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The commutators of the charge with the current density of vector and axial-vector currents are derived,
and restrictions are placed on the Schwinger terms present in the charge-density—current-density equal-time
commutators. In order to prove these results, the commutator of the time component of a current with the
energy density is derived. The following assumptions are made: (1) Equal-time commutation relations
between time components of vector and axial-vector currents satisfy the local SU(2), SU(2)XSU (2), or
SU3)XSU(3) algebra; (2) the transformation properties of the divergence of the axial current are as-
sumed to be known. The second assumption is shown to be necessary as well as sufficient. It is shown that
the Schwinger terms involve at most one derivative of a & function and have definite symmetry properties.
Symmetry properties frequently conjectured for the Schwinger terms are examined in the context of the
present investigation, and the consequences of these conjectures are explored. The current-density—current-
density equal-time commutation is also studied with the present techniques, and it is found that only very
mild restrictions can be imposed in a model-independent fashion.

I INTRODUCTION

IT has been proposed by Gell-Mann! that the time
components of the vector and axial-vector currents
(Ve and A4,° respectively), obey the equal-time com-
mutation relations (ETCR) of SU(3)XSU(3):

[Vor(x,0),Voi(y,0) J=ifasc Vo' (x,0)3(x—y), (1a)
[Vo"'(X,lf),A Ob(y)t)] = ifabcA o‘(x,t)&(x~— y) ’ (1 b)
[A oa(X,l),A Ob(y’t)] = ifabc Vo"(X,t)(S(X—' y) . (1 C)

Here fab. are the usual SU(3) structure constants.
Many authors have proposed ETCR of the time com-
ponents with the space components

[Vo“(x,t), Vi b(Yyt)] = ifabc Vf(x,t)&(x—— Y)

+SVV,iab(X:Y7t) ) (2&)
[Vo“(X,t),A ib(Y:t):l = ifabcA ,-C(x,t)a(x— y)

+Svat(xy,), (2b)
[A o“(X,l), V,'b()’;t):l = ifabcA ;‘(X,t)a(X“‘ Y)

+SA V,‘iab(x;YJt) ) (2C)
[A oa(X,If),A ib(Y;t):l= ’L.fach,v"(X,t)a(X— Y)

+Saa,:0%xy,0).  (2d)

The S;#¥s are the notorious Schwinger terms (ST),
involving gradients of 6 functions, which upon inte-
gration over x vanish, and which must be present in the
VV and A4 ETCR.%?3 Adler and Callan, on the basis
of explicit calculation of the commutators for the o
model,* conjectured that

Syvi®?=Svr,:%%544,:°°=544,:*%S4v,*®

+Sva,i%*=Sav,*+Sva it
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Such symmetry properties of the ST’s have been
used widely to justify their neglect in appropriate
situations.

In this paper, we utilize the fact that the com-
mutator of the energy density with the time component
of a vector or axial-vector current is given in terms of
the space components of the current and its divergence.
This enables us, using the Jacobi identity,’ to derive the
ETCR of the space-time components (2) from the
ETCR of the time-time components (1), which we
assume to hold. We also derive restriction on the ST,
proving that they can involve at most only one deriva-
tive of a & function. Finally we discuss various symmetry
properties of the ST, and show under what conditions
the symmetries (3) conjectured by Adler and Callan
can hold.

In Sec. II, we establish the ETCR of the energy
density with the time component of a vector current or
axial-vector current. In Sec. III, we derive in detail
the time-space ETCR for the case of the isotopic-spin
currents as well as the general form of the ST, and such
symmetries of the ST which are model independent.
Then we extend the results to SU(2)XSU(2) and to
SU(3)XSU(3), where the axial-vector currents are not
conserved. Section IV concerns itself with the various
further conjectures that can be made concerning the
symmetries of the ST, and the consequences of these
assumptions. Finally, in Sec. V, we examine what our
methods have to say about the ETCR of the space
components of current densities.

5 It has been shown recently that unless one is careful about the
interchange of limiting procedures implicit in the Jacobi identity,
contradictions may arise. A contradiction between canonical
commutation relations and the Jacobi identity has been found in
the case of 3 space components of quark currents, by F. Bucalla,
G. Veneziano, R. Gatto, and S. Okubo [Phys. Rev. 149, 1268
(1966)7]. It is, however, unlikely that this problem arises unless
one is dealing with more than one space component. In our appli-
cation of the Jacobi identities, we use at most one space com-
ponent, and we shall assume that no problem arises in the use of
these identities.

1688
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II. DERIVATION OF [ Hy(x,t),Jo(y,t)]

In the present section, we derive the ETCR of the
time component of a vector or axial-vector current J,
with the energy density Hop. In simple field-theoretic
models, direct application of the canonical-commuta-
tion relations leads to the result

CHoo(x,8),7 o(y,t) ]= 3T 1(x,£) 3:6(x—y)
- D(x,t)é(x— Y) ) (4)

where D(x,t) is the (possibly vanishing) divergence of
the current
D(x,t)=19,J4(x,t). (5)

(We employ the summation convention with repeated
indices.) This commutator, upon integration over x, as
well as x and y, gives the following commutation rela-
tions with the generator of time translations, viz.,
with the Hamiltonian H= f'd% H(x,f), and with the
generator of time rotations M= f d3x({H"— x*H).

[[I;]O(y:t):I: _100]0(3’115) ’ (63')
(M, To(y,t) ]= —itd:J o+ix'deS o+iJ s, (6b)
[H:/dayjﬁ(y7l)]= ~/D(y,t)d3y' (6¢)

These commutators are of course required by general
principles. Further ST could be present in (4), which
integrate to zero in such a way such that (6) still holds.
However, no examples of ST in ETCR of time-time
components of currents are known, and it is usually
assumed that ST arise only in ETCR of space-time
components. Thus (4) may be expected to hold as
written.

It is also possible to justify (4) in a quite rigorous
fashion. This proof follows that given by Schwinger®
in one of his derivations of the [Jo,Jo] and [Hoo,H o]
ETCR. According to Schwinger, ETCR result from the
action principle, which implies that

/ a3 A (x,1),6L(x",8) ]=4[ 008’ A (x)—&'B(x)]. (7)

Here £ is the Lagrangian density and 4 is any operator
satisfying
o4 (x)=B(x).

8 signifies a total variation of the Lagrangian with
respect to arbitrary parameters, while &’ is a variation
of the operators 4 and B arising from their explicit
dependence on these parameters. We vary £ with
respect to a prescribed gravitational field, which is
governed by metric g,.(v) satisfying — goo()#1, g0:=0,
8= 0ij.
sL(x',t)

—= 3 oo(x',1)3*(x' —y) . 8)

8g00()
¢ J. Schwinger Phys. Rev. 130, 406 (1963).
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For A we choose (—g)1/2J,, where
0, (=g T¥]=(—¢'"D,
g=det{gu} = goo.
Hence B is given by
B=—03.L(— goo)"*J*]—4(—go0)'*D,
=—J0(— goo)'/*— (— goo)"*0:J *—1i(—goo)*D.  (10)
A can depend on the varying parameter goo only if B
on the time derivative of goo, since 904 = B. We make the
assumption that B does not depend on the time deriva-

tive of goo, hence, 8’4 =0. For ¢’B we have (we assume
that J? and D do not depend explicitly on goo).

©)

IB 4( A — LYo
b (x)= i .~< 84 (x—7y) >_ 84 (x—1y) 0.7
8g0o(y) 2(—goo(¥)2/ 2(—goo(y)) V2

64 —_—

) by, an

z2(— goo(y))1/?

Therefore from (7) and (8) we have, in the limit of zero
external field, goo=—1, the desired result [Eq. (4)].
These arguments obviously apply to each member of a
triplet or octet of currents. Hence the ETCR which
form the basis of this paper are, in momentum space

[Hoo(a),Ve*(p)]=p:V(p+q),
[Hoo(q),40%(p)]= p:id *(p+q)— D%p+q),

where our Fourier
O(p)= S &3x e~ 7*0(x,1).

(12)

transforms are defined by

III. DERIVATION OF THE SPACE-TIME
LOCAL COMMUTATORS

A. SU(2), Derivation of [V, (x,t) Vb (y,f)]

We shall assume that the time components of the
isotopic-spin currents satisfy a local SU(2) algebra,
i.e., in momentum space

[Ve(0),Vo*(@) ]=1€as. Vo (p+a),
By evaluating the Jacobi identity
[Hoo(p),L Vo*(q), Vo> (k) JIH-[Vo*(k),[Hoo(p), Vox(@)]]

+ [Voa(q),[Vob(k),Hoo(p)]]=0, (14’)

we will learn about the ETCR of the space and time
components. The above identity gives

kL Vo), Vi¥(p+k) ]— L Vo¥(k),V:(p+q)]
=i(qi+ki)€achi‘(p+q+k)' (15)

Setting q=0 (or k=0), we derive the commutator of
V;¢(p) with the isotopic charge Vo%(0)= fd3x Voo(x,t).

LVo*(0),V¥(p) 1=riearc Vs (p). (16)

This expresses the fact that V,;® transforms as an iso-
vector. The local ETCR may be written (without loss

a,b,c=1,2,3. (13)
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of generality) as

[Vo¥(@),V:5(p) ]=ieaseV “(p+a)+Svv.*(a,p). (17)

This serves to define Syy %%, which will satisfy by virtue
of (15), the equation

ksSyy,i¢b(q, p+k)=QiSVV.iba(k, p+4q). (18)

Clearly, Syv,%(q,p) vanishes as ¢ — 0, which reflects
the fact that (16) holds.

Equation (18) places certain model-independent
restrictions on the ST Syv,:%%. To extract these, dif-
ferentiate (18) with respect to k; and then set £=0.
Defining

Ryy % (p+q) =;];SVV,¢“b(k, p+q) k0, (19a)
we have from (18)
Svv.;*%(q,p)=g:Rvv.;*"(p+a),
Syy,i%(0,p)=0.
Substituting (19b) into 18 yields
gikiRvv i (p+a+k) =gk Ryv,i;*(p+q+k) . (19¢)
Differentiating this with respect to ¢; and k; and then
setting g=0=k, gives finally
Ryv.:j*%p)=Ryv,;:*D). (19d)

Thus the local ETCR of V¢* with Ho and with V,®
imply that the ETCR of V¢ and V;% is (in position
space)

LV (x,0),Vi*(y,0) 1= deane Vs*(%,1)8(x—y)

(19b)

—iRyy,;i*¥(y,1)9;0(x—y), (20a)
and the following symmetry holds:
Ryv,ii*%(x)=Rvv,;*(x). (20b)

Equations (20) exhibit our first result: The derivation
of the [V, V;¥] ETCR, the fact that the ST involves
at most one derivative of a § function, and model-
independent symmetry restrictions on the ST.

B. SU(2)X SU(2), Derivation of [ Vy*(x,t),4.*(y,t)],
[AOG(x)t),Vib(Y)t)]) and [AOE(th))Aib(Y)t)]

We assume the SU(2)X.SU(2) algebra for the time
components of the vector and axial-vector charge
densities
[Ko*(p),Lo*(q) 1= ieare(K - L)o*(p+1q) ,

a b,¢c=1,2,3, (2la)

where K and L represent V or 4, with the multipli-
cation law

A-A=V, V-V=V, A-V=V-A=4. (21b)

The axial-vector current is not conserved; its divergence
will be defined as

(984 ,9(x) = De(x). (22)

AND R.
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Because of this lack of conservation, we shall have to
make additional assumptions in order to derive even
the once integrated space-time ETCR. It will be shown
that these additional assumptions are necessary as well
as sufficient.

We write (without loss of generality)

[Ko%(p),L:%(q) ]=i€ave(K - L)*(p+0q)
+Skz,:%p,q). (23)
The Jacobi identity for Heo(p), Vo“(q), and 4,%k)
leads to
ksSva,2%q, p+k)—g:Sav.>k, p+q)
= [Voa((D;Db(p_,_ k)]_ieabch(p_l_ q+ k) .
Setting k=0, we derive the local ETCR
LVo(@),D%(p) J=ti€arcD(p+ @)+ ¢:Svp, % (p+q), (252)
where Syp % is given, according to (24), by
Svp,i®(p)=—Sav,:**0,p). (25b)

Equation (25a), when q=0, gives the not unexpected
result that D¥(p) transforms as an isovector. Combining
(25) with (24) yields

kiSva.i*¥(g, p+K)—giSav.i*(k, p+aq)
=—¢:Sav,*0, p+q+k). (26)
This condition on the ST replaces the simpler condition
of SU(2), Eq. (18).
To exploit this condition, we proceed as before. Dif-
ferentiate by k;, set k=0 and, define

(24)

i)
Rer,i**(p+x) =*—/*SLK,¢"“(k, P+q) k=0,
ki

(27a)
d
Qxr,i2%(p)= E‘—SLK,ib“(O,P) .

J
We then have from (26a)

Sva,i*(q,p)=¢iRv4.i;*(P+4)—¢:Rva,:;*(p+q) . (27b)
Next we differentiate (26) by ¢; and set q=0, yielding

Sav,i*k,p)=giRav,;**(p+a)+Sav %0, p+4q). (27c)

The results (27b) and (27c) are to be compared to
(19b). Finally, we obtain the symmetries of Ryy,;0.
Differentiate (27b) or (27c¢) by ¢; and set q=0. The
result is

Rav,2%(p)=Ry4,i;*(p)— Rva,i;*(p),

which can be compared to the previous (20b).

It is easy to verify that (26) places no further re-
strictions on the form of the ST. We note that in general,
the present results (26), (27b), (27¢c), and (27d) differ
from the corresponding previous results (18), (19b),
and (20b), by an additional term which is present if
there is a ST in the [V4D¥] ETCR.

(27d)
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Equation (27b) shows that Sy 4,;4(0,p) = 0. Hence the
once integrated SU(2) X.SU(2) ETCR holds for V¢ and
A% It further follows from (27b) that the local SU(2)
XSU(2) ETCR of V¢* and 4,° contains a ST, with at
most one derivative of the & function. No further as-
sumptions are necessary to arrive at this result, which
shows that (2b) holds for SU(2) XSU(2). The same is
not true for 4y and Vb The once integrated ETCR
between these two operators is of the SU(2)XSU(2)
form if and only if S4v,:%%(0,p)=0. Thus it is seen from
(25b) that a necessary and sufficient condition for the
validity of (2c) is that the ETCR between V,* and D?
contain no ST. We therefore make this assumption.
Consequently, S4v,;2%(0,p) and Ry 4,:;%®(p) vanish, and
the ST present in the local [4,%V;*] ETCR, contains
at most one derivative of the 6 functions.

Next, we examine the [40%,4,*] ETCR. The Jacobi
identity for Hoo(p), 40%(q), 40*(k) yields

kiSa4,:2%(q, p+k)—qsSaa,:*k, p+q)
=[44%(q),D¥p+k)1—[4:*(k),D(p+q)]. (28)

Setting k and q to zero and introducing ¢°® by the

definition
[40%(0),D*(p) ]=0o"*(p), (29a)
we have by virtue of (28)
o*¥(p)=0®(p). (29b)

The local ETCR between 4o* and D? may, therefore,
be taken to be of the form

[40%(q),D¥p)]=0**(p+q)+S4p°*(q,p), (30a)

Sap°¥(0,p)=0. (30b)
Therefore combining (28) with (30) gives
kiSa4,:%q, p+k)—qsSa4,:2%k, p+9q)

=S40°(q, p+k)—Sap’(k, p+q), (31a)
. Sap¥(q,p)=—¢:S44,:%0, p+q). (31b)

Reinserting (31b) into (31a) yields an equation which
implies, by an analysis similar to the previous, that

S44,7°%q,p)=qiRa4,;;*°(p+q)+S44,;2°(0, p+q), (32a)
Ra4,i7°*(p)=Raa,;;° D). (32b)

Since the once integrated [4¢%4:*] ETCR is of the
SU@2)XSU(2) form if and only if S44,;%%(0,p)=0,
according to (31b), a necessary and sufficient condition
for (2d) to hold within SU(2)XSU(2) is that no ST
be present in the [4,%,D%] ETCR. We now make this
assumption. We have thus shown that

I:Koa(x3t)7Lib(y’t)] = ieabv(K * L)ic(x>t)6(x— y)
_iRKL.jiab(yat)aia(x_ Y))a; b= 1: 27 3 )

Rir,:°%(%) = Rrx ;:*(x).

(33a)
(33b)

LOCAL CURRENT COMMUTATORS
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Note that the ST may also be written in the form

a d
—(Rir,;i**(y,0)6(x—y))=—
dx? dx*

X (Rxr,;i8(x,1)8(x—Y)).

Hence the space-time current ETCR is always given by
a term which is the simple quark commutator plus a
ST which can be written as a total three-divergence.

(33¢)

C. Extension to SU3)XSU(3)

It is clear that for the case of SU(3)X.SU(3), argu-
ments identical to those given for SU(2)X.SU(2) yield
identical results. Thus, we may conclude that the SU(3)
XSU(3) ETCR are of the form (33) with f,s. replacing
€wpc and @, b, c=1, -+, 8.

D. Discussion

The results of this investigation followed from the
ETCR of the energy density with the charge density
(12). Although we were able to derive (12) from the
action principle, we now wish to inquire whether it is
possible to derive our results from relations less strin-
gent than (12). Specifically, we now assume only the
ETCR dictated by Poincaré invariance Egs. (6).

First, we assume only (6a). Then we evaluate the
Jacobi identity for H, V¢%(q), and V,b(k) asin (14) with
p=0. Equation (15) holds with p=0, and we may still
use (17), since that entails no loss of generality. The
restriction on Syv *%(q,p), which now replaces (18), is

kiSvv.i#*(q,k)=¢:Svv >(k,q). (34a)

[Note that (34a) follows directly from (18) by setting
p=0.] This then implies that

Svv.i*¥q,0)=q:Rvv,;*%q),
pSvv,2%(0,p)=0.

(35a)
(35b)

These equations contain less information than the
corresponding Eq. (19b). In particular, we cannot con-
clude that Syy,;2%(0,p) =0, i.e., that the once integrated
[Vo2,V:¥] ETCR is of the form (16). Obviously, the
ETCR involving the axial current also cannot be de-
termined. Thus, we conclude that (6a) alone is insuffi-
cient to yield any useful information about the space-
time current components ETCR.

Next we assume the validity of (6b) in addition to
(6a). The Jacobi identity for M, Vy*(q), and Voo(k),
together with (17), yields the restriction on the ST

Syv.2®

d d
ki—Svv,i**(q,k) = ¢—Syv *(k,q).
Ok; 9g;

[Note that this condition may be obtained directly
from (18) by differentiating (18) by p; and setting p=0.]

(35¢)
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Eq. (35c) then implies that

2
p,;-—SVv,.'“b(O,p) =0. (36)

J

By using the identity

i)
Svv.i%%0,p) =—{p:Svv.:**(0,p)}
9p;

3

—p—Svv.:*®(0,p), (37a)
0p;

we may conclude that

Svv.,;4%(0,p)=0, (37b)

since each of the two terms on the right-hand side of
(37a) vanishes by virtue of (35b) and (36). Thus
Poincaré invariance is sufficient to prove that the once
integrated [V,¢,V,*)] ETCR is of the form (16).
Equation (35c) further implies that

aJ 0
6_S v7,i%%(q,D) | p=0=¢i—Ryv:i?%@).  (38)
l

2 dg

Tt is seen that (35a) and (38) are the first two terms in
an expansion in powers of p of (19b). However, we
cannot obtain from the present considerations, the full
Eq. (19b), and therefore, cannot conclude that the ST
contains only one derivative of a § function. Moreover,
we have no way of deriving the symmetry properties
of (19d). Similar considerations apply to the ETCR
involving axial currents.

To summarize: Poincaré invariance is sufficient to
determine the once integrated ETCR, while information
about ST can be arrived at only when more detailed
information is available about the ETCR of the energy
density with the charge density.

IV. FURTHER STUDY OF THE
SCHWINGER TERMS

(a) In the present section, we examine further the
ST Skz.:*%p,q). [We restrict ourselves for simplicity
to SUQ2)XSU(2).] We have already derived the
restrictions

Skr:*p,9) = piRkz.ii**(pt+a), (392)
Rkr,;i%= Rk % (39b)

The Jacobi identity for K¢*(p), Lo®(q), and M (k)
(where K, L, M= A4, V) leads to

qiLKo*(p), Rrar,i:*(q+Kk)]— plLo¥q), Rxr ji%(p+k)]
=ieaa(pitq;) Re.1, 1r,5:%(p+q+k)
—iepeapiR r-a1,5:°%p+q+k)
+t€acaqiRe x4 (p+q+ k).

An immediate consequence of this equation is (set p=0,

(40)
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differentiate by g;, and set q=0)
[Ko*(0),Rrar (k) ]=t€asaRx.1, a1,5:%°(k)
+i€acdRL K-M,fidb(k) . (41 a‘)

Using the same techniques as in the derivation of (39),
it is easy to see that the local version of (41a) may
possess a further ST which can involve at most one
derivative of a ¢ function

[Ko*(p),Rem ;s> (k) ]=teasaRuc. . m,;:%(p+k)
+ieacaRe k.21, P+ K)+ piRxnar1:%*(p+ k) . (41b)

The symmetries of Rp,j%, (39b), together with (40)
then impose a symmetry restriction on Rgzar,:%%°.
This object is invariant under permutations of the three
quantities (eK?), (bLj), and (cM7i).

We may decompose Rk, ;% into the following:

Rya,i%%=064Rrm+ eiijLM.k“b+ELM,ijab s (41¢)
Rim®=3%Rpu i,

Riu p®*=%einRin %0,
Rim®=3(Rrm i+ Riar ji*— 38 Roa, ). (41d)

Evidently, Rz x?® is a vector and Rz ;%% is a sym-
metric and traceless tensor in position space. The sym-
metries (39b) require now that

RLMabzRMLba;

(42)

Riarp®®=—Ruz 1%,
R ,i**= R ;%= Rup,ji*

Note that the position-space scalar part of Rpar,:;%%
Ry is symmetric in ¢ and & (i.e., contains no iso-
spin one, vector part) when L=M=4, V; however,
R 4v*® may contain an isospin one part.

Tt follows from (42) that

Skr,*(p,0)+SLr.:#(p,0) —Sk1,:*(p,q) — Srk,:*(p,q)
=3pjejal Rxr.2%(p+ @)+ Rk, **(p+q)]. (43)

On the other hand, the Adler-Callan hypothesis (3)
requires the left-hand side (43) to vanish. Thus, that
hypothesis can hold if and only if

Rgr,1**+Rrx,#2=0. (44)

Therefore, when Rgy,;*® contains no (position-space)
vector component, the Adler-Callan hypothesis is
satisfied. Specifically, when the ST is of the particularly
simple form Skr,:;°*(p4-q) = piRx1.**(p+9), ie.,

Rkr1,,:i*°=0;jRk1",

(as in the ¢ model) (3) holds.

(b) In a scalar-meson theory, i.e., where the basic
operators are position-space scalars, vector and tensor
operators can arise only through some ¢-number oper-
ation. A particularly simple and obvious operation
which can yield tensor operators from scalar operators
is (in momentum space) multiplication by c-number
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vectors. (In position space, this corresponds to dif-
ferentiation.) Thus a natural and simple assumption,
for a scalar-meson theory, is that

Rir1,:i°%(p)= 0,8k 1°%(p)+ €ijnpr Tk 12%(D)
+ pipUrr2¥(p). (45)

We shall now show, that this simplest assumption
implies that Tx.2°=0 and Ukr**=0,sWUkL, Wav=Up4,
Us4=Uyy. To establish this, we return to (40), substi-
tute (45) for Rxyr,i;*? set k;=Aeinmpngm, multiply (40)
by %:/\, and set A=0. This then leads to

(46)

which upon multiplication by e, shows that Tx24=0.
Since Tx.®® vanishes, the only terms in (40) which
survive are proportional to p;, ¢;, and k. Equating to
zero, the coefficients of these arbitrary vectors give

[K o“(l’),'uLMbc(‘l)] =1ieallx.1 1%(p+q)

€vedT & L-4*%F €acaT L k. %4=0,

FieacalL k.2 (p+q)=0, (47)
LK o*(p),81.2%(q) ]=t€abaSx.1. 27°(p+q)
+7:€acdSL K-Mbd(p_'_q) . (48)

Equation (47), upon multiplication by e;ze, has the
consequence that
UxzP=0,Ukr,,

Uga=Upv, (49)

Uay=Upa.

Thus, when the vector and tensor parts of Rgy,:;2%(p)
are proportional to p;, the Adler-Callan hypothesis is
satisfied. Also in that instance the isospin-one vector
component can occur only in $4y%%. Finally, it is seen
that the assumption (45) shows that there are no further
ST in the [Ko“,RLM_ijb"] ETCR, i.e., RKLM,ijk“b°=O.
Conversely, if Rky,;;*® contains a nonvanishing po-
sition-space vector part, then the vector and tensor
structure of Rgyz,:;%® must be more complicated than
(45).

In a vector-meson theory, there is no reason to expect
(45) to hold since the theory provides vector and
tensor operators which are not obtained by a c-number
operation on scalar operators.

(c) We now decompose the isospin structure of

Rkr,%%
Rx1,i/%= 0458k ,iit €ave T k1, Uk, (50a)
— 1
Skr,i=3RkL.:%,
Txr,:°=%€arRr1,:, (50b)

Ukr,ii**=3(Rx1.,;°*+ Rir,i;°*— 30.0Rk1,4;°) -

Skr.ij, Tkr.i% and Ugy,:;*® are the isospin parts zero,

one, and two of Ry ;% The symmetries on these are
Skr.57=SLEK ji,

(50c)

Tgr°=—Trr ;i
Ugr,ij**=UkL,:**=ULk,ii*.
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Next we decompose the ETCR [K*(0),R1a,:;%(p)],
Eq. (41a), and exhibit explicitly the various terms. The
ETCR with Vy® are (we suppress the momentum argu-
ments which are the same throughout the remainder of
this section: Zero for Ky* and p for Ry,:;%°)

[Ve*,SkL,:]=0, (51a)
[V, Tk,i*]=ti€ate Tk i (51b)
[V, Ukvr,i*]=ti€araUx1,i/%+i€acalUkL,i%.  (51c)

These relations are not unexpected. They merely reflect
the fact that V,*(0) is a generator of isospin rotations
and that SKL.ij TKL,;jb, UKL,,',-b” transform like I=0,
1, 2 objects, respectively.
The ETCR with 4,%0) are more complicated. These
are, explicitly
[40%,Svv,ii]1=3(Tva,i°—Tav.ii,
[46°S4a4.ii]=—3i(Tva,i*— Tav,i9,
[40%Sav.,ii]=3i(Tan,ii*—Tvv.i9,

[40%Tvv.ii%]=5%1€ase(Tva i+ T av.ii)
+1825(Sav.ii—Sva,ij)
+3i(Uva,ii?*—Uav,ii*),
[40%,T 44,i%]1=%i€ave(Tav.ii*+Tva i)
+18.6(Sav,ii—Sva.ij)
+3(U av,i;°—Uva,ii*®),
[40%,T av,i;*]=%t€ave(Ta4,i5°+Tvv.ii°)
F30ab(Svv.ii—Saa,is)
+31(U 44,i°*=Uvpy %%,

[40%Uvv ;%)= %1€asa(U av.ij%+Uva,ij%)
+3i€aca(Uav,ii%+Uva,ii*?)
+3900e(Tav,i5°—Tva,i%)
+31806(Tav,ii*— Tva,i%

—380se(Tav,ii*—Tva.ii%,

[40%,U 44,;*]=%i€ava(Uva,ii*+Uav,i%)
F3ieaca(Uva,ii%+Uav,i*%)
+300e(Tva,ii%—Tav,ii%)
+31026(Tv4,i°— T av,i%)

—5105e(Tva,ii*—Tva,i%,

[46%U av ;> ]=%i€ara(Uvv,5%+ U 44,%)
+3i€aca(Uvv,ij%4U44,i;°%)
F3900e(Tvv,ii%— T 44,i%)
+380as(Tvv,ii°— T a4.,i°)

—310so(Tvv,i;°— T 44,59 .

(52a)

(52b)

(52¢)

Examining this array of relations and comparing it to
(51), it is seen that 4,%(0) does not act as a generator
of chiral isospin rotations. By this we mean that com-
mutating 4,%0) with an object of definite isospin
(zero, one, two) does not produce an object of the same
isospin (zero, one, two, respectively), but introduces
quantities with different isospin.
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If we were to demand that (52a) be of the same form
as (51a), we would have to have

Tva,i5°=Tav.i°, (53)

Ta4.i*=Tvv i
Equations (53) and (52b) together then imply that

Sav,ii=Svai, (54)

Saa,5=Sva,j,
Uav,ii**=Uva,i,
Uaa,ij*®*=Uypy,;5°,

which assures that (52b) is of the form (51b). Finally,
(52¢) is seen to be of the form (51c) by virtue of (53).
[It is easily seen that a similar chain of argument can
be carried out by requiring (52b) to be of the form (51b),
or by requiring that (52c) to be of the form (51c).] In
particular, note that if the 7=1 component of the ST
satisfies the relation (53), then the 44 ST is equal to
the V'V ST ,and the AV ST is equal to the VA4 ST, as
operator identities. [The same conclusion follows if
(54) or (55) holds.] This result is a generalization of
Weinberg’s recent calculation” which proved that if
there is no /=1 ST, then the vacuum expectation value
of Saa4,; equals that of Syvy ;. It is also seen that the
minimal assumption, which is necessary to prove
Weinberg’s result (rather than our more general result),
is that the vacuum expectation value of [40%T av,:%]
vanishes. Finally, we note that if the symmetric state
of affairs exists, so that (53), (54), and (55) hold, then
we have from (50c) that

(55)

SAA,ij=SAA.ji=SVV.ij=SVV,ji,

(56a)
Sav,ii=Sva.ii=Sva.;i=Sav,ii,
Taa,ii*=—Taa,;=Tvvi°=—Tvvi,
T (- T C— €= c (Séb)
avii'=—Tva;=Tvai’=—Tav ",
Uaa,i;?*=Uaa,;**=Uyvqi**=Uyvy i,
(56¢)

Uav,i**=Uva,ii®*=Uya,i;**=Uav ;"

These equations show that Ski; and Uk are
symmetric in the position-space indices 77, while Txy i;
is antisymmetric. Therefore in the notation of (41), we

have
(56d)

and the Adler-Callan hypothesis is satisfied if and only
lf TLM,ijc=0-

Although it is very attractive to assume that (53)
holds on the grounds of symmetry, model field theories,
such as the o theory, do not possess this property.*

-1
Riu 1°b=3Fe€avceiinlnu,is°,

V. THE SPACE-SPACE CURRENT COMMUTATOR

In this section, we study to what extent the previous
techniques can be used to determine in a model-inde-

7 S. Weinberg, Phys. Rev. Letters, 18, 507 (1967).
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pendent fashion, the ETCR of the spatial components
of the current densities. We begin by a few definitions.
The ETCR, in momentum space is of the form

[K:(p),L;*(@)]=1Cxz.:;*"(D,9) - (7)
Evidently, the following symmetry holds:
Crk.;i*(q,p)=—Cxz i;**(p,9) . (58)
We may consider Crx,;* to be a function of
=1(p+ and Q=i(p—q),
30+ 3(p—q) (59)

Cxr,*(p,a) = Cxr,;**(P,Q).

Locality and causality require that Crx,;**(P,Q) be
polynomial in Q, with coefficients that depend only on

P.
Ckr.:%(P,Q)= —Crx,;:**(P, —Q)=Cxky, i;**(P)

+ 3 Crrijireetn®®(P)Ori Q. (602)
n=1

The Cxr,ij ke k,*(P) are symmetric in the & indices
and satisfy

Cxr,ii*(P)=—Crg ;:;*(P),
CrLijkseerkn®(P) = (= 1)"CLi i, ek 24 (P) .

The successive powers of Q in momentum space corre-
spond to successive derivatives of 6 functions in position
space. Thus the form (60) allows for an arbitrary, but
finite number of derivative of & functions. It is seen that
one integrated ETCR, say p=0 is given by

Cxz.i7*°(0,q) = Ckr,:**(P, —P)=Ckz,:;**(P)

(60b)

+ 3 (= 1D)"Cgr ij ke in®®(P)Pry - Pr,,  (61a)
n=1

and the twice integrated ETCR p=0=gq, is
@KL,ij“b(0,0) = CKL,ij“b(O,O) = CKL,ijab(O) . (61b)

We shall find that our previous techniques, without
further assumptions, set #o conditions on Ckiz,i;**(P),
and only a very mild restriction on the Ckz,ijky..-5,*2(P).
With further assumptions, we can show that the coeffi-
cients of powers of Q higher than the first vanish, i.e.,
at most one derivative of a § function is present in the
ST. However, nothing can be said about Ckz,:;**(P),
reflecting the fact that models exist which give different
results for the once or twice integrated ETCR of space
components of current densities. (We have in mind the
quark model, the gauge-field model, etc. These results
can be contrasted with those of Sec. III. There we also
found that the ETCR of the time-space components of
current densities involved at most one derivative of a
§ function. However, we were able to go further and
evaluate completely the once integrated ETCR and
set symmetry restrictions on the ST present in the local
ETCR.)
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We begin by assuming only the results of Secs. I to
III. First, we note that from general principles it follows
that

[H,K;%(p)]=—130K;*(D),
[M%,K *(p) — 8—K ;*(p)
ap,-

(62a)
() ]=— tp:K;

+1'6in0" (p) .

Then we use the Jacobi identity, first with H, K,*(p),
L;*(q). This yields

— piL K:2(p),L;*(q) - [D*(p),L;*(q)]
— €a5c00(K - L);*(p+q)+ p[ Rk 1.,:7**(p+q), H ]
—i[Ko¥(p),00L;*(q)]=0. (63a)

We have used in (63a) Egs. (12), (33), and (62). D®
here is the divergence of K, In order to evaluate the
last ETCR we proceed as follows:

LK o*(p),90L;%(q)]
= 0o Ko*(p),L;*(q) ]—[90K o*(p),L;*(a) ]
=1ea5000(K - L);*(p+ @)+ 30Sk 1,;°%(p,q)
“+i[D(p),L;*(q) ]+ip K 4(p),L;*(q)].

Inserting (63b) in (63a) gives the not very interesting
fact that

(62b)

(63b)

[H,Rky,i;**(p)]= —1d0Rxk1,:;**(D) - (63c)

Slightly more interesting is the Jacobi identity for
M Ky¥(p), L;*(q). The identity gives

(M, Skz,:*(p,0) 1= U(pi+¢:)Skr,;**(D,a)

a
+
6q,~

d0Sx1,;°*(p,q)

aJ 0
+Pkl:—‘—]@KL,kf“’(D,Q)- (64a)
ap,- 6(1,

Using (392) and differentiating (64a) with respect to
$1 and setting p=0, then gives

d
[M% Rir1,%%(q)]=tg:Rx1,1;°%(q)+ aog_RKL.ljab(q)
(5

9 i)
+[——_—“:|@KL,U“”(D,Q) [p=0. (64b)
9p; 9g:

Substituting (64b) into (64a) yields a condition on the
commutator Cxr,1;%%(p,q)

l¢] lé]
254 [*———]@KL L X))
9p;  9¢s

d a
=pK|:-————]@KL,kj“b(l'; p+a)| =0, (65a)
dor;  9g;
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or in the notation of (60)

i)
(P+Q)k:9_'CKL,kjab(P,Q) =(P4+Q)x

(65b)

i Q—_P

a
X <——CKL,kj“b(P,Q)>
a0
This is the only condition on the ETCR of the spatial
components of current densities that we are able to
derive using only Poincaré invariance (and the assump-
tions of Secs. I to III).

Note that because (65b) involves differentiation with
respect to Q;, (65b) places no restrictions on those parts
of Cxr,*°(P,Q) which are independent of Q, or are
proportional to Q. Specifically, we cannot use Poincaré
invariance to obtain the once or twice integrated ETCR.

We wish also to call attention to the fact that Eq.
(64b) exhibits the result that Cxz,;;**(P,Q) is related to
the Lorentz transformation properties of Rgxz,:;%°(P)
in the following fashion. The commutator of M* with
any local operator is always of the form (in position
space)

[M#,0(x)]=i(a+d"—ar04)0(x)+£»[0], (66)

viz., the commutator has a term involving differenti-
ation and an additional term here called £#[07], whose
form is determined by the finite dimensional represen-
tations of the Lorentz group according to which O
transforms. Thus when O is a scalar, £~[ O] vanishes;
if it is a vector 0%, £»[0~] is ig»0"—ig*0O*, etc. Ex-
amining the right-hand side of (64b) it is seen that, of the
three terms there the first two represent in momentum
space the differential operator, while the third term
reflects the Lorentz transformation properties of
RKL,U“I’. Thus we have

]
LY Rir,;*(P)]=——Ckr,1;*(P,Q) |o=—r. (67)
a0
This is as far as we can get in the analysis of the
space-space ETCR without making further assump-

tions. We now assume the local version of (62):
[H oo(p), K *(@)]= —i0°K j*(p+ @) +ip;K o*(p+q). (68)

This local ETCR implies (62); however, further ST
could be present in (68) which integrate to zero so that
(62) remains valid. Unlike the analogous ETCR with
Ky (12), we are unable to derive (68) from an action
principle. Thus (68) must be considered to be an out-
right assumption.?

& Our assumption that the [Hgo,K;%] ETCR has the form (68)
implies (at least for systems with spin <1) that [H%(p),Ko*(q) ]
=1¢;Ko*(p+q). To see this, we consider the Jacobi identity for
Hoo(p), Hoo(q), and Ko“(k) and use (12), (68), and the ETCR
[H 00(p),Ho0(@) 1= (pr—qr) H °’°(p+q), which holds for systems with
spin_<1. The result is (pi—qi){H% (D'Hl) Kot (k) 1= 1(Pk ar)
XkKo*(p+q+k). We have assumed that the ETCR of the di-
vergence of K,® with Ho has no ST. The desired result follows
from the above equation by differentiating with respect to p:—gq:
and holding p:+¢: constant.
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Using (68), we consider the Jacobi identity of Ho(k),
Ko¥(p), L;j*(q). This leads to

[Ho(k),Sk1,;*(p,q) 1= —196Sx1.;*(p,9)
+ip Cxr,i**(p+k, ) —Cxr,;%%p, q+k)]. (69a)

The usual differentiation by p; and then p=0, gives

[Hoo(k),Rk1,:;%%(q) ]= —i0eRk1,:;**(q)
+i[ Cxr,i;**(k,q)— Cxz,;;**(0, ¢+k)]. (69Db)

Finally, substituting (69b) into (69a) yields a condition
on Cxz,;**(p,q)

pilCxr,i**(p+ k@) — Cxr,1**(p,g+k)]

= pil Cxz,1;*(k,p+0q)— Cxz,;;4*(0, p+q+k)]. (70a)
(It is seen that the previous condition on @Cxz,;;*°($,q),
Eq. (652) can be obtained from the present by differenti-
ating (70a) by k; and setting k=0.) It is more conven-
ient to write (70a) in a different fashion. We use the
notation (60), define p’=p+31k, Q’=Q—3k, and sup-
press the prime. Then (70a) becomes
(P+Q)LCrz.°*P, = P)—Cxr,1;**(P,Q)]

= (P+Q)ZECKL.ljab(P, “P‘f*k)'—CKL,zj“b(P, Q+k)] .

(70b)

We now show that condition (70b) is sufficient to

establish the fact that the space-space ETCR involves

at most one derivative of a § function. First, differenti-
ate (70b) by %, to give

0
0= (P+Q)l[:9k_CKL.lj“b(P; —P+k)

n

i)
“—k—CKL.zj“”(P, +Q+k):l . (71a)

n

Next differentiate (71a) by Q;

<] 0
—Ckr,i**(P, —P+k)——Ckr,:;%(P, Q+k)
ok, ok

2

=(P+Q)

Cxr.i*(P, Q+k).

RnO/ 3

(71b)

Finally, differentiate (71a) by &;

2

P+Q)r——Cxkr,1;°*P, —P+k)
0k, 0k;

n 1

2

= (P+Q)z

n 7

Crr,°*(P, Q+k)
2

i)
= (P+Q)lak Cxr.;**(P, Q+k). (71c)

n (2
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Substituting (71b) for the right-hand member of (71c)
yields

9

d
BZ“CKL,ij“b(P, Q+k)=—Ckyz,;;**(P, Q+k)

n n

0

=—Ck1,;;**(P, —P+k)

okn
2

—(P+Q):

Crr,;%%(P, —P+k). (71d)

n (3

Setting k to zero in (71d) shows that (3/0Q,)Cxkz,:*®
(P,Q) is linear in Q. Hence in the notation (60a), we
have

Cxr,°%(P,Q)=Cxr,:i**®)+Ck1,ij1,*(P)Qr,

+Cx,ij kit (P) Q1 Qs (72)

Next we substitute the form (62) into (70b) to yield

(P+Q)i(P+Q)ikiCrL,ijii®P)=0.  (73a)
This equation states that Ckrij,iy,*°(P) is antisym-
metric in 7 and 4;. We know already that it also is sym-
metric in 41 and 7. Hence, the following equations show
that it vanishes. (We exhibit only the indices ¢7, 4172.)

17,02 = —11],ils= —114,i21,
(73b)

ij,ilizz ’ij,’lah‘—“ —izj,iilz "L.Qj,il’i;"h]‘,’bzi.

We have thus established that the most general form
of the ETCR of the space components of currents, which
is implied by (68), is

Cx1,:;°(P,Q)=Cxkr,;**(P)+Cxr,i;:**P)Qk, (74)

viz., at most one derivative of & function is present.
Note that even the local ETCR (68) is not sufficient to
determine the once or twice integrated commutator.
Finally, note that (64b) and (74) now read

[M Rxz1;°*(P)]=1PiRk1,1;°*(P)
+009/0piRk1.1;**(P)+Cxkr,1;,:2%P) ,

,,GO{RKL,U“I’(P):]: CKL,lj,iab(P) .

(75a)
ie.,

(75b)

This implies that Cgyz,1;,:*® is determined by Rgr,i;%°
and its Lorentz-transformation properties. In particular,
the space-space ETCR contain no Schwinger terms if
and only if Rgyz,,;%° is a position-space scalar, i.e., of
the form Rxy,:%%=8:;;Rx 7% (as in the o model).



