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The NN system is studied using the Faddeev theory of three-particle interactions and the approximation
scheme due to Lovelace, which preserves bound-state and three-particle unitarity and uses separable po-
tentials to describe off-shell two-particle scattering amplitudes. One-dimensional coupled integral equations
are obtained for elastic nucleon-nucleon scattering which decouple in the /=0, S=0 state. The theory,
which contains no arbitrary parameters, predicts phase shifts which are in reasonable agreement with ex-

periment for the higher partial waves.

1. INTRODUCTION

HE first mathematically correct theory of non-

relativistic three-particle scattering was given
by Faddeev.!® The difficulty with using the usual
Lippmann-Schwinger equations to study three-particle
interactions is that their kernels are not compact
because of the presence of disconnected processes in
which two of the particles interact while the third
goes straight through. By summing over all such
disconnected graphs, Faddeev succeeded in obtaining
a set of linear equations, with compact kernels, for
bound-state and unstable particle scattering involving
off-the-energy-shell two-particle scattering amplitudes.

The three-body equations in their full generality
are still too complicated to be solved without any
approximation. Of the approximation schemes put
forward,®* which have been based either on the Faddeev
equations or on a similar set of equations for n-particle
scattering obtained by Weinberg,® we shall use the
scheme put forward by Lovelace,®” and use it to study
the NNt system of three particles.

The basis of the Lovelace theory is the fact that
when each of the two-particle subsystems is dominated
by a finite number of low-energy bound states and
resonances, the Faddeev equations assume a relatively
simple form.

In Sec. 2 we give the kinematics of the NN system.
In Sec. 3, following Lovelace, we obtain the coupled
integral equations for bound-state and resonance
scatterings. In Sec. 4 we specialize to states of total

* The work reported in this paper comprised a part of the
thesis presented in partial fulfillment of the requirements of the
degree of Doctor of Philosophy at the University of London.
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isotopic spin zero in order to reduce the number of
coupled channels in the integral equations, and finally
solve the integral equations numerically for elastic
nucleon-nucleon scattering in the /=S=0 state, the
low-energy pion-nucleon interaction being apprexi-
mated by a suitably chosen separable potential. There
are no arbitrary parameters in the theory. The phase
shifts are calculated for the Py, 'F,, and 'Hj states.
The results in the higher partial waves are found to be
in reasonable agreement with experiment. We give our
conclusions in Sec. 3.

2. KINEMATICS

A nonrelativistic system of three particles a, 8, and v,
with momenta k,, ks, and k, and masses m,, mg, and
m., can be specified in the total center-of-mass frame
by the momenta p., q., Where p, is the relative mo-
mentum in the (8,y) subsystem and q, is the momentum
of particle « relative to the (8,y) subsystem, i.e.,

mKg—mgky
Po=""T",
Mg+
(2.1)
(mg+-my)Ka—mte (kﬂ+ kv)
Qo=
Matmg+m,

with @, B, and v cyclic. Only two of the six momenta
that one can so define are actually independent and
the description of the system in terms of any pair of
them is equivalent to its description in terms of any
other pair. The total kinetic energy in the center-of-
mass system is

E= qa2/2Ma+ p«2/2#a 5
where

e (Mg+m) Mghiy

(2.2)

y M=
Mo+ mpgtm., me+my

For the case in which particles 8 and v form a bound
state # with binding energy — eqa, the total energy of
the system is

E=q/2M,— €xn.

Since we shall be concerned with the NN= system,
we adopt the convention that particles 1 and 2 are the
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nucleons and that particle 3 is the pion. We assume
that the particles are always ordered cyclically, i.e.
a=1 corresponds to (2,3)41, etc. We need not then
distinguish between Bose and Fermi statistics. Because
two of the particles are identical in the NV system,
the relations for the momenta simplify to

P1=7Yq11qz,
ps=3 (11— qo),

where v=my/ (my—+m,).

P2=—q1—7Yqe,

2.3
qs=— (q1+q2), @3)

3. THE NN=x EQUATIONS

The Lovelace equations® for bound-state and reso-
nance scattering are

Xnm.ﬁm(s)
= an.ﬂm(5>—'z Xan,yr(8)74r(5)Zyrm(s), (3.1)

where Xqn, s (s) is the amplitude for scattering, at the
center-of-mass energy s, from an initial state of particle
B and the mth composite system of the other two
particles—the Bm channel—to a final state consisting
of the an channel. —Z,, s (s) is identified as the corre-
sponding potential, while —.,,(s) is the propagator
for bound-state or resonance scattering. These equa-
tions can be used to study the NN= system, because
one can obtain a reasonably good low-energy description
of the two-particle subsystems involved if one assumes
that the two-nucleon interaction is dominated by the
deuteron D(I=0,J=1) and the singlet virtual state
S(I=1,J=0), and that the pion-nucleon interaction
is dominated by a nucleon bound state N(I=3%, J=3%)
and the N* resonance (I=%, J=3%).

A priori it would appear as if we would have an
integral equation with four coupled channels to deal
with, with additional couplings possible when a partial-
wave analysis is carried out. However, we shall see
that considerable simplification occurs when we make
use of the identity of two of the three particles and the
fact that the Lovelace potentials arise through re-
arrangement collisions, so that there can be no potentials
for transitions involving two-nucleon composite sys-
tems in both the initial and final states.

The physically interesting amplitudes in the NN
system are those with either a nucleon, as a composite
N system, or a deuteron present in the initial state.
In order to simplify the Lovelace equations, we define
the amplitudes

Xau,aN(s) =XaNd(s) )

Xeaa,ov(s)=Xan"(s),

Xaa,:iD(s):XaD(s) )
X3b;aN(s)=XbN(s) )
Xsp,30(8)=Xop(s),

8 Equation (3.29) of L.

(3.2)

(3.3)
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where o, =1, 2 with a5%8; while ¢=N or N* and
b=S or D. If, further, we define

XaN(s) =XaNd(s)+XaNn(s) ’
YaN(S> =XaNd(S)—XaN"(S) )

we find that the equations for X.x(s) and YV.y(s)
decouple. Then, essentially using the same arguments
as in Sec. 3c of L, we can show that the ¥,x(s) do not
correspond to anything observable and hence need
never be calculated. The X,x(s) correspond to the
observed scattering amplitude N+N — N+ (N or N*),
because we cannot distinguish between the two pairings
of the particles corresponding to a=1, 2 but must sum
over them.

Let us consider first the case when we have a nucleon
bound state in the initial state, and a composite two-
nucleon system in the final state. Equation (3.1) can
then be written as

<X SN> <Z SN)
Xbown Zpn
Zsntny  Zsn*tn*\ f Xnw
—( ( .G
ZpntN  Zpn*ta*/ \Xn*n
where all the amplitudes, potentials and propagators

are functions of the same total energy s. Notice that
there is no term like

C 8878 2 SD'TD> (X s1v>
psts Zpptp/ \Xpn
This is because composite states of the two-nucleon

subsystem can only occur in the channel (1,2)+3;
while by definition,® the potentials

Z3n,3m=0-

(3.4)

(3.6)

If we now define

Vab(8)=Zab(S)—‘2 ZDZuC(‘Y)Tu(S)Zcb(s) (37)

=8,

for @, b=N or N*, we obtain a set of two coupled
equations for the amplitudes Xyy and Xy :

(XNN > ( Vaw )
Xn*w Vaen

( Vnty

Varnty  Vrwrry*

Vawrras\ / Xww
)(X ) . (3.8)
N*N.

In order to clarify the significance of Eqgs. (3.5), (3.7),
and (3.8) we have represented them graphically in
Fig. 1. The equation for the bound-state disintegration
process N-+N — N-N-x can easily be written in

? Equation (3.18) of L.
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F1c. 1. Parts (a), (b), and (c) show Egs. (3.5), (3.7), and (3.8),
respectively, in graphical form. The firm lines refer to nucleons,
the broken ones to pions, and the double lines to two-particle
composite states.

terms of the amplitudes X,y (a=N,N* S, D) by
using Eq. (3.28) of L.

The equations for the scattering processes in which
we have a deuteron in the initial state,

74D — 74 (S or D),
74D — N+ (N or N*),

are, respectively, given by
Xsp Zsnty  Zgnta®\ /Xnp
(Yoo .
Xpop DNTN ZDN*TN* N*D
<j{f ND > (ZZND )
N*D N*D

( Vanty  Vwwrra* >< Xnp

) , (3.10)

Vst Varwrry®/ \Xy*p
where the quantities Vg occurring in (3.10) are the
same as those defined by Eq. (3.7). The equations for
deuteron breakup, m+D— 7+N+N, can again be
writtenin terms of the amplitudes X.p (e=N, N*, S, D)
by using Eq. (3.28) of L.

At this stage we have succeeded in reducing the
number of coupled channels in the integral equations
for bound state and resonance scatterings from four
to two.

4. FURTHER SIMPLIFICATIONS
A. The I=0 Equations

For the case when the total isotopic spin I=0, the
only two possible bound-state and free-particle configu-
rations that we can have in the VN= system are (N+N)
and (r+S). Hence, if we are willing to restrict ourselves
to scattering processes with /=0, we shall obtain single-
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channel integral equations for Xgy(s) and Xyy(s).
We have from Eqs. (3.5), (3.7), and (3.8)

Xsv=—Zsn—ZsnrnXnn, (4.1)

Xwv=—Vun—VanrnXyn, (4.2)
where

Van=4Zyn—2ZygrsZsn. (4.3)

The amplitude for N+N— N+N--r in the I=0
state would now be given in terms of Xyy(s) and
Xsw(s).

In order to obtain integral equations in only one
variable from Egs. (4.1)-(4.3), which involve inte-
grations over angles and energies, we must carry out a
partial-wave analysis. Consider a transition with total
angular momentum J, from an initial state of total
spin S and relative orbital angular momentum ! in
the total center-of-mass frame, to a final state with
quantum numbers S” and /. The scattering amplitude
can then be written in terms of the angular operators®
Lrsrvsias

X(q;9)= X

J8'8L

XISV q,8)Lrsrsi(@,g). (4.4)

On making™a similar expansion for the kernel as well
as the inhomogeneous term in Egs. (4.1) and (4.2), and
using the orthogonality properties of the angular
operators to carry out the integration over the angles,
we obtain

Xsw”"(q',q; 8)=—Zsn""(¢,q; )

- / 49" 2 Zsn""(¢9" 5 5)

X TN(S)XNNJV’y(q’IJQ; S) ) (45)
Xwn""(q',q; 5)=—Vun'""(¢,q; 5)
B / dq"q"* 3 Vaun"""(¢',q"; 5)
Xrn($)Xwn"""(q",q;5), (4.6)

where
Van""(¢,q; s)=—Znn"""(¢,q; 5)
—_— Z/dql/qllz Z ZNSJ”,””((],,(I”; S)
XTS(‘Y)ZSNJ”,IV(QI,:q; S) ] (47)
with v=1/, S.
In the process N+4N — w45, parity conservation
forbids any transitions when the two nucleons are in a

state of total spin S=0. When the nucleons are in a
state S=1, the allowed transitions are for J=I+1=/".

V. S. Varma, Nuovo Cimento 42, 87 (1965). The angular
operators in this reference must be multiplied by appropriate
recoupling coefficients for three-particle scattering.
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In the process N+N — N+N, for S=0 the allowed
transitions are J=I=/"; and for S=1 we have the four
independent amplitudes corresponding to J=I=1, J
=l+1=0I+1, J=l-1=l'—1, and J=Itl1=0F1.
Therefore, the second term in Eq. (4.7) will be nonzero
only when S=1and J#I.

Hence for I=S=0 nucleon-nucleon scattering we
obtain the one-dimensional single-channel integral
equation in the Jth partial wave as

Xun?(q',9;9)=—Znn"(q',4; 5)

_/ dq”q"ZZNNJ(qI;qH; s)
0

Xrn()Xnn7(¢",q;5). (4.8)

Notice that this involves only the original Lovelace
potential and that there are no contribution from
Zgn(s). There is a similar equation for the I=0, S=1,
J=I=l' amplitude, while there are coupled two-
channel equations for the remaining amplitudes in
I=0, S=1 scattering.

B. The N= Interaction

The potentials Zyx7(¢’,q;s) occurring in Eq. (4.8)
require a knowledge of the two-particle p-wave Nr scat-
tering in the =%, J=1 state. For this we use[the sepa-
rable potentials (forgetting isospin for the moment)

+1/2
@' VIp)=Ay ngzva,*(p')gm.(p), (4.9)

8=

with
gve, (D) =g (p) 2 Cupa,s, 2 Hil2sa#
"
X V1,6, (D) T 12,

where we have decomposed J=1% into the spin % of the
nucleon and the orbital angular momentum 1 of the
pion. For the radial part of the form factor wechoose
the form

(4.10)

gv(p)=pAn/(p*+Bx%),

where Ay is a normalization constant. Then gy(p)
satisfies the following conditions™ that are required of
it: (i) gv*(p) is a positive-definite function of 2
vanishing as p*! as p?— 0, (ii) gw(p) has a branch cut
from p*=—Bx® to — o (By~! is proportional to the
range of the corresponding Yukawa potential), (iii)
gn (p) goes to zero as p?— o,

Since the nucleon is being considered as a bound
state of mass (my-+m,) in the p-wave J=% channel
with binding energy equal to —m,=—an?/2m, (m.,
being the N reduced mass, ay=181 MeV), gy (p) can
be related to the radial part of the nucleon wave-

(4.11)

1 A, N. Mitra, Phys. Rev. 123, 1892 (1961).
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function (see L), which when normalized to unity
yields

Ant=(an+Bn)}/mm?.

The condition that the bound state occurs at the
energy —a?/2m, gives

Av=—2m./(ax+Bx) 2an+8x).

The effective range formula for the Py; state can then
be written as

(4.12)

(4.13)

k3 cotdy = —

PR 3
et ey

+Bx (Ban’+2anBy+Br)R+ Can+Bx)kL].  (4.14)

For the scattering length
an'=—anBn%/2(ax+Bx)?,

we use the value —0.107+£0.007 (A=m,=c=1) ob-
tained by Hamilton and Woolcock.?8 The cubic
equation for B8y has only one real root, and we get
By =1874 MeV.

It must be pointed out that in a nonrelativistic
formalism, as mass has nothing to do with binding
energy, the nucleon when regarded as a pion-nucleon
bound state has total mass equal to (my-+m.). By
demanding that the binding energy of the nucleon
bound state be equal to —m,, we make sure, at least
from a relativistic standpoint, that in its restframe,
this bound state has the same energy as an ordinary
nucleon of mass my. This asymmetry between the
masses of the bound and ordinary nucleons is, however,
necessary in order to maintain the Galilean invariance
of the theory.

If we consider, for example, the potential represented
by the graph in Fig. 1(b), Galilean invariance requires
the conservation of mass at each vertex. Thus, at an
N — N-+4= vertex, where the initial bound nucleon
dissociates into an ordinary nucleon and a pion as the
first part of the bound-state rearrangement process
which gives rise to the potentials in the Lovelace
scheme, Galilean invariance is maintained because the
initial nucleon which is bound has mass (my-+m.),
while the ordinary nucleon has mass my, i.e., exactly
because of the asymmetry between the masses of the
bound and ordinary nucleons.

The Pu phase shifts (4.14) predicted by such a
separable potential are plotted in Fig. 2. Notice that
this is roughly consistent with experiments in the

12 J. Hamilton and W. S. Woolcock, Phys. Rev. 118, 291 (1960);
Rev. Mod. Phys. 35, 737 (1963).

18 W. S. Woolcock, in Proceedings of the Aix-en-Provence Inter-
national Conference on Elementary Paorticles, 1961, edited by E.
Cremieu-Alcan ¢f al. (Centre d’Etudes Nucléaires de Saclay,
Seine et Oise, 1961).
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F16. 2. The P, phase shifts for Nr scattering. Curve 1 is for

en(p)=Anp/ (p*+Bn%; curve 2 is for gn(p)=An'p/(H*+BN")?;
curve 3 is that due to Baldzs (Ref. 19). The experimental points
are from Refs. 14-16.

energy range*16 0-150 MeV but the high-energy
behavior is completely wrong. The experimental phase
shifts are known to cross over at about 200 MeV,"" this
behavior being probably due to a P11 object!® at about
400 MeV. It is, however, impossible to make the phase
shifts cross over with just a single separable potential .t
For example, a different choice of the form factor

gn(p)=Ax"p/ (P+Bn")

is found to give an even poorer fit. We have there-
fore used the form (4.11) throughout the rest of the
calculations.

It is interesting to note that the phase shifts pre-
dicted by (4.11) are moderately better than those
obtained by Baldzs,'* who also used a nucleon pole,
but in an N/D calculation. More recent N/D calcu-
lations, 22! which use exchanges of the p and of the
s-wave dipion resonance, are able to get better agree-
ment with experiment at high energies.

C. The I=0, S=0 Equations

We are now in a position to write down the Lovelace
bound-state scattering potential for I=0 singlet
nucleon-nucleon scattering from an initial 1, NV-channel
state to a final 2, N-channel state. We can decompose
the initial-spin-zero state into

'0,0)= > CopttrenliznCyy _ 1/2.2:1,=s1—e
21,82
X Yl.—al—az (ﬁ) T811/2T,21/2

1
— TtV 1m(P). (4.15)
\/3; Ln®

145, W. Barnes, H. Winick, K. Miyake, and K. Kinsey, Phys.
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16T, Deahl, M. Derrick, J. Fetkovich, T. Fields, and G. B.
Yodh, Phys. Rev. 124, 1987 (1961).

17 A, Donnachie, J. Hamilton, and A. T. Lea, Phys. Rev. 135,
B515 (1964).

18 P, Auvil, C. Lovelace, A. Donnachie, and A. T. Lea, Phys.
Letters 12, 76 (1964).

11, A.P.Balizs, Phys. Rev. 128, 1935 (1962).

20 J, S. Ball and D. Y. Wong, Phys. Rev. 133, B179 (1964).

2§, Rai Choudhury, Aditya Kumar, and R. P. Saxena, Phys.
Rev. 143, 1159 (1966).
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Although the product of two spin-} functions can give
rise to either a scalar or a vector, only the latter can
match the orbital angular momentum of the pion and
give rise to a total-spin-zero state. The potential for
singlet scattering consists of a product of two terms like
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Fic. 3. The phase shifts for (a) the 1Py, (b) the !F3, and (c) the
1H} state in elastic nucleon-nucleon scattering for I =S=0. Curve
1 corresponds to the present calculations, curve 2 is from the
phase-shift analysis of Arndt and MacGregor (Ref. 22), and
curve 3 is from the one-pion-exchange model.
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(4.15), one each for the initial and final states. This
product can again be decomposed into spin tensors of
rank 0, 1, and 2. However, it is known that singlet
nucleon-nucleon scattering involves only scalar inter-
actions; hence the angular part of the Lovelace potential
for singlet scattering will be just

(1/4m)P1(B-P)T°.

The isospin dependence A7 of the potential will be given
in terms of a 6-§ symbol (see L), and for 7=0, A°=1.
The potential for nucleon-nucleon elastic scattering
in the Jth partial wave for I=S=01s

+1
Zuon (¢ 5 9)=3 / dz Py () (b -$2)

J =1
gn(p2)gn (py)
P2/ 2uatq2/2M—s

The integration can be carried out after expressing
ps’ and p!’ in terms of ¢o/, ¢1 and z=§,"- §; by using (2.3).
Following L, the bound-state propagator is given by

—7n(s)=—In(s—q:i%/2M )

__ o (R+Bx)*(R+ax) W
g—qit—ie (an+Bn){By (Rtan)+2avR}

where R=[(u/M1)q2—2u1s]"? and ¢i®/2M—m,=s.

Instead of solving Eq. (4.8) for the off-shell 7" matrix,
its analog for the corresponding off-shell K-matrix was
solved. The advantage of this procedure is that the
bound-state scattering unitarity relation is preserved
whatever numerical approximation scheme is adopted;
and also, below the three-particle threshold, the K
matrix is always real so the equations are easier to
solve than those for the T matrix, which is complex.

The integral equation for the K matrix was cast
into a 50X 50 matrix equation and solved by inversion
using standard matrix routines. Below the three-
particle threshold, this size of the matrix was sufficient
to produce stable solutions.

The equations were solved for the Py, 'F3, and Hj
states and the phase shifts predicted for these partial
waves are given in Fig. 3.

The agreement with the experimental phase-shift
analysis of Arndt and MacGregor?? is poor in the 1P
state and is reasonably good in the other two partial
waves. Our phase shifts are consistently lower than

(4.16)

(1;2616{)- A. Arndt and M. H. MacGregor, Phys. Rev. 141, 873
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those predicted by the one-pion-exchange model. This
may be related to the fact that whereas the one-pion-
exchange model is equivalent to taking the Born term,
we solve an integral equation, because we find that our
solutions are always smaller than their corresponding
inhomogeneous terms.

5. CONCLUSIONS

We have seen how to obtain single-channel one-
dimensional integral equations for nucleon-nucleon
scattering in the I=S=0 state starting from the
Lovelace-Faddeev theory for the NN system of three
particles. We have approximated the N system in
the Py state (the only two-particle system which
contributes to the scattering in our model) by a single
separable potential, and we find that the phase shifts
for 7=S=0 nucleon-nucleon elastic scattering agree
moderately well with experiments in the higher partial
waves.

The disagreement is almost certainly due to the
fact that our separable approximation does not provide
a good description for the Py; state at high energies.
One method of improving our results would be to
approximate the Py; N state by a sum of two separable
potentials.? This would make the two-body scattering
amplitude a 2X2 matrix and certainly make the
calculations more complicated. The alternative of
introducing a phenomenological three-body force, as
other similar calculations in the three-nucleon system?
have had to do, is not very satisfying. An additional
parameter is introduced in the theory, which may still
be worthwhile if good agreement is obtained with a
large number of experimental quantities.
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