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The commutators of the charge with the current density of vector and axial-vector currents are derived,
and restrictions are placed on the Schwinger terms present in the charge-density-current-density equal-time
commutators. In order to prove these results, the commutator of the time component of a current with the
energy density is derived. The following assumptions are made: (1) Equal-time commutation relations
between time components of vector and axial-vector currents satisfy the local SU(2), SU(2) XSU(2), «
SU(3) XSU(3) algebra; (2) the transformation properties of the divergence of the axial current are as-
sumed to be known. The second assumption is shown to be necessary as well as sufhcient. It is shown that
the Schwinger terms involve at most one derivative of a 8 function and have definite symmetry properties.
Symmetry properties frequently conjectured for the Schwinger terms are examined in the context of the
present investigation, and the consequences of these conjectures are explored. The current-density —current-
density equal-time commutation is also studied with the present techniques, and it is found that only very
mild restrictions can be imposed in a model-independent fashion.

I. INTRODUCTION

'T has been proposed by Gell-Mann' that the time
~ ~ components of the vector and axial-vector currents
(V„' and A„o, respectively), obey the equal-time corn-
mutation relations (ETCR) of SU(3)XSU(3):

LVp (x,t), Vp'(y, t)j=if,s.Vp'(x, t)b(x —y), (1a)

LVp (x,t),Ap'(y, t)j =if.b,A p'(x, t)b(x—y), (1b)

LA p'(x, t),A p'(y, t)j=if,s,Vp'(x, t) b(x—y) . (1c)

Here f,b, are the usual SU(3) structure constants.
Many authors have proposed KTCR of the time com-
ponents with the space components

fV p (x,t), V,'(y, t)j=if.p, V,'(x, t)b(x y)—
+STrv„"(x,y, t), (2a)

LVp (x,t),A,'(y, t)j=if,p 2 '(x, t)b(x—y)
+Svg„"(x,y, t), (2b)

LA p (x t), V,'(y,.tf)j=if, &,A,'(x, t) b(x—y)
+Spv, (x,y, t), (2c)

LAp (x,t),A (y, t)j=if, p, V (x,t)8(x—y)
+S~rt,;"(x,y, t) . (2d)

The S;e"s are the notorious Schwinger terms (ST),
involving gradients of 8 functions, which upon inte-
gration over x vanish, and which must be present in the
VV and AA ETCR.'~ Adler and Callan, on the basis
of explicit calculation of the commutators for the 0-

model, 4 conjectured that

~V V i ~V V i )SAA i SAAs y~AVs

+Sv~,"=S~v,"+Sv~ '" (3)
~ Junior Fellow, Society of Fellows.' M. Gell-Mann, Physics 1, 63 (1964).
~ T. Goto and T. Imanura, Progr. Theoret. Phys. (Kyoto) 14,

296 (1955);J. Schwinger, Phys. Rev. Letters 3, 296 (1959).' S. Okubo, Nuovo Cimento 44 A, 1015 (1966).
4 S. L. Adler and C. G. Callan, CERN report, 196S (unpub-

lished).

Such symmetry properties of the ST's have been
used widely to justify their neglect in appropriate
situations.

In this paper, we utilize the fact that the com-
mutator of the energy density with the time component
of a vector or axial-vector current is given in terms of
the space components of the current and its divergence.
This enables us, using the Jacobi identity, to derive the
ETCR of the space-time components (2) from the
ETCR of the time-time components (1), which we
assume to hold. %e also derive restriction on the ST,
proving that they can involve at most only one deriva-
tive of a 5 function. Finally we discuss various symmetry
properties of the ST, and show under what conditions
the symmetries (3) conjectured by Adler and Callan
can hold.

In Sec. II, we establish the ETCR of the energy
density with the time component of a vector current or
axial-vector current. In Sec. III, we derive in detail
the time-space ETCR for the case of the isotopic-spin
currents as well as the general form of the ST, and such
symmetries of the ST which are model independent.
Then we extend the results to SU(2)XSU(2) and to
SU(3)XSU(3), where the axial-vector currents are not
conserved. Section IV concerns itself with the various
further conjectures that can be made concerning the
symmetries of the ST, and the consequences of these
assumptions. Finally, in Sec. V, we examine what our
methods have to say about the ETCR of the space
components of current densities.

~ It has been shown recently that unless one is careful about the
interchange of limiting procedures implicit in the Jacobi identity,
contradictions may arise. A contradiction between canonical
commutation relations and the Jacobi identity has been found in
the case of 3 space components of quark currents, by F. Bucalla,
G. Veneziano, R. Gatto, and S. Okubo fPhys. Rev. 149, 1268
(1966)j. It is, however, unlikely that this problem arises unless
one is dealing with more than one space component. In our appli-
cation of the Jacobi identities, we use at most one space com-
ponent, and we shall assume that no problem arises in the use of
these identities.
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11. DERIVATION OF LHpp{x, t), Jp{y,t)1

In the present section, we derive the KTCR of the
time component of a vector or axial-vector current Jo,
with the energy density H00. In simple 6eld-theoretic
models, direct application of the canonical-commuta-
tion relations leads to the result

LHpp(x, t),Jp(y, t)]=iJo(x,t) 8/f, g(x—y)
—D{x,t) 6{x—y), (4)

where D(x, t) is the (possibly vanishing) divergence of
the current

(~)D(x,t) = iB„J&(x,t) .

(We employ the summation convention with repeated
indices. ) This commutator, upon integration over x, as
well as x and y, gives the following commutation rela-
tions with the generator of time translations, viz. ,
with thc HRIlllltolllR11 H:—Jd s Hpo(x, t), RIld wltll thc
generator of time rotations Moi= J'dopp{tH—io pp'Hoo). —

LH, Jp(y, t)j= —«BpJp(y, t), (6R)

L/tf", Jp(y, t)j= itB;Jp+ix'8—oJo+iJ;, (6b)

H, d'yJp(y, t) = — D(y, t)d'y

These commutators are of course required by general
principles. Further ST could be present in (4), which
integrate to zero in such a way such that (6) still holds.
However, no examples of ST in KTCR of time-time
components of currents are known, and it is usually
assumed that ST arise only in KTCR of space-time
components. Thus (4) may be expected to hoM as
written.

It is also possible to justify (4) in a quite rigorous
fashion This ploof follows that glvcn by 3chwingcr6
in one of his derivations of the LJp,Jpj and LHpp Hpoj
ETCR. According to Schwingcr, ETCR result from the
action principle, which implies that

For A we choose (—g)'"Jo where

«~.L(—g)'"J"j=(—g)'"D,
g= det fg .) =goo.

Hcncc 8 ls glvcn by

g,L( g ) I/2Jif «( g ) I/2D

J—'~'( g—oo)'" (—g—op)'"~'J' «—( g—pp)'"D (10)

A can depend on the varying parameter goo only if 8
on the time derivative of goo, since 802 =B.We make the
assumption that 8 docs not depend on the time deriva-
tive of gop, hence, iI'A =O. For 8'J3 we have (we assume
that J' and D do not depend explicitly on goo).

ga(&) t v(~—y) ~ g2(*—y)=J'(*)0'I
ar.,{y) '(2(-g.o(y))'") 2(—g. (y))'"

P(x—y)+i D(x). (11)
2(—goo(y))'"

Therefore from (7}and (8) we have, in the limit of zero
external Geld, goo= —1, the desired result LEq. (4)j.

These arguments obviously apply to each member of a
triplet or octet of currents. Hence the KTCR which
form the basis of this paper are, in momentum space

I Hoo(q} Vp'(p) 3=P'V"(p+q),
LHpp(q), ~ p (p)]=p'~' (p+q) —D'(p+q),

(12)

where our Fourier transforms are dc6ned by
0(p) =1'd22: s-2'*0(x,t).

LD. DERIVATION OF THE SPME-TIME
LOCAL COMMUTATORS

A. SU{2),Derivation of LVp (x,t) V {y,t)j
We shall assume that the time components of the

isotopic-spin currents satisfy a local SU(2) algebra,
i.e., in momentum space

d *I~(x,t),a~(x,t)j=.La,S~(.)—a'a(*)g. {7) «o {p}V"«}j=»" Vo'{p+q) o f ~=1 2 3 (»}

Here g is the Lagrangian density and A is any operator
satisfying

ctp/f(pp) =B(pp).

8 signihes a total variation of the Lagrangian with
respect to arbitrary parameters, while 8' is a variation
of the operators A and 8 arising from their explicit
dependence on these parameters. We vary g with
respect to a prescribed gravitational field, which is
govcl'lied by IIlctIIC gp„{y) SRtlsfylIlg goo(y)y 1~ gpi=0
gsy'= ~sy.

8Z(x', t)—= -';Hoo(x', t) S'(2."—y) .
&goo(y)

' J. Schwinger Phys. Rev. 1N, 406 (1963).

By evaluating the Jacobi identity

Pho(p), LVo (II),Vo'(1 )jl+ Fo'(&),LHpp(p), Vo (II}jl
+I:Vo (l),I:Vp (~),Hpp(p)jl=O, (14)

we will learn about the ETCR of the space and time
components. The above identity gives

&,L.Vo (&),V"(p+1}~—&;LV '(&),V*'{p+&)j
=i(q;+k~)e, », V (p+II+1I). (15)

Setting »1=0 (or 11=0), we derive the commutator of
Vi (p) WItll tile Isotopic clIRI'gc Voo(0) =Jd s Vp~(x, t)

LV"(0),V"(p)j=«"p. V' (p) {16)

This expresses thc fact that V;~ transforms as an iso-
vector. The local ETCR may be written (without loss
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ia~A„(o;)=D.(x). (22)

of generality) as

Lvo (q), V,'(y)]=io, b, V (p+q)+Svv, ,"'(qy). (17)

This serves to define 5«,; ~, which will satisfy by virtue
of (15), the equation

k,Svv„"(q, p+k) =g,Svv, ,"(k, y+q). (18)

Clearly, Svv, '(q, y) vanishes as q —b 0, which reflects
the fact that (16) holds.

Equation (18) places certain model-independent
restrictions on the ST S~~,; '. To extract these, dif-
ferentiate (18) with respect to k, and then set k=0.
Defining

8
Rvr „,'(y+q) = Svv„'(k, p+q) ~k=0 (19a)

Bk&

we have from (18)

Svv, i' (q,p) =V'Rvv, ~' (p+q) ~

{19b)
Svv, ,"(O,y) =0.

Substituting (19b) into 18 yields

q;k, Rvv, „'(p+q+k)=q;k, Rv,v;,:"(y+ q+ k). (19c)

Differentiating this with respect to g; and k; and then
setting q= 0=k, gives finally

(19d)

Thus the local KTCR of Vo with Boo and with Vo~

imply that the ETCR of Vo and V,' is (in position
space)

[Vo'(x, t), V, b(y, t)]=io, b, V,'(x, t) ii(x y)—
iRvv;; —b(y, t) B,,ti(x y), (2—0a)

and the following symmetry holds:

Rvv 'b(oo)=Rvv; (x), . (20b)

Equations (20) exhibit our first result: The derivation
of the Lvp, v, b] ETCR, the fact that the ST involves
at most one derivative of a 8 function, and model-
independent symmetry restrictions on the ST.

B. SU(2) X SU(2), Derivation of pvo'(x, f),A~'(yi&))i

[Ao (x,t), V,'(y, f)j, and [Ao (x,f),A (y,f)]
We assume the SU(2)XSU(2) algebra for the time

components of the vector and axial-vector charge
densities

L&o (p),7o'(q)] = io.b.(R J)o'(p+q),
a, b, c= 1, 2, 3, (21a)

where E and I. represent V or A, with the multipli-
cation law

A A=V, V. V=V, A V=V A=A. (21b)

The axial-vector current is not conserved; its divergence
will be defined as

We then have from (26a)

Sv~,,"(q,p) = C'Rv~, "'(p+q) —C'v~, *"(p+q) (27b)

Next we differentiate (26) by g; and set q=0, yielding

SAv, ,'(k, y) =giRdv, ,i"(y+q)+tv, i"(0, p+q). (27c)

The results (27b) and (27c) are to be compared to
(19b). Finally, we obtain the symmetries of Rvv b.

Differentiate (27b) or (27c) by q; and set q=0. The
result is

R~v, e"(p) =Rv~;i'(p) &v~, *~"(y)—(27d)

which can be compared to the previous (20b).
It is easy to verify that (26) places no further re-

strictions on the form of the ST. We note that in general,
the present results (26), (27b), (27c), and (27d) differ
from the corresponding previous results (18), (19b),
and (20b), by an additional term which is present if
there is a ST in the fvo, Db] ETCR.

Because of this lack of conservation, we shall have to
make additional assumptions in order to derive even
the once integrated space-time ETCR. It will be shown
that these additional assumptions are necessary as well

as sufFicient.
We write (without loss of generality)

L&o (p) I-'b(q)]= io.b.% I),'(p+q)
+SxJ.,;"(y,q) . (23)

The Jacobi identity for Hoo(p), Vo (q), and Ao'(k)
leads to

k;Sv~, "(q, p+k) —q,»v."(k, y+q)
= Lvo (q),D'(y+k)] —io.b.D'(y+q+k) (24)

Setting k=0, we derive the local ETCR

Lvo (q),D'(y)]=i, b,D'(p+q)+g;SvD„"(y+q), (25a)

where Svn, ,~b is given, according to (24), by

Svn, '"(p) = —S~v."(0,p) (25b)

Equation (25a), when q=0, gives the not unexpected
result that D'(y) transforms as an isovector. Combining
(25) with (24) yields

k,Sv~, ,"(q, y+k) —q'S~ v, '"(k, y+q)
= —q;S~v„'(0, y+q+k). (26)

This condition on the ST replaces the simpler condition
of SU(2), Eq. (18).

To exploit this condition, we proceed as before. Dif-
ferentiate by k, , set k=0 and, define

8
R .x.."(y+ )=xSi,x„'(k P+q) I

k=o
Bk,

(27a)
8

+x~,' '(f ) = S~x,"(0,p)
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Equation (2'/b) shows that Svz, ,'~(0,p) =0. Hence the
once integrated SU(2) XSU(2) ETCR holds for Vo and
A, ~. It further follows from (2'/b) that the local SU(2)
XSU(2) ETCR of Vo and A, ~ contains a ST, with at
most one derivative of the 8 function. No further as-
sumptions are necessary to arrive at this result, which
shows that (2b) holds for SU(2)XSU(2). The same is
rot true for Ao and V,~. The once integrated ETCR
between these two operators is of the SU(2)XSU(2)
form if and only if Sz v„'~(0,p) =0. Thus it is seen from
(25b) that a necessary and suKcient condition for the
validity of (2c) is that the ETCR between Vo~ and D~

contain no ST. We therefore make this assumption.
Consequently, S~v,,"(O,p) and (Rv~, ;,"(p) vanish, and
the ST present in the local [Ap, V,'] ETCR, contains
at most one derivative of the 8 functions.

Next, we examine the [AO,A, ~] ETCR. The Jacobi
identity for Boo(p), Ap(q), Ao~(k) yields

M»„"(q, p+k) —q;s~~, '"(k, p+q)
= LAo (q) D'(p+k)] —[AD'(k) D'(p+q)] (28)

Setting k and q to zero and introducing 0- ~ by the
definition

(29a)[A o'(o),D'(p)] =~"(p),

we have by virtue of (28)

~"(p)=~"(p) (29b)

The local ETCR between Ao and D' may, therefore,
be taken to be of the form

[Ao (q),D'(p)]= 0(p+q)+SQD"(q, p), (30a)

Note that the ST may also be written in the form

8 8
(Rxi. '"(y, t) ~(x—y)) =

X 8$

X (Rxr, ,"(x,t) b(x—y)) . (33c)

Hence the space-time current ETCR is always given by
a term which is the simple quark commutator plus a
ST which can be written as a total three-divergence.

C. Extension to SU(3)X SU(3)

It is clear that for the case of SU(3)XSU(3), argu-
ments identical to those given for SU(2) XSU(2) yield
identical results. Thus, we may conclude that the SU(3)
XSU(3) ETCR are of the form (33) with f,~, replacing
e,~, anda, b, c=1, . . ., 8.

D. Discussion

The results of this investigation followed from the
ETCR of the energy density with the charge density
(12). Although we were able to derive (12) from the
action principle, we now wish to inquire whether it is
possible to derive our results from relations less strin-
gent than (12). Specifically, we now assume only the
ETCR dictated by Poincare invariance Eqs. (6).

First, we assume only (6a). Then we evaluate the
Jacobi identity for EI, Vo (q), and Vo'(k) as in (14) with
p=0. Equation (15) holds with p=0, and we may still
use (17), since that entails no loss of generality. The
restriction on Svv, , ~(q,p), which now replaces (18), is

S~i "(O,p) =o.

Therefore combining (28) with (30) gives

(30b)
k,svv„"(q,k) = q;Svv, ,'(k, q) . (34a)

[Note that (34a) follows directly from (18) by setting
p=0.]This then implies that

hs» „"(q,

peak)

—q;sf~~ „"(k,p+q)
—S&D~&(q p+k) —S&&&&(k p+q), (31a)

svv "(qo)=qRvv "(q)

p Svv, ' (0,p) =0.

(35a)

(35b)
S~n"(q, p) = —q'S~~, '"(0, p+ q) . (31b)

Rgg „'(p)=R~g, ;, '(p) . (32b)

Since the once integrated [Ao',A, ~] ETCR is of the
SU(2)XSU(2) form if and only if S~~,;"(O,p) =0,
according to (31b), a necessary and sufhcient condition
for (2d) to hold within SU(2)XSU(2) is that no ST
be present in the [AO, D~] ETCR. We now make this
assumption. We have thus shown that

[R'0 (x,t),L,'(y, t)]=is.p,(K L) (x,t)b(x—y)
iRxr„; (y, t)8;b(x —y), u, b=1, 2, 3, (3—3a)

Rxz„; (x) =Rr,x,„'(x). (33b)

Reinserting (31b) into (31a) yields an equation which
implies, by an analysis similar to the previous, that

S~~,,"(q,p) = q,R»,„"(p+q)+S»,;"(0,p+q), (32a)

8 8
k, Svv„' (q,k) = q, Svv, ,'~(k, q) .

Bk; Bq;
(35c)

[Note that this condition may be obtained directly
from (18)by differentiating (18) by P, and setting p= 0.]

These equations contain less information than the
corresponding Eq. (19b). In particular, we cannot con-
clude that Svv, i ~(0,p) =0, i.e., that the once integrated
[VD', V, i'] ETCR is of the form (16). Obviously, the
ETCR involving the axial current also cannot be de-
termined. Thus, we conclude that (6a) alone is insufh-
cient to yield any useful information about the space-
time current components KTCR.

Next we assume the validity of (6b) in addition to
(6a). The Jacobi identity for M'*', Vp(q), and Vo (k),
together with (17), yields the restriction on the ST
~vs "



D. J. GROSS AND R. JACKIW

Eq. (35c) then implies that

8
p S .'"(0P) =o.

8
(36)

differentiate by qj, and set q=0)

EEo (0),RLdj, j (k)j=&o,bdRK. L ~ ""'(k)
+ioa,dRL K.II,;;db(k). (41a)

By using the identity

8 8
Svvd (lrlP) I o~ Pl Rvv jj (l) '

BPl LIIIl

(38)

It is seen that (35a) and (38) are the first two terms in
an expansion in powers of y of (19b). However, we
cannot obtain from the present considerations, the full
Eq. (19b), and therefore, cannot conclude that the ST
contains only one derivative of a 8 function. Moreover,
we have no way of deriving the symmetry properties
of (19d). Similar considerations apply to the ETCR
involving axial currents.

To summarize: Poincare invariance is sufhcient to
determine the once integrated ETCR, while information
about ST can be arrived at only when more detailed
information is available about the ETCR of the energy
density with the charge density.

IV. FURTHER STUDY OF THE
SCH%INGER TERMS

(a) In the present section, we examine further the
ST SKI„,'b(p, q). )We restrict ourselves for simplicity
to SLI(2)XSU(2).j We have already derived the
restrictions

S«,"(P,q) =p RKL,I*"(p+q), (39a)

~KL " ~LX '' (39b)

The Jacobi identity for E'oa(y)& Lob(q), and M a(k)
(where E, L, DE=A, V) leads to

V P&o (P), RL~,j"(q+k)j—PIP o'(q), RK~,j,"(P+k)l
= joabd(pj+gj)RK Idj,ji (p+q+k).

&ob dpjRK I"M,j ' (p+q+k)
+io.,dIJRL K bj,;,bd(p+q+k). (4.0)

An immediate consequence of this equation is (set y=0,

8
Svv, j (O,p)= fp;Svv, ; (O,y)}

8
8—p, Svv„"(o,p), (3»)

8
we may conclude that

Svv, ,"(o,P) =o,
since each of the two terms on the right-hand side of
(37a) vanishes by virtue of (35b) and (36). Thus
Poincare invariance is sufFicient to prove that the once
integrated L Vo, V;bj ETCR is of the form (16).
Equation (35c) further implies that

RLv "'=&IIRL~ab+o; bRLdj bab+RLoj "
~LM'=-'~LM " (41c)

~LM, k g &sj7c~LM,ij

RLIbI' = (RLIbI '+—RLdd . ——'& "RLlld bb' ) ~ (41d)

Evidently, RLM, I,
' is a vector and ELM,;; is a sym-

metric and traceless tensor in position space. The sym-
metries (39b) require now that

~LM ~MI

~LM, k — ~ML, Ic p

M, .ab —g ..ab —g . .ba

Note that the position-space scalar part of ELM„; ',
RLoj'b is symmetric in a and b (i.e., contains no iso-
spin one, vector part) when L=3jl=A, V; however,
Ezz' may contain an isospin one part.

It follows from (42) that

SKL(p q)+S, 'LK ' (P 'q) SKI ' (P q) SIK, ' (P q)

=3pj&j lLRKL, l"(p+q)+RLK, l"(p+q)]. (43)

On the other hand, the Adler-Callan hypothesis (3)
requires the left-hand side (43) to vanish. Thus, that
hypothesis can hold if and only if

RKL, l +RIK, l (44)

Therefore, when RKL, @ab contains no (position-space)
vector component, the Adler-C allan hypothesis is
satisfied. Specifically, when the ST is of the particularly
simple form SKL„; '(y+q) =p;RKL"(p+q), i.e.,

~KI,ij ~ij~KL

(as in the o model) (3) holds.
(b) In a scalar-meson theory, i.e., where the basic

operators are position-space scalars, vector and tensor
operators can arise only through some c-number oper-
ation. A particularly simple and obvious operation
which can yield tensor operators from scalar operators
is (in momentum space) multiplication by c-number

Using the same techniques as in the derivation of (39),
it is easy to see that the local version of (41a) may
possess a further ST which can involve at most one
derivative of a 6 function

LE'o'(p), RLlbI, „'(k)j= oo bdRK. L le, ""'(P+k)
+'lo dRL K Ibj, (.p+''k)+plRKIM, lj (P+'k) (41b)

The symmetries of RLId,;,b', (39b), together with (40)
then impose a symmetry restriction on. EKLM, &;;

This object is invariant under permutations of the three
quantities (aE/), (bLj ), and (cMi).

We may decompose EKL,;; ' into the following:



Thus, when the vector and tensor parts of EKL,;; '(y)
are proportional to p;, the Adler-Callan hypothesis is
satis6ed. Also in that instance the isospin-one vector
component can occur only in S&& '. Finally, it is seen
that the assumption (45) shows that there are no further
ST in the [EO,ELkr, ;, 'j ETCR; i.e., EK jr,;;k '=0.
Conversely, if EgL„; ~ contains a nonvanishing po-
sition-space vector part, then the vector and tensor
structure of EEL„~ must be more complicated than
(45).

In a vector-meson theory, there is no reason to expect
(45) to hold since the theory provides vector and
tensor operators which are not obtained by a c-number
operation on scalar operators.

(c) We now decompose the isospin structure of
~XI

+KL,ij Oab~KL, ij+Oabc+KL, ij +UKI, ij
1 x7

~E'L, sq' —
g &cab~~ÃL, wq'

UKr. "='(RKL "+&KL ' —-'& P-KL ")
(50b)

~~L,&, TzL,»', and UzL, ;, ' are the isospin parts zero,
one, and two of E~L„; ~. The symmetries on these are

~KL,ij ~LE,ji p

~EL ~LE

UXL "=~XL ."=~Le ."

vectors. (In position space, this corresponds to dif-
ferentiation. ) Thus a natural and simple assumption,
for a scalar-meson theory, is that

R KL,cj (P) ~ijgKL (P)+OijkPk+KL (P)

+p~p,~ "(p). (45)

Ke shall now show, that this simplest assumption
implies that V'~L"=0 and 'll~L'= b,gttgL, 'Rgy=%, pg)
'1l,AA='ll, vw. To estabhsh this, we return to (40), substi-
tute (45) for RKL;jsb, set k, =ho,„„p„iI,multiply (40)
by k,/X, and set X=O. This then leads to

abed' L kr +O.acd~L K ki (46)

which upon multiplication by e~„shows that ~~L '= 0.
Since EKL'b vanishes, the only terms in (40) which
survive are proportional to p;, q;, and k;. Equating to
zero, the coeScients of these arbitrary vectors give

[EO'{P),&Ljd "(q)$= O'Oabd'ttK r. kr"'(y+q)
+ZO .d'ttr. K di bd(y+q) =0, (4&)

[+0 (p) jgLM (q) j=ZosbdgK L kr (y+q)
+zo:d&L K.krbd(y+q). (4g)

Equation (47), upon multiplication by o,b„has the
consequence that

ZL = ~gAEL,

&~~=&vv,

Next we decompose the ETCR [Eo (0) RLII "(p)j
Eq. (41a), and exhibit explicitly the various terms. The
ETCR with Vo are (we suppress the momentum argu-
ments which are the same throughout the remainder of
this section: Zero for Eo and p for RLja, ;;b')

[Vo',5'KL, *jj=0,
[Vo ) +KL,ij j Zosbc 1KL,ij

(51a)

[j40 y~vv, ij j 2ZOabc(~VA, ij +~AF, ij )
+ 4Z(5bAvij +FA, ij)

+oz(UVA ij'b —UAV )
[j40 1AjA, ij ] oZOabc(+Av, ij ++FA,ij )

+Z~ab(~AVij 5F,A, ij)
+oz(UAv, ij" UvA, 'b),—

[j40 j~AFij j , ozoa(bTeAiAj +~VV,ij )
+z'4b(~vv, ij +AA, ij)

+,'z(UAA„' —-Uvv; '),

(52b)

[&o,Uvv„j = 0zo.bd(UA v, ';"'+UwA, ';")
+0ZOsed(UAF, ij +UFA, ij )
+OZjjac(~AFij ~F,A,ij )

OZ~be(1 Av, ij ~FA, ij ) j

[40,jUAA, i j=jozosbd(UFA. ij"+UAF„j"')
+,'zo„d(U-VA, j'"+UA, V '")
+ OZbs(e~ FA, ji~AF, ij )
+ 'Z& b(~VA '—-TAF. ')

OZtjbc(~VA, ij ~FAij )j,
[j40 jUAFij j= OZO, sbd(UFF, ij +UAA, ij )

+ozo .d(Uv v.ijbd+ UAA. ijbd)

+,'Z'&..(&VV„&AA,ijb)-—
+OZ~sb(~vv, ij ~AAij ),

——O'Z&b. (~VV„—T'AA„).

Examining this array of relations and comparing it to
(51), it is seen that Ao (0) does zzoj act as a generator
of chiral isospin rotations. By this we mean that com-
mutating jfos(Q) with an object of definite isospin
(zero, one, two) does not produce an object of the same
isospin (zero, one, two, respectively), but introduces
quantities mth diGerent isospin.

[VO, UKL, ij")=Zo.bdUKL„, 'jd'+O'O. .dUKL„,; bd. (51c)

These relations are not unexpected. They merely reQect
the fact that Voa(0) is a generator of isospin rotations
and that S~L„;, TEL,;;~, U~L,;;~' transform like I=0,
I, 2 objects, respectively.

The ETCR with jfoa(0) are more complicated. These
are, explicitly

[~"P'Fv,*'j=oz{&VA."—&Av, 'I )
[~0'pAA "j=—-'z{T'FA '—&Av ')
[jf0 SAjV,j]=,OZ(TAA, ij Tvw, ij ) j
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pendent fashion, the ETCR of the spatial components
of the current densities. %e begin by a few dehnitions.
The ETCR, in momentum space is of the form

~VA, sj TAV ij p

Tvv, ij

Equations (53) and (52b) together then imply that

(53) L&;.(u) JI'(«)j=~&zi, ;,"(P,«).

Evidently, the following symmetry holds:

&iz,~' '(«P) = —&zi, 'I"(P,«).
(54) %e may consider Cl.~,j ~ to be a function of

~AV, ij ~VA, ij p

~AA„;-= ~VA, ij,
O'A . ,eb U ..eh

UAA, g"=U VV„',

P—= l(p+«) Rnd 0—= l(p —«),
uzi„;,"(y,«) = &zi„,"(P,Q)

If we were to demand that (52a) be of the same form
as (51a), we would have to have

which assures that (52b) is of the form (51b). Finally,
(52c) is seen to be of the form (51c) by virtue of (53).
LIt is easily seen that a similar chain of argument. can
be carried out by requiring (52b) to be of the form (51b),
or by requiring that (52c) to be of the form (51c).] In
particular, note that if the I=1 component of the ST
satisfies the relation (53), then the AA ST is equal to
the Vv ST,and the A V ST is equal to the VA ST, as
operator identities. LThe same conclusion follows if

(54) or (55) ho]ds. ] This result is a generalization of
Keinberg's recent calculation~ which proved that if
there is no I= I ST, then the vacuum expectation value
of SAA„; equals that of Svv„j. It is also seen that the
minimal assumption which ls necessary to pl ovc
Weinberg's result (rather than our more general result),
is that the vacuum expectation va, lue of LAo, T~I. ,~j
vanishes. Finally, we note that if the symmetric state
of affairs exists, so that (53), (54), and (55) hold, then
we 11Rve fl'olll (50c) tllat

Locality and causality require that Ciz, ;,"(P,Q) bc
polynom1ai 111 Q wltll coefficients tllRt, depend only oil

P.

Czl, ;,"(P0)= Ci,z;P—(P —0)=Czi, * "(P)

+ Z Czl„;;,1,".a."(P)Q1, Q~. (6oR)

The Czi„,; I, 1„~(P) are symmetric in the k indices

and satisfy

Czi "(P)= Clz "(P—)
(60b)

Czi, ;, 1,...1 "(P)= (—1)"+'Cl,z,, I„...I,."(P).

The successive powers of Q in momentum space corre-

spond to successive derivatives of 6 functions in position
space. Thus the form (60) allows for an arbitrary, but
6nite number of derivative of 8 functions. It is seen that
one integrated ETCR, say p=o is given by

~AA, ;j=~AA, j =~VV, 'j= ~vv, ji

~AV, ij ~VA, ij ~VA,ji ~AV j i q

(56a)
azr, "(0«)=Czi, "(P P}=Czi, '—(P)

+ p (—1)"Czr. "I "1 ' (P)I'1 ' ' I'I (61'a)

eh I . . g . ,c (56d)

and the Adler-Callan hypothesis is satisfied if and only
if TI~„=O.

Although it is very attractive to assume that (53)
holds on the grounds of symmetry, model Geld theories,
such as the 0- theory, do not possess this property. '

In this section, we study to what extent the previous
techniques can be used to determine in a model-inde-

~ 3. Weinberg, Phys. Rev. Letters, 1S, 507 (1967).

~AA '' ~AA " ~VV '' ~VV ''
6

~AV, ij ~VA,ji ~VA, ij ~AV,ji

UAA "=UAA "=UVV."—Uvv "
(56 )

O'A . ,eh —U A . .e b —U V
. ,eh —U . .eh

These equations show that S~l,„; and. U~~„;e~ are
symmetric in the position-space indices ij, while TJ-„I,;
is antisymmetric. Therefore in the notation of (41), we

have

aIld the tw'lcc lntcglatcd ETCR @=0=q ls

ezl„;,"(0,0)=Czi„'(0,0)= Czi, „'(0) (61b)

%C shall 6nd that our previous techniques, without

further assumptions, set Iio conditions on Czi„;,"(P),
and only a very mild restriction on the Czi, „;I,...I„~(P).
%ith further assumptions, we can show that the coeK-
cients of powers of Q higher than the first vanish, i.e.,
at most one derivative of a 8 function is present in the
ST. However, nothing can be said about Czr„;, '(P),
rejecting the fact that models exist which give diferent
results for the once or twice integrated ETCR of space
components of current densities. (We have in mind the

quark model, the gauge-Acid model, ctc. These results

can be contrasted with those of Sec. III. There we also

found that the ETCR of the time-space components of
culrcnt dcnsltlcs lnvolvcd at most oIlc dcllvatlvc of a
8 function. However, we were able to go further and

evaluate completely the once integrated KTCR and

set symmetry restrictions on the ST present in the local

ETCR.)



SPACE —TI M E LOCAL CURRENT COM M UTATORS

We begin by assuming only the results of Secs. I to
III. First, we note that from general principles it follows
that

[H,E; (y)]= i—aoK,'(p),
8

[M"E '(p)] = —tP;E,'(p) —l9o E (p)
8

(62a)

Inserting (63b) in (63a) gives the not very interesting
fact that

P&,&rrr, ' '(y)]= iBoR—rid„;,"(p) . (63c)

Slightly more interesting is the Jacobi identity for
Moi, Eo~(p), L,'(q). The identity gives

[mo*,Sx, ,-o(p, q)]= «(p, +g,)Sx,,,"(p,q)

a
+ f) ogrrr. ,r' (p,q)

Bgs

+ib'&Ko (y) . (62b)

Then we use the Jacobi identity, first with H, Eo (p),
L,'(q). This yields

-P'LE' (y),L'(q)]- LD'(y), L'(q)]
—e.o.~o(K L)rc(p+ q)+p'[&rid, v"(p+ q), 1~]

—i[E (p) aoL (q)]=0. (63a)

We have used in (63a) Eqs. (12), (33), and (62). D'
here is the divergence of E„.In order to evaluate the
last ETCR we proceed as follows:

LEo (p), ~oL,'(q)]
= f)o[Ko'(y) L '(q)]—[r)oKo'(p), L '(q)]
=se.o,r)o(K L),'(p+q)+BoSrri, '(y)q)

+t[D (p),L (q)]+sp'[K' (p),Lr'(q)] (63b)

or in the notation of (60)

(I'+Q)o Czr. ,a;"(P,Q) = (~'+Q)s
iIII

8
X Cxr. , s "(PQ) . (65b)

BQ; o= p

This is the only condition on the ETCR of the spatial
components of current densities that we are able to
derive using only Poincare invariance (and the assump-
tions of Secs. I to III).

Note that because (65b) involves differentiation with

respect to Q, , (65b) places no restrictions on those parts
of Crrz, ;, '(P,Q) which are independent of Q, or are
proportional to Q. Specifically, we cannot use Poincare
invariance to obtain the once or twice integrated KTCR.

We wish also to call attention to the fact that Eq.
(64b) exhibits the result that Crrr„i, ~o(P,Q) is related to
the Lorentz transformation properties of Rrrr„;, '(P)
in the following fashion. The commutator of M&" with

any local operator is always of the form (in position
space)

pS",0(x)]=s(x a xa )0(x)+Z—"[O], (66)

viz. , the commutator has a term involving differenti-
ation and an additional term here called 2&"[0],whose

form is determined by the finite dimensional represen-
tations of the Lorentz group according to which 0
transforms. Thus when 0 is a scalar, 2""[0]vanishes;
if it is a vector 0, Z&"[0 ] is i g""0" ig" 0", etc. —Ex-
amining the right-hand side of (64b) it is seen that, of the
three terms there the 6rst two represent in momentum

space the differential operator, while the third term
reflects the Lorentz transformation properties of

R~L„~; '. Thus we have

a
z"[R,,"'(P)]=. C, ,"(P,Q) I

o= . (6&)

8 8
+

BPi Brti
«r. ,i' (y q) I o=o (64b)

Substituting (64b) into (64a) yields a condition on the
commutator Crrz I„'(p,q)

8 8
Px — — Cxz, s,"(p,q)

r)Pi r)qi--
8=prr — crrr. ,s,"(r, y+q) I,~, (65a)

Br; Bq;

+p„— err' s,"(p,q) . (64a)
-r)Pi

Using (39a) and differentiating (64a) with respect to
Pt and setting p= 0, then gives

8
+rrL, l

' '(q)]= tqÃrrr. , ii'(q)+r)o ~Icr, lj '(q)

This is as far as we can get in the analysis of the
space-space ETCR without mal~ing further assump-
tions. We now assume the local version of (62):

[IIoo(p),K'(q)]= —t~'K'(p+q)+tprKo (y+q) (68)

This local ETCR implies (62); however, further ST
could be present in (68) which integrate to zero so that
(62) remains valid. Unlike the analogous ETCR with
Ko~ (12), we are unable to derive (68) from an action
principle. Thus (68) must be considered to be an out-
right assumption. '

Our assumption that the (Hpp, E j ETCR has the form (68)
implies (at least for systems with spin &1) that L'Ho'(p), Ep(q)]
=ig;Xp"(p+q). To see this, we consider the Jacobi identity for
Hpp(p), Hpp(g) and Ep (k) and use (12), (68) and the ETCR
I Hpp(p), Hpp(q) g = (P&—qz) H'~(p+q), which holds for systems with
spin &1. The result is (P&—q&)PHos(y+q), Eo (k)j=s(Ps —qs)
X4Eo'(p+q+k) We have as. sumed that the ETCR of the di-
vergence of E„with Hpp has no ST. The desired result follows
from the above equation by differentiating with respect to p;—q;
and holding p;+g; constant,
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Using (68), we consider the Jacobi identity of H«(k),
Ro (p), I, (q). This leads to

I &«(k)4'zz, "(11,«)]=—~~o~zz, '"(ll «)
+&Pl[&zz,v"(11+k, «)—~zz.v"(11,q+k)] (69R)

The usual differentiation by p; and then y=0, gives

[H«(k) Rzz "(q)]= I'80—Rzz, "(q)
+I',[ex'„; ~(k,q) —ezz, ; '(0, q+k)]. {69b)

FII1Rlly, sllbs'tl'tlltlllg (69b) lllto (69R) yields R condition
on &zz„v' (11,«)

PI[@xz.Ir"(P+k,q) —&zz, Ir (11,«+k)]
=PI[&zz, v {k,11+«)—&xz, Ir (0, P+q+ k)] ~ {70R)

(I't ls seell tllRt tile plevlolls condition oil Czz, I& (p&g),

Eq. (65a) can. be obtained from the present by differenti-
ating {70a) by k; and setting k=0.) It is more conven-
ient to write (70a) in a different fashion. We use the
notation (60), define y'=p+-', k, Q'=Q —-,'k, and sup-
press the prime. Then {70R) becomes

(~+Q) i[Czz„i,"(P,—P)—Czz„v"(P,Q)]
={PyQ),[czz, l,"(P,—P+ k) —czz, v"(P, Q+k)].

{70b)

We now show that condition (70b) is sufficient to
establish the fact that the space-space KTCR invo1ves

at most one derivative of a 8 function, First, differenti-
ate (70b) by k„ to give

0= (f'+Q) I Czz„,I,"(P, —P+k)
Bk„

Substituting (71b) for the right-hand member of {71c)
yields

8 8
Czr. ,v''{P, Q+k) =—Czz„r"{P,Q+k)Bk„BQ„

8
Cxz„'(P, —P+k)

Bk~
82

(P+Q)—I Cz—z—,
—l,=~-'-(P, —9+k) . (71d)

Bk Bk;

Setting k to zero in (71d) shows that (8/BQ )Czz.;,'~
(P,Q) is linear in Q. Hence in the notation (60a), we
have

C..-. {PQ)=C-. —.(»+C..; ."(P)Q.
+Czz„;,i,z,"(P)Q~,QI, . (72)

Next we substitute the form (62) into (70b) to yield

(~+Q)'(~+Q)', k'.C-.', '", . (P)=0 (73R)

This equation states that Cxz, @,;„;~(P) ls antlsym-
metric in i and ~~. We knox already that it also is sym-
metric in il and ig. Hence, the following equations show'

that it vanishes. (We exhibit only the indices ij, iii2.)

hJpblbQ 2 JJ)N2 l'$ JpbQZ p

Ij)LIL9 LJ)1 $2I $2$)NI 12JpI$11J~$2$ (73b)

We have thus established that the most general form

Bk~
+k 71R of the ETCR of the space co~pone~t~ of currents, which

is implied by (68), is

Next differentiate (71a) by Q;

8
--—Czz " '(P P+k—) C—zr—"(P. Q+k)
Bk~ 8k

= (P+Q) i Cxz, l;"(P, Q+k) . (71b)
Bk BQ;

Finally, differentiate {71a)by k;

Czr„(P,Q) = Cxr„v' (P)+Cruz, v,a' (P)QI, (74)

viz. , at most one derivative of 8 function is present.
Note that even the local ETCR (68) is not sufficient to
determine the once or tvrice integrated commutator.
Finally, note tha, t (64b) and (74) now read

[Mo',Rzz„, ir~ (P)]=fE;Rzz, lr (P)
+z)o~/z)piRzz, ir"(P)+Czz, v.z"(P) ~ (7»)

(&+Q) ~ Czr„ir {P,—P+k)
Bk Bk;

0

l.e.)
& '[Rzr. , ir' (P)]=Czz, lr, i' (P) ~

a2
= (&+Q) I Cxr. ,i,"(P,Q+k)—

Bk Bk;

= (~+Q) I Czz, v"(P, Q+k) (71c)
Bk„BQ;

This lmplles that C~I„~&,s ls determined by X~I„g&.

and its Lorentz-transformation properties. In particular,
the space-space KTCR contain no Schwinger terms if
and only if X~I„~; is a position-space scalar, i.e., of
the form Rxz„; ri;;Rxz' (as in the a. m——odel).


