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I,ow-Energy Nucleon-Nucleon Scattering in a Three-Body Formalism*
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The NNx system is studied using the Faddeev theory of three-particle interactions and the approximation
scheme due to Lovelace, which preserves bound-state and three-particle unitarity and uses separable po-
tentials to describe oG-shell two-particle scattering amplitudes. One-dimensional coupled integral equations
are obtained for elastic nucleon-nucleon scattering which decouple in the I=0, S=O state. The theory,
which contains no arbitrary parameters, predicts phase shifts which are in reasonable agreement with ex-
periment for the higher partial waves.

isotopic spin zero in order to reduce the number of
coupled channels in the integral equations, and finally
solve the integral equations numerically for elastic
nucleon-nucleon scattering in the I=5=0 state, the
low-encrgy pion-nucleon interaction being approxi-
mated by a suitably chosen separable potential. There
are no arbitrary parameters in the theory. The phase
shifts are calculated for the V'l, 'F3, and 'H5 states.
The results in the higher partial waves are found to be
in reasonable agreement with experiment. We give our
conclusions in Sec. 5.

1. INTRODUCTIOH

HE first mathematically correct theory of non-
relativistic three-particle scattering was given

by Faddeev. '' The difIiculty with using the usual
I,ippmann-Schwinger equations to study three-particle
interactions is that their kernels are not compact
because of the presence of disconnected processes in

which two of the particles interact while the third
goes straight through. By summing over all such
disconnected graphs, I'addeev succeeded in obtaining
a sct of linear equations, with compact kernels, for
bound-state and unstable particle scattering involving
off-the-energy-shell two-particle scattering amplitudes.

The three-body equations in their full generality
are still too complicated to be solved without any
approximation. Of the approximation schemes put
forward, ' 4 which have been based either on the I'"addeev

equations or on a similar set of equations for I-particle
scattering obtained by Weinbcrg, ' we shall use the
scheme put forward by I ovelace, ' ' and usc it to study
the SSm system of three particles.

The basis of thc I ovelace theory is the fact that
when each of the two-particle subsystems is dominated

by a unite number of low-cncrgy bound states and
resonances, the I'"addeev equations assume a relatively
simple form.

In Sec. 2 we give the kinematics of the ElVvr system.
In Sec. 3, following I ovelace, we obtain the coupled
integral equations for bound-state and resonance
scatterings. In Sec. 4 we specialize to states of total

2. KINEMATICS

A nonrelativistic system of three particles n, p, and y,
with mornenta ka, ke, and kr and masses m„, m&, and
m~, can be specified in the total center-of-mass frame
by the momenta y, q, where p is the relative mo-
mentum in the (p,7) subsystem and q is the momentum
of particle ce relative to the (P,y) subsystem, i.e.,

(me+ nt, )k —m,.(ke+ k,)

with cr, p, and y cyclic. Only two of the six momenta
that one can so define are actually independent and
the description of the system in terms of any pair of
them is equivalent to its description in terms of any
other pair. The total kinetic energy in the center-of-
mass system Is*The work reported in this paper comprised a part of the

thesis presented in partial ful61lment of the requirements of the
degree of Doctor of Philosophy at the University of London.
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Akad. Nauk SSR 138, 565 (1961); 145, 301 (1962) LEnglish
transls. :Soviet Phys. —Doklady 6, 384 (1961);7, 600 (1963)g.' L. D. Faddeev, hlathematsca/ Problems of the Quantum 2'hoary

of Scattering for a 3-Particle System I Steklov Mathematical
institute, Lenningrad (1963), No. 69), English transL by J. B.
Sykes (H. M. Stationary Once, Harwell, 1964), AKRE Trans.
1002.' R. D. Amado, Phys. Rev. 132, 485 (1963).

4 L. Rosenberg, Phys. Rev. 131, 874 (1963); 135, 3/15 (1964).
5 S. steinberg, Phys. Rev. 133, 8232 (1964).
6 C. Lovelace, in Strong Interactions and IIigh-Energy Physics,

edited by R. G. Moorhouse (Oliver and Boyd, London, 19
7 C. I ovelace, Phys. Rev. 135, 81225 (1964), hereafter re

to as L.

E= q '/2M +p '/2tt„
vrhcre

m (ms+m, )
Ha =--

m +me+m,
(2.2)

For the case in which particles p and y form a bound
state s with binding cncI'gy —c „, thc total cncI'gy of
the system is

Since wc shall be concerned with the AEz system,
wc adopt the convention that particles 1 and 2 are the
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nucleons and that particle 3 is the pion. We assume

that the particles are always ordered cyclically, i.e.
n=1 corresponds to (2,3)+1, etc. We need not then
distinguish between Bose and Fermi statistics. Because
two of the particles are identical in the EE~ system,
the relations for the momenta simplify to

Pi= V«i+«~~

p =l(«i —«)
where y=mN/(nzv+nz ).

P2= 9 &92~

«3= —(«i+«2),
(2 3)

where X „,$ (s) is the amplitude for scattering, at the
center-of-mass energy s, from an initial state of particle

P and the mth composite system of the other two
particles —the Pm channel —to a final state consisting
of the ne channel. —Z, B ($) is identified as the corre-

sponding potential, while r~, ($) is —the propagator
for bound-state or resonance scattering. These equa-
tions can be used to study the %Em system, because
one can obtain a reasonably good low-energy description
of the two-particle subsystems involved if one assumes
that the two-nucleon interaction is dominated by the
deuteron D(I=O, I=1) and the singlet virtual state
5(I=1,J=O), and that the pion-nucleon interaction
is dominated by a nucleon bound state N(I= 2, I=—',)-
and the Ã~ resonance (I= 2, I= 2).

A priori it would appear as if we would have an
integral equation with four coupled channels to deal
with, with additional couplings possible when a partial-
wave analysis is carried out. However, we shall see
that considerable simplification occurs when we make
use of the identity of two of the three particles and the
fact that the Lovelace potentials arise through re-
arrangement collisions, so that there can be no potentials
for transitions involving two-nucleon composite sys-
tems in both the initial and final states.

The physically interesting amplitudes in the EEx
system are those with either a nucleon, as a composite
E~ system, or a deuteron present in the initial state.
In order to simplify the Lovelace equations, we define
the amplitudes

X, N($)=X,N~($),

X .BN($)=X N"(s)
(3.2)

3. THE NNe EQUATIONS

The Lovelace equations' for bound-state and reso-
nance scattering are

Xaasm ($),

= —Z--,B-($)—Z X-, .($)r~ ($)Z ..B-($), (31)

where n, P=1, 2 with n&P; while a=—Ã or N~ and
b—=5 or D. If, further, we define

XNN($) =X~N (S)+XaN ($) ~

YsN($) =XNAN (s)—XsÃ (s) )

(3.4)

we find that the equations for X,N($) and Y,N($)
decouple. Then, essentially using the same arguments
as in Sec. 3c of I, we can show that the Y,N($) do not
correspond to anything observable and hence need
never be calculated. The X,N(s) correspond to the
observed scattering amplitude N+N +N+ (—1V or 1P),
because we cannot distinguish between the two pairings
of the particles corresponding to 0.= 1, 2 but must sum
over them.

Let us consider first the case when we have a nucleon
bound state in the initial state, and a composite two-
nucleon system in the final state. Equation (3.1) can
then be written as

where all the amplitudes, potentials and propagators
are functions of the same total energy s. Notice that
there is no term like

V p($) —Z $ (s)—2 Q Z.,($)r, ($)Z,b ($) (3.7)
c=S,D

for a, b=N or Ã*, we obtain a set of two coupled
equations for the amplitudes X~N and X~*~'.

(XNN ) f YNN

(Xn *Nk (VN'N)

(
YNNrN YNN*rN' ) XNN )

YN N &N ~ XN*N1

(
ZBB&B ZBD7'D f XBN

ZDBrB ZDD7'D (XDN
!

This is because composite states of the two-nucleon
subsystem can only occur in the channel (1,2)+3;
while by definition, ' the potentials

(3 6)

If we now define

X,SD($) =X D($),

X3s, „(s)=XNAN(s),

X~g, BD(s) =XiD($),

(3.3)

In order to clarify the significance of Eqs. (3.5), (3.7),
and (3.8) we have represented them graphically in
Fig. i. The equation for the bound-state disintegration
process N+N~ N+N+vr can easily be written in

Equation (3.29) of L. ' Equation (3.18) of L.
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(~-") channel integral equations for XsN(s) and XNN(s).
We have from Eqs. (3.5), (3.7), and (3.8)

where

XSN ~SN ~8N&N+NN p

XNN = —~ZrN —I NN&N&NN,

(4.1)

(4.2)

j I~' )

(
~N

+ N

N+

(c)

N

N

t

Fzo. 1. Parts (a), (b), and (c) show Eqs. (3.5), (3.I), and (3.8),
respectively, in graphical form. The firm lines refer to nucleons,
the broken ones to pions, and the double lines to two-particle
composite states.

(XND l
EXN*D~ (ZN*D1

f UNNrN UNN "rN XND )
(3.10)

(VN+NrN UN*N*rN XN Df

where the quantities V,& occurring in (3.10) are the
same as those defined by Eq. (3.7). The equations for
deuteron breakup, 7r+D~ s.+1V+N, can again be
writtenintermsoftheamplitudesX, D (a=N, N*, S, D)
by using Eq. (3.28) of L.

At this stage we have succeeded in reducing the
number of coupled channels in the integral equations
for bound state and resonance scatterings from four
to two.

4. FURTHER SIMPLIFICATIONS

A. The I=O Equations

For the case when the total isotopic spin I=O, the
only two possible bound-state and free-particle con6gu-
rations that we can have in the 1VNm system are (N+N)
and (s.+S).Hence, if we are willing to restrict ourselves
to scattering processes with I=0, we shall obtain single-

terms of the amplitudes X.N (a=N, N*, S, D) by
using Eq. (3.28) of L.

The equations for the scattering processes in which
we have a deuteron in the initial state,

rr+D~ n-+(S or D),
s.+D~ N+(1V or 1V*),

are, respectively, given by

/XSD ( SNrN ZSN'rN') XND)
I, (3 9)

EXDD (ZDNrN ZDN*rN ~ N*D~

VNN +ZNN 2ZNSrSZSN ~ (4.3)

The amplitude for N+N —+1V+N+vr in the I=O
state would now be given in terms of XNN(s) and
XsN(s).

In order to obtain integral equations in only one
variable from Eqs. (4.1)—(4.3), which involve inte-
grations over angles and energies, we must carry out a
partial-wave analysis. Consider a transition with total
angular momentum J, from an initial state of total
spin 5 and relative orbital angular momentum / in
the total center-of-mass frame, to a final state with
quantum numbers 5' and t'. The scattering amplitude
can then be written in terms of the angular operators'
8JSlp8l as

X(q', q; s) = p X " '(q', q, s)Z~S lsi(q', q) (4.4)
J8'l'8l

On making a similar expansion for the kernel as well
as the inhomogeneous term in Eqs. (4.1) and (4.2), and
using the orthogonality properties of the angular
operators to carry out the integration over the angles,
we obtain

XsN'"'"(q', q; s) = ZsN'"'"(q', q; S)—

dq q ZZSN ""
(q q;&)

XrN(s)XNN " "(q",q; s), (4.5)

XNN "'"(q',q; s) = —VNN "'"(q',q; s)

dq"q'" P VNN~"'"" (q', q"; s)

where
N(s)XNN'" "(q"&q; s), (4.6)

UNN ""(q',q; s)= ZNN ""(q,q; S)—

—2 dq"q'" Q ZNS~"'""(q', q"; s)

X rs(s)ZSN~"""(q",q; s), (4.7)
with v =—l, S.

In the process N+N —+ s+S, parity conservation
forbids any transitions when the two nucleons are in a
state of total spin 5=0. When the nucleons are in a
state S=1, the allowed transitions are for J=l~ j.=l'.

IP. S. karma, Nuovo Cimento 42, 87 (1965). The angular
operators in this reference must be multiplied by appropriate
recoupling coeflicients for three-particle scattering.



LOS&-ENERGY NUCLEON-NUCI. EON SCATTERING

In the process X+X-+F+cV, for 8=0 the allowed
transitions are J=jt=/'; and for 5=1 vie have the four
lndcpcndcnt aIQplltudcs corrcspondlng to J=l= / 1 J
=1+1=i'+1, J=l—1=/' —1 and J=l+1=1'%1
Therefore, the second term in Eq. (4.'/) will be nonzero
only when 5= 1 and J/l.

Hence for I=S=O nucleon-nucleon scattering we
obtain the one-dimensional single-channel integral
equation in the Jth partial @rave as

&1rtr (q~qis)= Z»—(quis)

function (see L), which when normalized to unity
yields

&gp= (u~+PN)s/a. nt„'. (4.12)

The condition that the bound state occurs at the
energy —cs'/2nt„gives

lw = 2rr—t./(~tr+Prr)(2~tr+Ptr). (4.13)

The elective range formula for the E~~ state can then
bc vf1j.ttcn as

dq"q'"Z (q', q"; s)

Xre�(s)Xrrrrs(q", q; s). (4.8)

Notice that this involves only the original Lovclace
potential and that there are no contribution from
ZsN(s). There is a similar equation for the I=0, S= 1,
J=l=1' amplitude, while there are coupled two-
channel equations for the remaining amplitudes in
I=0, 5= 1 scattering.

3. The Nm Interaction

The potentials Z»s(q', q; s) occurring in Eq. (4.8)
require a knowledge of the two-particle p-wave 1V1r scat-
tering in the I=—',, J=—,

' state. For this w'e use', the sepa-
rable potentials (forgetting isospin for the moment)

(&'I I'111)=~~ 2 g~ .'(p')g~. .(It), (4.9)

with

gNa (lt) =gN (p) Z cl/2 I

:(p)&.'ts', (4.10)

where wc have decomposed J= 2 into the spin —,
' of the

nucleon and the orbital angular momentum 1 of the
pion. For thc radial part of the form factor wc choose
the form

g~(p) =PAN/(p'+p~) (411)

where Atr is a normalization constant. Then ger(p)
satis6cs the following conditions" that are required of
it: (i) g~'(p) is a positive-de6nite function of p,
vanishing as p" as p' ~ 0, (ii) gn (p) has a branch cut
from p'= —P1r' to —~ (p~ ' is proportional to the
range of the corresponding Yukawa potential), (iii)
gsr(p) goes to zero as p' ~ co.

Since the nucleon is being considered as a bound
state of mass (rrt~+rn ) in the p-wave J=st channel
with binding energy equal to —nt = —nN'/2rlt„(nt„
being the E7r reduced mass, n1r=181 MeV), ger(p) can
be related to the radial part of the nucleon wave-

~ A. N. Mitra, Phys. Rev. 123, 1892 (1961}.

k co'Qyy=- LcsN'pz'
2(otr+Prr)s

+Prr(&ccrr'+2csNPN+PN')/es+(2nN+Ptr)/t'j. (4.14)

For the scatterIng length

» '= ox'P~—'/2(~~+Pm)',

we use the value —0.10/+0.00/ (h=tN =a=1) ob-
tained by Hamilton and Woolcock. "" The cubic
equation for p~ has only one real root, and we get
Pa =18'/4 MeV.

It must be pointed out that in a nonrelativistic
formalism, as mass has nothing to do with binding
energy, the nucleon %'hcn regarded as a pion-nucleon
bound state has total mass equal to (ntn+rn. ). By
demanding that the binding energy of the nucleon
bound state be equal to —m, wc make sure, at least
from a relativistic standpoint, that in its restframe,
this bound state has the same energy as an ordinary
nucleon of mass m~. This asymmetry between the
masses of the bound and ordinary nucleons is, how'ever,
necessary in order to maintain the Galilean invariance
of the theory.

If wc consider, for example, the potential represented
by the graph in Fig. 1(b), Galilean invariance requires
the conservation of mass at each vertex. Thus, at an
X—&/l'/+n vertex, where the initial bound nucleon
dissociates into an ordinary nucleon and a pion as the
erst part of the bound-state rearrangement process
which gives rise to the potentials in the Lovelacc
scheme, Galilean invariance is maintained because the
initial nucleon which is bound has mass (nt1r+rw ),
while the ordinary nucleon has mass m~, i.c., exactly
because of the asymmetry between the masses of the
bound and ordinary nucleons.

The P11 phase shifts (4.14) predicted by such a,
separable potential are plotted in Fig. 2. Notice that
this is roughly consistent with experiments in the

n J.Hamilton and W. S. Woolcock, Phys. Rev. 118,29l, (196il);
Rev. Mod. Phys. 35, 737 (1963).

11 W. S. Woolcock, in Proceedings of the Ain en Presence Inter---
national Conference on Elementary Particles, 1961, edited by E.
Gremieu-Alcan et ul. (Gentre O'Ctudes Nud4aires de Sacjay,
Seine et Oise, 1961}.
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Although the product of two spin--,' functions can give
rise to either a scalar or a vector, only the latter can
match the orbital angular momentum of the pion and
give rise to a total-spin-zero state. The potential for
singlet scattering consists of a product of two terms like

E' g E R GY (MFv)
I

200 QOO

0--30

Fn. 2. The P» phase shifts for E~ scattering. Curve 1 is for
grr(P) =ArrP/(Ps+pal); curve 2 is for grr(P) =err'P/(P'+prr's)'
curve 3 is that due to Bal6zs (Ref. 19). The experimental points
are from Refs. 14—16.

energy range" " 0—150 MeV but the high-energy
behavior is completely wrong. The experimental phase
shifts are known to cross over at about 200 MeV, '~ this
behavior being probably due to a E» object" at about
400 MeV. It is, however, impossible to make the phase
shifts cross over with just a single separable potential. "
For example, a different choice of the form factor

gN(p) ~N p/(p +PM )

is found to give an even poorer Qt. We have there-
fore used the form (4.11) throughout the rest of the
calculations.

It is interesting to note that the phase shifts pre-
dicted by (4.11) are moderately better than those
obtained by Balazs, 19 who also used a nucleon pole,
but in an /(r/D calculation. More recent E/D calcu-
lations, ""which use exchanges of the p and of the
s-wave dipion resonance, are able to get better agree-
ment with experiment at high energies.

0
X --f2'

Q

-&6

X

20

gy0

C. The I=O, S=Q Equations

We are now in a position to write down the I.ovelace
bound-state scattering potential for I=0 singlet
nucleon-nucleon scattering from an initial 1, E-channel
state to a Anal 2, E-channel state. We can decompose
the initial-spin-zero state into

LAB EN E Rt"Y (vE. V)

& 1 r,-n-~s(p) ~e ' T~s '

(4.15)

«4 S. %. Barnes, H. Winick, K. Miyake, and K. Kinsey, Phys.
Rev. 117, 238 (1960).

~5 H. Y. Chiu and E.L. Lomon, Ann. Phys. (¹Y.) 6, 50 (1959).
'6 J. Deahl, M. Derrick, J. Fetkovich, T. Fields, and G. B.

Yodh, Phys. Rev. 124, 1987 (1961).
"A. Donnachie, J. Hamilton, and A. T. Lea, Phys. Rev. 135,

B515 (1964)."P.Auvil, C. Lovelace, A. Donnachie, and A. T. Lea, Phys.
Letters 12, 76 (1964)."L.A. P. Balkzs, Phys. Rev. 128, 1935 (1962).

'0 J. S. Ball and D. Y. Wong, Phys. Rev. 133, B179 (1964).
"S.Rai Choudhury, Aditya Kumar, and R. P. Saxena, Phys.

Rev. 143, 1159 (1966).
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FIG. 3. The phase shifts for (a) the 'P&, (b) the 'F&, and (c) the
'Bg state in elastic nucleon-nucleon scattering for I=S=0. Curve
1 corresponds to the present calculations, curve 2 is from the
phase-shift analysis of Amdt and MacGregor {Ref. 22), and
curve 3 is from the one-pion-exchange model.
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(4.15), one each for the initial and final states. This
product can again be decomposed into spin tensors of
rank 0, 1, and 2. However, it is known that singlet
nucleon-nucleon scattering involves only scalar inter-
actions; hence the angular part of the Lovelace potential
for singlet scattering will be just

(1/4~)~i(p P') T'.

The isospin dependence A.~ of the potential will be given
in terms of a 6-j symbol (see L), and for I=O, ho=1.
The potential for nucleon-nucleon elastic scattering
in the Jth partial wave for I=S=0 is

ZNN (qo )ql) s)

g~(po )g~(pi)
X — . (4.16)

pi /2tli+qi /2Mi s

The integration can be carried out after expressing
y&'andy&'intermsof q&', qi and s=q&' qiby using (2.3).
Following L, the bound-state propagator is given by

r~ (s) = —t~ (s q—io/2M—i)
2Mi (R+P~)'(R+o.~)

(4.17)
qi' —qo' —&o (~++Pi ) ft3~(R+oio)+20.+R)

where R= L(pi/Mi)qi' —2ti&s]"' and qo'/2Mi —m, =s.
Instead of solving Eq. (4.8) for the off-shell T matrix,

its analog for the corresponding o6-shell E-matrix was
solved. The advantage of this procedure is that the
bound-state scattering unitarity relation is preserved
whatever numerical approximation scheme is adopted;
and also, below the three-particle threshold, the E
matrix is always real so the equations are easier to
solve than those for the T matrix, which is complex.

The integral equation for the E matrix was cast
into a 50&(50 matrix equation and solved by inversion
using standard matrix routines. Below the three-
particle threshold, this size of the matrix was sufhcient
to produce stable solutions.

The equations were solved for the 'I'~, 'F3, and 'II5
states and the phase shifts predicted for these partial
waves are given in Fig. 3.

The agreement with the experimental phase-shift
analysis of Amdt and MacGregor" is poor in the 'E»
state and is reasonably good in the other two partial
waves. Our phase shifts are consistently lower than

"R. A. Amdt and M. H. MacGregor, Phys. Rev. 141, 873
{1966).

those predicted by the one-pion-exchange model. This
may be related to the fact that whereas the one-pion-
exchange model is equivalent to taking the Born term,
we solve an integral equation, because we 6nd that our
solutions are always smaller than their corresponding
inhomogeneous terms.

S. CO5'CLUSIONS

We have seen how to obtain single-channel one-
dimensional integral equations for nucleon-nucleon
scattering in the I=S=0 state starting from the
Lovelace-Faddeev theory for the EE~ system of three
particles. We have approximated the Err system in
the P» state (the only two-particle system which
contributes to the scattering in our model) by a single
separable potential, and we find that the phase shifts
for I=S=O nucleon-nucleon elastic scattering agree
moderately well with experiments in the higher partial
waves.

The disagreement is almost certainly due to the
fact that our separable approximation does not provide
a good description for the P~~ state at high energies.
One method of improving our results would be to
approximate the E» Em state by a sum of two separable
potentials. "This would make the two-body scattering
amplitude a 2&2 matrix and certainly make the
calculations more complicated. The alternative of
introducing a phenomenological three-body force, as
other similar calculations in the three-nucleon system'4
have had to do, is not very satisfying. An additional
parameter is introduced in the theory, which may still
be worthwhile if good agreement is obtained with a
large number of experimental quantities.
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