of the gauge constant
b. We have shown in Ref. 1 that if D=1/k', a value of
b= b can be found such that I'„is 6nite in perturbation
theory. In order to make our present analysis of all the
terms in Eq. (3.4) as complete and explicit as possible,
in Sec. IV we shall give an independent proof of this
result. In Sec. V we will analyze Eq. (3.4) in the gauge
b=b .

I'.(P,P) =~.+ „F.(p,p'), (4.1)

where

F.{p,p') = (2/16~') &&(P,P')~(p') I'n(p' P')~(p')}n" {42)

IV. EQUATIOH FOR I'„(P,P)

In order to stud. y the possible jnfinjtjcs in Eq. (3.1),
it is sufjjcjent to consider the equation for I'„(p,p). We
set k= 0 in Eq. (3.1)and rotate to Euclidean coordinates,
thereby obtaining the equation

lim F„{p,p')=0.

%e prove this by induction. We already know that in
the gauge b= bo=O,

and I'„&') is 6nite. Let us assume that constants a,=O,
gg, ~ ~, u i can be found so that in the gauge b—=gp+alnp+ ~ +a Iup" ', I'(2") is finite. We will now
show that one can 6nd a constant a„such that in the
gauge bn—=b~l+(In(rp,

P 't Pn&u /P ')
F..(p,p') =~.F —,I+ (4.5)

where I"
q and Ii 2 are dimensionless functions of the ratio

p/p'. We can therefore determine thc behavjor of
F„(p,p ) fol' p ~~ fl'om its behavior for p —+ 0. From
Eq. (4.2) wc scc 'tllat tile depelldence ()f F„upon p s,rjses
solely from E (p,p').

In Appendix A we study the infrared region of the
perturbation-theory integrals and show that E &2&"+')& is
finite at p=0. Hence

ljm F [2( + )1(p~p )y&~
F n[2(n+1)1(0 p~) —F[2(n+1)1~ (4 {j)

llm F„fs("+1)1(ppI) ~ 0
y~~(o

&""+"')I'p"'"+"~)and&~' "+"'dependupon the elec-
tron mass via their dependence upon the electron prop-
agator S(sn)(p). The mass-dependent terms in 5(2")(p)
must of course be calculated according to the scheme of
Ref. 1.However, in order to calculate the high p' limit
of F„['("+'»(p p'), one can neglect dependence upon elec-
tron mass. Let the values of E(p+,p, p+', p '), I'„(p+,p ),
alld Fn{P,P ) obtalllccl by sct'tlllg tllc clcctl'oil mass 5$=0
be written K'(p+,p,p~', p '), I'„'(p~,p ), and F„'(p',p).
P then assumes the form
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where F[2(n+')J is a finite constant. From Kq. (4.3) we
see that the gauge term a o.o" gives a contribution
((2p/42r)(2n(rp" tO the COnStant F['("+'&J

We can thus choose u„so that

lim 8(v,p) =----,
p ~00

(4.15)

P f2(n+1)] (4 7)
I'm I n(p+)P )= v—n i (4.16)

[If Fi(p/p') had contained terms of the form
[ln(p/p') j", it would clearly have been impossible to
remove them with an appropriate choice of the con-
stant a„. The absence of such terms is guaranteed by
the finiteness of K (O,p').j

With u„determined from Eq. (4.7), I'„"("+')'(p,p) is
finite and takes on the asymptotic form

and Kq. (3.1') for I'„(p+,p ) = I'„becomes

I"„=Cv„+KSI'P,
where

K=C K(S,I ) =K((8,1)),

(4.17)

(4.18)

(4.19)

lim I' "("+'"(pp)= — v
P ~00 C[2 (~+&)l

7
+ P. , (4.8—)

(C&) [2(n+1)J p2

(C«) [2(n+1)J

lim S['("+'"(p)= (4 9)

From Ward's identity (&S '/(&pn=l'„(p, p'), it follows

that

(C«)[2(n+1)J = C[2(n+1)J
7

=0.
(( ') [2(n+1)J

(4.10a)

(4.10b)

[Actually the value of the constant (C")['("+'&' depends

upon the choice of the variables of integration used in the
perturbation-theory evaluation of S['("+'&[(p)j For this

reason, requirement (4.10a) just serves to remove this

ambiguity in (C")"'"+'&'.

Thus we see that in an appropriately chosen gauge

where the 6nite constants C&'&"+"] and C'&' "+'" are
determined by setting m=0 in the expression for
I'„[2(n+')[(p,p). At large p the corresponding electron
propagator S"'"+'&J(p) behaves like

i.e., E is the same functional of 8 and I' as E is of 5
and I'.

Condition (4.7) determines (2„, and hence the gauge
constant b is conveniently expressed in terms of

as follows:

1
Ea C2~a ~ I'a

7
(4.20)

K [2( n+1)nJ (0 p~) V
—0

vp' vp' n

(4.21)

(1—C)v, =
d4p' 1 1

K'(p, p')- v„. (4.22)
(22r) 4 Vp' Vp'

In calculating the constant C to order o.o~'("+')] from
Eq. (4.22), we need know only I'„n('"'. The latter is
determined from Eq. (4.17) in terms of C""'. [From
Eq. (4.4) we see that C('& = 1 3np/8m—]-.

We repeat that the results of this section depend
upon the fact that K ['("+"J(0,p') is finite provided
I'„('") is finite. The proof of this fact involves the study
of the infrared behavior of the perturbation-theory
integrals for K'"'"+"'(O,p'). (See Appendix A.)

Also the constant C, appearing in Eq. (4.17) for I'„, is
conveniently determined by setting k=0 in Eq. (4.17)
and taking the limit p —&np. This yields the equation

V. BASIC RESULT FOR ZB 'I'.(P+ P )= »m I'n(p+ P )-=~. (4.11)-
@~os,k fixed y~o(&

We shall now evaluate Zp ' using Kqs. (3.4) and (2.6),
and assuming that D= 1/O2. The sum of all the terms on
the right-hand side of Eq. (3.4) is gauge-invariant,
and for convenience we choose to evaluate Kq. (3.4) in
the gauge for which I'„ is 6nite.

We begin by re-expressing II», (0) in terms of 8,
r', and E.

(4.12)lim S(p)=C—,

II„„, (0)= 2'ep' Tr(I'„6 I'„+I'„g—K„gI'„+2I'„g,I'„
+2I',GK.G.I'„+2I'„GK.GI'„.), „(5.1)8(v,p) = (1/C)S(v p)

I'„(p„p )=Ci'„(p„p ).
(4.13)

(4.14) where g= G/C'.

where C is a 6nite constant.
It is now convenient to rescale Eq. (3.1) for I'„(p+,p ).

We de6ne
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The term —2e02Tr(1'„G..i'„)2 o yields the «»-
tribution (I/P2)(np/2~) f«1(P2/2222) to P2~(P2), where
f('1(p'/2222) is the following function of p2/2222 (the
only available dimensionless parameter):

p2 p4f"' —=—» I'.(P,p)
48 Bk 8k„

in the limit 222 ~ 0. The equation for 1"„(P,P) is given by

1'„(p,p) = (1"„GX+I'„GE.+ I'„.GI4) 2=0. (5.6)

If lim„p I'„,(p,p) exists, then

,(v,vpv. —v.vpv, )
lim I'„(p,p) = I"—
na-+0 2p2

k
&&~ P+ I'»-(P, p)~ P2"'

2

where I" is a 6nite constant. The spinor structure of
I'„„(p,p), given by Eq. (5.7), is an immediate con-
sequence of I'T invariance, as shown in Appendix C.

We will now show that the above limit (5.7}exists, and.
we will determine the constant I".In the m= 0 limit the
inhomogeneous terms 1"„GZip 0 and I'»GX io 0 in
Kq. (5.6) take on the forms

Now in the gauge we have chosen, we know $Eqs. (4.15)
and (4.16)j that

lim I'„(P,P) =7„, lim 8(v,P) =—.
"P 7»vp 7» 7»vp va—&'(P' P)
(2x-) 4 2p"

(v,vpv —v vpv, )
(~0) (5.8)

lim f«li —=-', .
/P'

y"" m2 d4p' 1 1
lim (I"»GE.)2=0= — — 7» E»(p', p)m~p (2~)4 vpi vpiThe second term, —M02Tr(i'»GE Gi'»)2 0, yields the

COntributiOn (1/p2)(np/22r) f12&(p2/nZ2) tO p2(r(p2), Where
(v,vpv —v vpv, )= 2(~0)—p2i p4 d4pi

~(p) ~,(p,p)
m2& 48 (2~)4

»(P }&-.(P',P)8(p}P.(P,P)~(p}i.-' (5.4}
In integrals (5.8) and (5.9) we used the definition

7
lim (I'»G.X)o=p=

Hence in the large-p limit, Eq. (5.2) coincides with
lowest-order perturbation theory, i.e.,

llni f«1 —= lim f&'1
P' . P"1

~2)

2
8(p—'&)I'.(P,p)&(p+!~)l.=o,

Bk

and the limits (4.15) and (4.16) to obtajn

p4
' d4P' 1 1 1 1E- (P' P)~»

48 (22r) 4 VP' VP' VP VP

lim (I'„G„)0 p
——

y-+oo or m~0

VIXVPV» 7»VPVCf
(5.10}

2p4

(5 5)

provided. that integral (5.5) converges. In Appendix 3
we show that integral (5.5), defining the constant fp,
converges if K is expanded in a power series in zo to
any 6nite order of perturbation theory. This result is
derived from the same infrared properties of perturba-
tion theory as are used in order to show that E~(p,p')
is finite at p=0. Hence the limit (5.5) exists, and the
second term on the right-hand, side of Eq. (5.1) gives
a contribution (1/p2)(np/22r) fp to the high-p' behavior
of p20(p').

In order to evaluate the contribution of the third
and fifth terms of Kq. (5.1) to lim„I „p'0 (p'), we must
calculate

Ill Appendix 8 we sllow tllat llllllts (5.8) alid (5.9) exist
for E expanded to any 6nite order of perturbation
theory. Hence they define finite constants fl(ap) and.
f2(420). )These results follow almost as a direct con-
sequence of the convergence of integral (5.5) for fp(ap). $
Assuming that limit (5.7) exists, and using Eq. (5.8), we
Gnd that the m=0 limit of the homogeneous term
(1'» GE)2 pin Kq. (5.6=) is

hm (I'» GE)2 0——I"
(2~)' vp'

(v.vP'v- 7-vp'v. ) 1—
X — E»(p'p)

2P" vp'

2
1.-(P,P)=- I',(P-,P.) I.-.

Bk

(v»v pv- —v-v pv, )I fl 420 (5.11)



From Kqs. (5.6)-(5.9) and (5.11) we obtain for I" the
equation

Finally, the contribution of —Iee' Tr21'„Cit~61'„~
I I:=o

tO p'0 (p') iS (1/p')(ne/2m. )f&5I(p'/m'), Where
I"=fI+fI+I"fI,

p dp
f&'&(p'/ ') =—T 8(p')1.(p', p')8(p')

48 (2n-)4

x&-(p',p)8(p) p.-(p,p)8V». (5.»)

I"= (fI+f~)/I —fI (5.13)

Tlllls 111 tllC 111III't p ~be, OI' Cqlllvalelltly m ~ 0, Eq.
(5.6) for I'„(p,p) has the finite solution (5.7) with I"
given by Eq. (5.13).

%e can now express the contribution of the last three
tel'IIls 111 Eq. (5.1) to limy' ~ p Ir(p ) In terms of tile
constants fI(ne) and f2(ae). The term I'ep —Tr2
X(l'„„6 I'„)p=e yields the contribution (I/p')(ae/2Ir)
Xf&4I(p'/m') to p'o(p'), where f&@(p'/m') is the follow-

ing function of the ratio p'/m':

p4
f'"(p'/ ')= T I'—.-—(P,P) ~(p+l&)

48 M

x I'„(p,p)8(p ——,'s). (5.14)

ip2
hm f& II —

=bcmf&

&-
& m2 m~0 m2

d'p' 1 1
—,=,v.--;&- ( ',p)—p'

(2~)'vp' Yp' vp

Hence

hm f&'I(p'/m') = lim f&'&(p'/m, ')
pm ~00 m~0

p'p' (~,vpv. -~.vp~)
Tr

48

P 4vpv& vavpv+
»f2(~o)— I"

48 2p2

jvllvpva vuvp rp)
I=f.( o)I". (5.2O))2P'

Hence from (53), (5.5), (5.15), (5.18), and (5 2()) we
obtain

Silnilarly, the contribution of the term

—ie'Tr2(1 „GE„G„I'„)g p

to p'0(p') can be written as (I/p')(ne/2~) f&'I(p'/m'),
where

0!0

I; p -(P ) =——L-:+f.(-.)+f,(-.)
~00

27K

+n~+f.(-.))j (5.»)
Using Eq. (5.13) for I" we obtain our desired result

p4

f&'I(p'/m') =——Tr
48

d p
8(p )I'„(p,p')8(p'4-(p', p)

(2Ir)'

2
x 8(p+-:~)p.(p,p)8(p —:&)I =' (516)

Bk
Hence"

»m f«&(p'/m') = lim f&'&(p'/m')
p2 ~00 m~0

p' d'p' 1 1
v. ,lt- (p', p)(2-)'»' ~p'

(
V,VPV VVPVp)I—

5.17
2p4 )

Tr vuvpv va'PY~&—
=p'f~(~o)—

48 2p'

7 When I'„6 appears on the left, the sign of k is reversed com-

pared to the case in which GI'„appears on the right. Hence

(F„g ) 0= —6 F„.This accounts for the reversed positions of
the indices p and a in Kqs. (5.10} and (5.17).

Qo
lIm P'~(p') =——

I l+g( o)j
~o(} p'2- ' (5.22)

where g(ue) is defrned by Eq. (1.5). Formulas (1.6), (1.7),
and (1.8) for fI, f2, and f3 follow unmediately from
Eqs. (5.5), (5.8), and (5.9).

pie repeat that our result (5.22) depends upon the
analysis of the perturbation expansion of E . This is
carried out in Appendices A and B. %c use the fact
that K contains no photon self-energy insertions in
order to obtain thc results ln thcsc Appendices, and
hence the assumption D= 1/k' is essential for obtaining
Eq. (5.22).

Vl. DISCUSS&os ov ~SALMI YOvrC
CORRECTIONS TO D(k')

In this section me mill discuss the equation for the
f&nite part of D(k'), supposing that there exists a solu-
tion of the self-consistency requirement, Kq. (1.12).

8%e remember that the I'„, which appears on the right in
Kq. (5.19), equals (8/8k )I'„(p~,p )g, 0. Hence its value for
m=o is opposite to that given by Eq. (5.7) for (8/Bk )I'„
&&(p,p+) ~q 0, =0. (See Fig. 10.)
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/1
k'( —+—/,

&no uP
'

npD(k')

1

no =0hi h-k' l' t of Consequently, we see that even if%e 6rst note that we can obtain the high- imi o
p(O') from our result, Eq. (1.3). Using Eq. (2.3) we ex-

1press p(k') as an integral of the form

1709

(6.10)

p(k') = dp'p'~(p', k'), (6 1)

it follows that

&
~' k2~ is de6ned in terms of S and 1 from Eq.where o(p, ) is e n

inant contribu-(2.3). In perturbation theory the dominan
tion to p(k') for large k' arises from that region of
integration in (6.1) for which p'&)O'. Thus, since

lim p(p', k') = lim p(p', 0) = f(n p) /p', (6.2)
y ~co ~ IC fjX8$ y2

so O'D(ko) -e 1.
ose thatTo take the above into account let us suppose t at

as k2~~,

1 k2

7

npD(k') no
(6.ii)

where no is a finite constant to be determined by the
requirement of self-consistency. Replacing ep by up in
Eq. (6.9), we see that when h. '&)k'&)m',

lim p(k') =f(«)
Ip2-+oo

"dp' mg
+const. +0 —

~
. (6.3)

p2 ko] f(~ ) oo dp2
(k'~o/ ') ~ +—+0~ —

~, (6.12)

The region of integration where k p
'

q.k'~ 'in E . (6.1) gives
rise to the constant contribution to p,k, '

q
From Eq. (2.2) we see that for f(«) =0, the constant

Eq. (6.3) produces a D(k') which behaves like
const. /k' for large O'. For this reason let us formulate
our consistency requirement

~ ~

to allow for this con-
W 6rst note that the Schwinger-Dyson

e uations of the theory always involve D(k ) and Qp
'

the combination npD~ q, asi
relates D to p, namely,

So with

1 ~1 Cq~ k'( —+—[.
+(k') &no no&

(6.i4)

where C is the same function of k'/«as C is of «. If
we then take np to satisfy our eigenvalue equation

f(-.)=o, (6.13)

we find that

npD(k')
(6.4)

0!p Clp Ap
(6.15)

(6.16)
O.'p

n onl in the combination the assumed asymptotic behavior 6.11 is self-
it t I d d lt dfi0.'pD, that is, we may write

6.5& C(1/ .)p(k') -=.(k', u(q')),
p~(k" ~&)=p(k' ~A)—nd-where in pj's i np q

"O' D( ')) we exhibit a functional depen-
ence on D(q') In this case (6.4) becomes

apD(k')

1=k' —+p(k'; «D(q')) (6.6)

We have shown that with D(q')=1/q' and k ))m,

where r7oD= nqD defines D—so that

1 1 (1
=k'i —+pii(k', uoD) i

~oD (oT!o
(6.17)

co dpo m'
p(k') f( o) +C+o-

o' p' k'

or more precisely, with a cuto6 A2&)k2&)m2,

h2 dpo
p(k') ~ f(«) +C+01 —, ~

o'

(6.7)

(6.8)

relates D to pg . Then, as k' —+~,

f(~o) "dp' mP
pB j~o q(k' / ') = — +0 —

~

. (6.1g)
~p o' p

So when f(up)=0,

pz(k', ~o/q') —+ 0(m'/k')

In terms of the functional p de6ned above,

f(«) o' dP' C m'
p(k 'n/ o)~ +—+0 —. (6.9)«o' p &o

for k'»ns'. %e now see that O.p no longer plays any role
in our equations since (6.17) involves only the param-
eter np and the boundary condition that pg~0 as
k' —+.



J OHNSON, KVI I. LEY, AN D BAKE R

(6.19)

ko'u / o) ~0(mo/ko). However,We have shown that pii(k;up/q,
may vanis mu

'
h uch more slowly than nz

tions to the asymptotic behavior ofbecause of the corrections to e as
D glve11 Uy Pb If we assume that Pg k';o,
k'&)m' then we may write

e ma turn to the calcula-W'th these re6nements, we mayi
e as m totiction of the leading corrections to t e y p

behavior of D:
D(k') ~ 1/k' as k'&&~'.

we see that

8
pz(k'; uo/q') =

BC7p

Consequently,

gp, (ko)

gD(q') D-imp' q

~(f(o) "p
a-, k —, , q

D(k') —+ (1/k') [1—uppii(k';upD) j (6.20)
Jt(k', ')-—— — —f» q))k))m .

2'"

Aj

, p~(q')—.
0!p

pii(k')- ——g'(up)
2' (6.28)

hat is, for k &)m,

a k 'u pz, —p — p uD'. (6.21) olvin 6.28) we obtain~(k'u&)=p~(k" (uo/q') [1—up ~(q';uoD) j .g k, o, g(
pii(q') const. X(m'/q')- p'~"p'i pi 6.29

~ ~when ~p &' &1. The consistency of this solution requires
su ose that~(0. It is not unreasonable to suppthat g exp

rom 0 at ep= 0, and fallsthis will happen, since g starts rom a op ——,
to —-' at the self-consistent value of cup.

It(k' ') than we can determine rom . is r
Let us intro uce e imd th dimensionless function k(x):

P

d th functional to first order in p~ so thatWewillexpan t e un

Spic(k')
pii(k'; upD) pii(k'; up/q')+

0,'p

X ——pii(q') d4q. (6.22)

ute the In this case (6.24) becomesm'. Now, we assume that to compute t e n

use (6.20) in the functional dependence o pii on
2 2

p.(k')=-o' It(k, q)
—p.(q')(d'q),
q

(6.24)

where

6.22~ has been written in a Kuc i ean metric
(6.22) is of order bio'/k'.d k. The first term infor q and

econd term vanishes moreWe shall assume that the secon
slowly than t e rs,s h 6 t thatis, weassumethat

p„(kp;upD)))pii(k'uo/q') 0(m'/k') (6.23

k »yg an w end h the self-consistency requ~re-when
ment f(up)=0 is met. n is

neous equation asymp totically,

&(k' ')=(1/q')k(k/q)X1/-, q&k
= (q'/k')k(q'/k') X1/~', k&q,

same f

pg(k') = const. X (m'/k')',

but with ~ obtaine romd f the solution of the equation

where

k(0) = —g'(up)/2m . 6.30)

E(k' ') is valid for k'))m' and q'))m'.
he validity of (6.30) under such conditions follows

the ' bD ( ') is the Bethe-Salpeterthe fact that bx„„k p q
~ ~

of li ht b light and is symmetrickernel for scattering o ig y i
ink an q. n id . I th's case the solution to 6. as

olm:

Spy(k'; uoD)
It(k,q) =——— (6.25)

1=up'X dx k(x)(x '+'+x' '). (6.32)

that (6.24 can be satisfied is

g'o. '»1. Therefore the only part o eorder 1/clp
»k. Now if we recall thatneeded is the form when q» . ow i (6.33)

Since k 0) is finite, (6.32) requires that o —+ 0, asuo' —+ 0.
Thus forup ~ 0 (6.32) gives us the condition

k(0)
1 =uo' ——+0(1)

f( o) "dp'

b
'

ti6ed to every order of the expan-
sion of the functional p as a pow

Therefore, when np'« j.,

=="k(0)=-="[g'(=.)/2-&,

w ic repro
'

h duces our approximation n discussed above.
o, can beWe also n afi d th t the fundamental function g(up)
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determined from the Bethe-Salpeter kernel for the
scattering of light by light.

In order to determine the arbitrary constant in the
solution (6.31), we must of course join the asymptotic
solution to the solution of the equations for D in the
nonasymptotic region. It is at least plausible that this
can be done for any value of the constant in Kq. (6.31)
if we appropriately adjust the renormalized charge u
which characterizes the theory in the nonasymptotic
region. That is, the free parameter in the theory, n,
may remain. In this case, the equation a,=4r/Zs(a)
would be an identity in o, .

We may remark here that some years ago Gell-Mann
and Low' reached a similar conclusion about the theory
using what is now called the "renormalization group. "
We shall discuss the relation between their results and
ours in a later publication.

VII. CONCLUSION

We have found that unrenormalized quantum elec-
trodynamics may be a consistent and finite theory pro-
vided that the unrenormalized charge ns (defined in
Sec. VI) obeys an eigenvalue equation g(us)+zs=0,
which must of course have a real, positive solution. "
We have not been able to establish that such a root of
the equation exists. An accurate calculation of g(ns),
the fundamental function in quantum electrodynamics.
remains to be done.
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APPENDIX A. CONVERGENCE OF X'(OiP')

We will show" "that K l'&"+'&& (0,p') is finite provided
I'„&'"& is 6nite. The contribution of a given Feynman
diagram to X~&'&"+'i'(O,p') can be written as

n —d&0, (A2)

where n(d) is the mimber of powers of qi in the numera-
tor (denominator) of those factors in the integrand of
(A1) which do not contain p. In order that integral (A1)
converge absolutely it is su6icient that all subintegrals
of (A1) obtained by fixing any subset qi, qiI of the
variables qi also converge superficially. Before we ex-
amine these subintegrals we will first show that condi-
tion (A2) is satisfied for all E diagrams except those
containing 3-photon intermediate states.

Let us calculate n —d for a given diagram and a given
choice of integration variables. The variable p' will
follow a certain path I. which in general contains both
internal boson and internal fermion lines. Let f(b) be the
number of fermion (boson) lines which connect I to the

form a rotation of the contour of integration in (A1) so
that all integrals d'qi, d'q2 d'q„refer to Euclidean
four-vectors. This rotation is permitted since the ex-
ternal momenta are chosen to be spacelike vectors
throughout. 5

We know that the only ultraviolet divergences in the
perturbation expansion for E arise from vertex and
self-energy insertions. Since by definition E ~'("+"& con-
tains no self-energy insertions and since by assumption
the vertex insertion I'„&'"' is 6nite, the integrals for
E ~'&"+'&~ converge in the ultraviolet region. However,
since E does not contain the electron mass, all the
denominators in f„(q, q„p) which do not contain p
vanish if some or all of the integration variables q;
vanish. Such vanishing denominators could give rise
to infrared divergences. We now seek the precise condi-
tions for the occurrence of this kind of divergence in a
given integral.

For a given diagram the integrand f (qi q„,p')
depends upon the choice of the integration variables
qi q . We will consider all the functions f„whi hccor-
respond to the various possible choices of the q; in a
particular diagram. Then for a given integrand f we
need only consider the possibility that the non-p-
containing factors of f„vanis h. In order that the re-
sulting integral (A1) converge (superficially) in the
infrared region, it is necessary that

E'&'&"+'&'(O,p') = d4qi d4q f„(qi q„,p'), (A1) P

where the integrand f„(qi,qs q„p') is a product of
numerators and denominators. We need only keep track
of the correct powers of p' and the integration variables
q; in order to discuss the convergence of (A1). We per- Fro. 22. Decomposition of graph

for E~(0 p').

' For a short summary and discussion of the results of this
paper, see K. Johnson, R. Willey, and M. Baker, Zh. Eksperim. i
Teor. Fiz. 52 318 (1967) LEnglish transl. : Soviet Phys. —JETP
25, 205 (1967I].

"The ideas behind the proofs in Appendices A and B are due
to J.D. Bjorken. J.D. Bjorken (private communication).
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Frc. 12. A reduced diagram
for E (0P').

P

I

+b lines

while clearly

(n—d)f+t = f 2b+4(f—+b—1), —(A4)

since there are f+b 1 independe—nt integrations over
the connecting lines. Adding (A3) and (A4) we find

(n d)rr' (n —d)», ==1+,'f+—b 4. -(A5)—

Result (A5) is valid even if X is a disconnected dia-

gram such as that depicted in Fig. 13. D iagram X'
of Fig. 13 has 4 fewer external fermion lines than dia-
gram X. On the other hand, the corresponding reduced
diagram Eg of Fig. 13 has 2 fewer integrations over
internal connecting boson lines. These facts add terms
+(4)(—', ) and —(8—2), respectively, to (A3) and (A4),
so that the sum (A5) remains unchanged.

We note that Eq. (A5) for (n —d)» depends upon the
number f(b) of fermions (bosons) which appear in inter-
mediate states. This dependence upon the internal

f +b lines f + b-2 lines

the

FIG. 13. An example of a reduced diagram with degenerate X.

remaining part of the diagram, which we denote by X.
This decomposition is depicted in Fig. 11.By dehnition,
the value of n —d refers to the number of powers of the
integration variables in that part of the integrand which
corresponds to all lines except those forming the line L
Consider the reduced diagram Eg depicted in Fig. 12
obtained from the E diagram of Fig. 11 by contracting
the line I to a point. The value of e—d for the E
diagram of Fig. 11 is then equal to the value of n—d
for the E~ diagram of Fig. 12, where n and d refer to the
powers of the integration variables in the complete
integrand. The value of (n —d)x„ is the sum of the
contribution (n —d)» of the internal lines in X and the
contribution (n —d)f+' of the f+b connecting lines. X
is a diagram with f+2 external fermion lines and b

external boson lines. Hence

(n—d) » =4—'g(f+2) —b,

structure of the diagram is to be contrasted with the
structure-independent value —2 for (n —d)». From
(A5) we thus conclude that if a given diagram contains
an intermediate state in which

—,'f+b —4(0, (A6)

then that diagram diverges in the infrared region.
Equation (A6) is satisfied if f=0, b=3. Thus dia-

grams containing 3-photon intermediate states possess
infrared divergences. However, as we mentioned in
Sec. II, such diagrams yield non-gauge-invariant re-
sults and the use of a properly gauge-invariant current
yields terms which cancel these divergences. We now
show that E contains no other diagrams for which
(A6) is satisfied. We know that f has to be even. This
means f=0 or 2.

Flc. 14. A reduced diagram
for E (O,p') when some of the
integration variables are held
Qxed.

f+b lines
Wp

fi+ b, lines

fz+ b lines

If f=0, then Eq. (A6) is satisfied if b=0, 1, 2, or 3.

(a) The case b=0 does not occur since E does not
contain disconnected diagrams.

(b) The case b=1 does not occur since K does not
contain 1-photon annihilation diagrams.

(c) The case b=2 does not occur, because such dia-
grams do not contribute to the vertex by virtue of
Furry's theorem.

(d) The case b =3 was just discussed.

If f=2, then Eq. (A6) is satisfied if b=0 This case.
also does not occur since E' does not contain any
2-particle electron-positron intermediate state.

We thus conclude that E possesses no over-all in-
frared divergence. We now fix a certain subset q;) q f
of the variables q; and investigate the infrared properties
of the resulting subintegral of (A1) over the remaining
q;. In order that this subintegral converge in the in-
frared region it is necessary that

(n —d) „,...„,)0, (A7)

where (n d) „,...„z refers to the —powers of the remain-
ing q; in those factors of f„which do not contain
q;i q;f of p'. Let us suppose that the 6xed subset
q;&

- .q;& or variables form k independent loops I;
(i=1,2, ,k) in our diagram. To be considered in-
dependent a loop I. must not overlap the line 1. con-
taining the variable p. Then (n —d) „,...„requals (n —d)
for the reduced diagram Eg~;,...„f.This is the diagram
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FIG. 16. Basic vertex diagram.

FIG. 15. An example of a reduced diagram with degenerate XI,.

(depicted in Fig. 14) in which the line L and the loops
L; are contracted to a point. Let f;(b;) denote the num-

ber of fermion (boson) lines which connect the loop L;
to the remaining part of the diagram X~. Then, follow-

ing the same reasoning that led to Eq. (AS) we obtain
the result

(+ d)equi "aiy=1+2f+b 4+2 (2fi+bi 4) ~ (A8)

Equation (A8), like Eq. (AS), is valid even if Xi is a
disconnected diagram such as depicted in Fig. 15.

We have already shown that 23 f+b 4)0 for—all
relevant diagrams. We will now show that E contains
no diagrams for which

32f~+b, —4(0— (A9)

APPENDIX B. CONVERGENCE OF INTEGRALS
(5.8), (5.9), AND (5.5)

We shall show that the integrals (5.8), (5.9), and
(5.5), defining constants fi, f2, and f3, converge when
E is expanded to any finite order of perturbation
theory. In order to obtain these integrals we must dif-
ferentiate with respect to k once or twice various parts
of the vertex integral depicted by the Feynman dia-
gram of Fig. 16. After differentiation we set k=o and

Equation (A9) is satisfied if f;=0 and b;=0, 1, 2, or 3
or if f;=2 and b;=0.

(a) The case f;=b;=0 does not occur since E' does
not contain disconnected diagrams.

(b) The case f;=0, b; odd, does not occur because
of Furry's theorem.

(c) The case f;=0, b;=2, does not occur because K'
does not contain photon self-energy insertions.

(d) The case b; =0, f,= 2, does not occur because K
does not contain electron self-energy insertions.

We thus conclude that Eq. (A9) is never satis6ed and
hence that Eq. (A7) is satis6ed for all choices of the
fixed variables q;i . q;f. Thus integral (A1) for E~~'&"+'&~

converges absolutely (in the infrared region).

(ii d)q'i q'y I+$f+b 4++ (2f +b 4)+2 (B1')'

where f, b, f;, and b; are the number of connecting lines

in Fig. 17. Equation (B1) is reduced by 1 when we dif-

ferentiate a propagator corresponding to one of the
internal lines of the reduced diagram in Fig. 17. Hence
from (B1) we obtain the following expressions for

(n—d)'„,...„~ and (n —d)"~;,...„~ corresponding to the
once and twice differentiated integrals (5.8), (5.9),

Fzc. 17. Reduced vertex
diagram.

b lines

P
b, lines

bylines

consider all possible choices of internal variables {q,}
for the resulting integrals. Thus, as in the case of (A1),
it is suflicient to investigate the convergence of these
integrals in the infrared region where some or all of the
integration variables q; vanish.

The diagram of Fig. 16 contains an intermediate state
consisting of a single electron-positron pair. If this pair
of propagators were difr'erentiated twice, the resulting
integral J'd'p'/p"E(p', p) would clearly diverge for
small p'. Of course none of the integrals (5.8), (5.9), or
(5.5) is obtained by twice differentiating the electron-
positron pair in Fig. 16. We will now show that dif-
ferentiation of any other part of the integral of Fig. 16
yields convergent integrals.

We proceed precisely as in Appendix A. I et us fix
a certain subset qi, .qif of variables and calculate

(n d) „,...„f—for the diagram depicted in Fig. 16 with
k=0. As before, (n—d)„,...„, is equal to the value
of (n —d) for the reduced diagram in which all the in-

ternal lines in Fig. 16 containing p or the 6xed. variables

qi, ~ qif, are contracted to a point. This reduced dia-

gram is depicted as Fig. 17. The reduced diagram of
Fig. 17 diEers from the reduced diagram of Fig. 14 in
that a pair of external zero-momentum electron lines

has been replaced by an external zero-momentum
photon line. This simply means that in (n d) „,...„ia-
term (—3) has been replaced by (—1). This difference
of +2 is just what is needed in order to differentiate
twice the integral depicted in Fig. 16 without encounter-

ing dBBculties. That is, adding 2 to the value of

(n —d) „,...~;i given by Eq. (A8), we immediately obtain
the value of (n—d)„,...„~ for the desired integral of

Fig. 16:
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Fn. 18. Reduced vertex diagram
with f=2, b=0. FIG. 21. Nondegenerate f=0,

b=-3, reduced diagram.

and (5.S):

(n d)'„,—„,&1+,'f+b -4++—(',f,+b-; 4)+—1,

(82)

( d)"—. "' 1+'f+b -4+—2 (lf'+b' 4) —( )

or

then

2f+b 4(0—,
—',f,+b,—4(0,

(n —d) "c'I.-a', & o1

(84)

(85)

(86)

and integral (5.5) converges in the infrared region. The

b, lines

b& lines

Flu. 19. Reduced vertex diagram
with f=0, b=3.

requirement

(n —d)'„,...„,&0, (87)

which guarantees the convergence of integrals (5.8)
and (5.9), is met if there are no diagrams for which

(BS) is satisfied or for which

—.,'f+b—4( —1.
The arguments following Eq. (A9) can be applied

without modification to the diagram of Fig. 17 in order
to show that X~ contains no diagrams for which (85)
is satis6ed. In considering (84) or (88), the arginnents
following (A6) can be repeated with the following
trivial quali6cations.

(a) Since the diagram of Fig. 16 contains one elec-

tron-positron intermediate state, the reduced diagram
of Fig. 17 can take on the form depicted in Fig. 18 for
which (n —d)„,...„~=2. However, since all the dif-
ferentiated propagators in integral (5.5) are contracted

Equations (82) and (83) become equalities when the
differentiated propagators are not contracted to a point
ln Fig. 17.

Thus if there are no diagrams for which

to a point, (n,—d)" is also equal to 2. Besides this trivial
diagram of Fig. 18, there are no other reduced diagrams
for which f= 2 and b= 0.

(b) The case b=3, f=0, can occur for diagrams
which are not true 3-photon intermediate states —for
example, when X~ is the disconnected diagram giving
rise to the reduced diagram depicted in Fig. 19. In
general such a diagram contains a photon self-energy
insertion and hence does not contribute to E . However,
when f,=b;=0-, the degenerate reduced diagram of
Fig. 20 does not contain a photon self-energy insertion.
LIt is trivial to show that our general formula (81) for
(n d)„,...„—

~ also applies to such a degenerate case.]
If the denominator of the internal photon line in the

diagram of Fig. 20 were differentia, ted twice, (n d)"—
would equal zero, thus giving rise to an infrared diver-
gence. However, in all diagrams for K not containing
multiphoton intermediate states, it is always possible
to choose the integration variables so that no photon
line carries the external photon momentum k. Thus this
possible way of obtaining (n —d)"=0 can be realized
only by photon-annihilation diagrams. However, in
such diagrams, there always appears an undifferentiated
multiphoton scattering amplitude with one zero-
momentum external photon. Hence by gauge invariance
the contribution of such a diagram to f3 must vanish.

(c) Finally we consider nondegenerate reduced. dia-
grams such as that depicted in Fig. 21 for which 6=3,
f=0 But again .from gauge invariance it follows that
the contribution of such diagrams to f2 and f3 must
vanish.

I'.(p-,p+) =v~I', ( p , p+)v5—--
Also C invariance implies

—I"„(—p~, —p ) = C—'I'„(p,p+)C,

(C2)

(C3)

APPENDIX C. DERIVATION OF Zq. (S.V)

When nz is set equal to zero, the only terms which con-
tribute to I',(p,p+) are those containing an odd num-
ber of y matrices. Hence

I'. (p ,p+) =F.~(p, k)v~-+~'.~'(p, k)v.v. , (Cl)-
where I'„i(p,k) is a tensor function of the vectors p
and k and F„&,' is a pseudotensor function of p and k.
Now CI'T invariance implies

Fzo. 20. A degenerate case of Fig. 19
with f=0, b=3, f;=b;=0. C 'vC= —v'

C 'yC=y~ (C4)

where I'„~ represents the transposed matrix, and the
charge-conjugation matrix C satis6es
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where y~~= —y, , y 2= —I. Then I-'T invariance gives
us the condltlon

If we evalQate the trace of the /gal contll4utlon to
(D2), we obtain

{CS)1.(p.,p-) = v;-C 'I.-'(p-,p,)Cv; ~o "&p" p p'

2~ 6 P" (P P')—' ~
(D3)

Using Eqs. (Ci), (C4), and. (CS) we immediately ob-
tain the conditions

P„l(p,—k) =P„l(p,k),

P,).'(p, k) =—P,&,
'—(p, +k) (C7)

(D4)
Hence from (Cl), (C6), and (C7), we obtain

Tllc allgulal' avcl'agc (P 'P /(P —P ) )&~ ls caslly calllcd
(C6) out with the result

&0 P gab
(P—P') (P—P')~

, . (»)
2 2

8 8
r„. =- I'„'(p,p+) ~l=o= P.x'(p, k) ~l OVn5. (C8)

8k 8k

Now (8/Bk )P„l'(P,k)
~

1, 0 is a pseudotensor function of
the vector p. The only such function is of the form
const. )& e „&,„p„/p'. Hence

vpvpv vv pv I i—1Ipn ~ &apl~paVxV5=const ~. (C9)j
APPENDIX D. LOWEST-ORDER

CALCULATION OF fl

In lovrest-order perturbation theory

E&'l(p, p', k)

p& p if p& p',
=P' lf P'&P,

p, = p' if p) p'
=p if p)p.

From (D3) and (D4) we obtain

fl"'= ao/2n

Carrying out the trace of the (p—p').{p—p'), /
(P—P')' contribution to (D2), we 6nd

(P P').(P P')— —
o "dp"

fl dllC to
(p—p')' 2~ 0 p"

(
P P'

) 2(p'p" —(p p')')

Since Kl'& does not depend upon k, f2= f~= 0; and from
Eq. (1.6)

d'P' (v-vP'v, v.vp'v-)—
TI'

48 (2m-)' 2p/4

(v.vpv- —v-vpv. )
Xy~ Qb

(P P')'—

(
P"P' (P P')' —3P"P'

(p—p')' 4p '
Hence from (D4), (D6), and (D7) we find that

t' (P—P') (P—P') ~

fl~ due to — =0.
(p-p)

(D7)

(D8)

(p —p'). (p—P') ~

(X g.s— — (D2)
(P P')'—The fact that we can obtain the correct value of f,

from a calculation in the g & gauge is just an accident
of the lowest-order calculation.


