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et al.? have estimated the contribution of the =0 s-
wave interaction to low-energy s-wave w-nucleon scat-
tering. Their procedure effectively deduces one number,
which is an integral over the I=0 s-wave mr scattering
cross section multiplied by a weighting factor which falls
rapidly from threshold to an energy of about 900 MeV.
The largest contribution to the integral comes from 7r
energies below 600 MeV. They find a fit with a phase
shift which rises rapidly at threshold to 30° and then
levels off at that value. However, it would seem probable
that other forms of variation of this phase shift would
produce the same value of the integral they determine;
in particular, a phase which is larger at higher masses,
such as we propose, would then imply a much smaller
scattering length at threshold. This smaller scattering
length would be in better agreement with the conclu-

¢ J. Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick, Phys.
Rev. 128, 1881 (1962).

sions drawn by Weinberg!® from an analysis of K4
decay. Chiu and Schechter!! have remarked how the
sum rule of Adler!? can be completed if there is an s-
wave 7 resonance with a mass of 390 MeV and a width
of 90 MeV. They then show that this sum rule could,
alternatively, be completed by a range of other s-wave
resonances; all that is needed is that M /T'® have a cer-
tain value. Therefore, we could complete this sum rule
with an s-wave resonance with, for example, a mass of 700
MeV and a width of 520 MeV. The s-wave cross section
due to such a resonance would be very similar to the
conclusions which seem to be implied by these analyses
of reaction (1). It can therefore be suggested that the
sum rule of Adler!? can probably be completed in this
way.

10 S, Weinberg, Phys. Rev. Letters 17, 336 (1966).
1Yy, T. Chiu and J. Schechter, Nuovo Cimento 46, 548 (1966).
12§, L. Adler, Phys. Rev. 140, B736 (1965).

PHYSICAL REVIEW

VOLUME 163, NUMBER 5§

Field-Current Identities and Algebra of Fields*

T.D. LEE
Columbia University, New York, New, York

AND

Bruno ZuMiNo
New York University, New York, New York
(Received 30 June 1967)

It is shown that the possible identity between the various hadronic current operators and the corre-
sponding spin-1 meson field operators determines the general structure of the hadronic part of the total
Lagrangian. In particular, the identity between the isovector electromagnetic current and the neutral
p-meson field implies that the p dependence of the strong interaction must be the same as that in the Yang-
Mills theory, except for the mass term of the p meson. The explicit form of the interaction Lagrangian makes
possible a general study of the local equal-time commutators of the various hadronic current operators,
including the effects of the electromagnetic interaction. Many of these electromagnetic correction terms
depend only on the general requirement of gauge invariance, and are independent of whether the proposed
field-current identities are valid or not. For example, the usual Schwinger term A(8/97;)8 (r—7’) in the
commutator between the time component of any charged hadronic weak interaction current and the jth
space component of its Hermitian conjugate should be replaced by \[(9/d7;)+ied ;163 (r—7'), where 4 is
the electromagnetic field operator. The contribution of such a correction term, i.e., Aied ;8°(r—7"), remains
present in the integrated form of the commutator. In the usual current algebra, A is mathematically un-
defined. If field-current identities hold, then these current commutators are the same as the corresponding
algebra of the field operators, and A becomes a well-defined ¢ number. Some speculative remarks concerning
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the possible extension of the algebra of fields to the lepton currents are presented.

1. INTRODUCTION

ECENTLY, it has been suggested! that the entire
hadronic electromagnetic current operator is iden-

tical with a linear combination of the local field opera-
tors of the known neutral vector mesons, independent
of whether the unrenormalized masses of these vector
mesons are finite or infinite.? This identity is shown to be

*This research was supported in part by the U. S. Atomic
Energy Commission and the National Science Foundation.

IN. M. Kroll, T. D. Lee, and Bruno Zumino, Phys. Rev. 157,
1376 (1967).

?There exists an alternative proposal in which the unre-

consistent with the requirement of gauge invariance; it
gives a precise formulation of the idea of vector domi-

normalized isovector part of the hadronic electromagnetic current
is assumed to be the same operator as the unrenormalized current
generating the neutral p-meson field. In such a case, the field-
current identity holds only in the limit of an infinite unrenor-
malized meson mass. [See Refs. 1, 4, M. Gell-Mann and F.
Zachariasen, Phys. Rev. 124, 953 (1961).] It is important to note
that in this alternative possibility, the products of the current
operators would in general, be different from the products of the
corresponding field operators even in the limit of infinite unre-
normalized masses; thus, the hadronic current operators entering
in the electromagnetic and the weak interactions satisfy the usual
current algebra instead of the algebra of fields.
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nance?® in the language of a local Lagrangian field theory,
and it leads, among other consequences, to the con-
clusion that, in the absence of the leptons, the entire
hadronic contribution to the electric charge renormaliza-
tion is finite.!* The generalization that such field-current
identities hold also for other observed hadronic currents,
such as the various weak-interaction vector and axial-
vector currents, implies that these observed hadronic
currents satisfy the algebra of fields,® which is simpler
than the usual current algebra.t It is found that all
successful applications previously obtained from the
current algebra can be rederived by using the algebra of
fields; in addition, the usually troublesome Schwinger
term” becomes a well-defined ¢ number in the algebra of
fields.

The purpose of this paper is to point out that these
field-current identities also determine the general struc-
ture of both the strong-interaction and the hadronic
part of the electromagnetic interaction. The explicit
form of these interaction Lagrangians enables one to
study systematically the electromagnetic corrections
of the equal-time commutator of the various hadron
currents. That some of these commutators must be
affected by the electromagnetic interaction follows
from general considerations of gauge invariance. For
example, suppose that, in the absence of the electro-
magnetic interaction, the commutator

[V4Wk(7’,f) S=0, Vka(r,;t)TS=0] (11)

— 208 (r—7") Y (') 11+ N8/ Ori) B (r—7"), (1.2)

where (V,"%)s—o is the hadronic strangeness-conserving

is®

3Y. Nambu, Phys. Rev. 106, 1366 (1957); W. R. Frazer and
J. R. Fulco, Phys. Rev. 117, 1603 (1960);7.7J. Sakural Ann. Phys.
(N. Y) 11 1 (1960); M. Gell Mann and F. Zacharlasen Phys.
Rev. 124, 953 (1961) ; M. Gell-Mann, sbid. 125, 1067 (1962) Y.
Nambu and ] J. Sakural Phys. Rev. Letters 8 79 (1962); M.
Gell-Mann, D. Sharp, and W. G. Wagner, ibid. 8, 261 (1962),
J. Schwinger, Phys. Rev. 140, B158 (1965). For further discussions
and applications of vector dominance ideas, see G. Feldman and
P. Matthews, Phys. Rev. 132, 823 (1963) ; S. Berman and S. Drell,
bid. 133, B791 (1964) ; R. F. Dashen and D. H. Sharp, #bid. 133
B1585 (1964) L. Stodolsky, ibid. 134, B1099 (1964), ‘G. Barton
and B. G. Smlth Nuovo Cimento 36 436 (1965); R. Gatto,
Ergeb. Exakt. Naturw. 39, 106 (1965); M. Ross and L. Stodolsky,
Phys. Rev. 149, 1172 (1966) ; D. S. Beder, ibid. 149, 1203 (1966);
M. A. B. Bég and A. Pais, Phys. Rev. Letters 14, 51 (1965).

While the approximation that the matrix elements of the
hadronic vector current operator may be replaced by the corre-
spondmg elements of the vector-meson field operator has been dis-
cussed in many of these papers, in the context of a Lagrangian field
theory the difficulty has always been the apparent violation of
gauge invariance. [See e.g., G. Feldman and P. Matthews (Ref.
3). ] This difficulty is revolved in Ref. 1.

4T. D. Lee and Bruno Zumino (to be published).

5T. D. Lee, S. Weinberg, and Bruno Zumino, Phys. Rev.
Letters 18, 1029 (1967).
(1; % Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63

7T. Gotd and T. Imamura, Progr. Theoret. Phys. (Kyoto)
14, 396 (1955); J. Schwinger, Phys. Rev. Letters 3, 296 (1959).
For an earlier discussion of a related term see R. Serber, Phys.
Rev. 49, 545 (1936).

8 Throughout the paper, the subscript u denotes the space-time
index, u=4 is the time component, x4=4f, and u=1% (or j, or k)
denotes the space component. The isospin index is represented by
the superscript, e.g. @, which can be 0, 1, or 2, and a=0 denotes
the neutral component. All boldface letters denote isovectors.
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part of the weak-interaction vector current, (J,*)r—; is
the hadronic isovector part of the electromagnetic
current and \ is the coefficient of the Schwinger term.
The inclusion of the electromagnetic interaction requires

that the same commutator should be given by, instead
of (1.2),

—2i8%(r—7") (Ji") =1+ N (8/ 0ri) +ied, 83 (r—7") , (1.3)

where 4, is the electromagnetic field operator. We note
that under the gauge transformation

Ay— Ay— (0A/0x,),
(V™) 50— (V™) 50 exp(ieA)

the expression (1.1) acquires a multiplicative factor

explieA (r,5) —ieA(r',t)] while (1.3) acquires an additive

term —ieN(dA/dr;) 8 (r—7"). Tt can be easily shown that

these two changes are indeed identical by using the

equality

explieA(r 1)—ieA(¥',1)](8/0r;) 83 (r—7")
=(8/9r,)8(r—7")—1ie(dA/dr;)B3(r—7"). (1.4)

The contribution of this new term iehA4;8(r—7’) in
(1.3) remains present even after one integrates the com-
mutator (1.1) over d’, or d%’. In the usual current
algebra N\ is mathematically undefined, therefore, so
would be the corresponding integrated equal-time current
commutator. In the algebra of fields, X is a well-defined
¢ number, related to the renormalized mass 7, and the
renormalized coupling constant g, of the neutral

p meson by
A=2(m,/g,)*. (1.5)

In Sec. 2, we begin with the identity that (J,")r—1 is
related to the neutral p-meson field by

[ (%) Jr=1= — (mo*/ go)p,° ()
= (mp2/gp)[l7u0(x):|mny (1.6)

where (0,%)ren is the renormalized field operator, and
Mo, o, pu’(x) refer to the unrenormalized mass, the un-
renormalized coupling constant, and the unrenormalized
field operator of the neutral s meson.® Let g,(x) be the

9 We sketch the renormalization procedure for the p meson
coupled to a conserved current. [ For more details, see Ref. 1.] The
renormalized and the unrenormalized propagators are related by
(D) une=Z , (Dyy)ren. At zero four-momentum (D) une =708, a8
a consequence of current conservation. By assumption (Du)ren 1S
finite, and one can choose conveniently, Z,= (m,/mo)?, where the
renormalized mass m, of the p meson Is deﬁned as the zero of the
real part of the inverse propagator. If the renormalized coupling
constant g, is defined at zero momentum transfer, one sees from the
equation of motion of the p meson that it satisfies g,/go=m,/mo0.
Since the current conservation holds more exactly for the neutral
p meson, we will choose 7, and g, to be those of the neutral
p meson.

It is important to note that while the perturbation series of the
interaction between a single neutral vector meson and a conserved
current consisting of only spin-3 and spin-O fields can be renor-
malized, this is not true for the perturbation series of the strong-
interaction Lagrangian of the isovector p-meson system given by
Eq. (2.6) following. Nevertheless, we shall assume in the same spirit
as that used in the £-limiting process that the renormalized theory
does exist [T. D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962);
T. D. Lee, ibid. 128, 899 (1962)7]. The failure of the perturbation
series method implies only that the renormalized theory does not
have a power-series expansion in terms of the square of the
renormalized coupling constant g% For example, it may_contain
terms such as Ing,, or g,'?, etc.
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unrenormalized isovector p-meson field whose Oth
component? is the neutral p-meson field p,°(x). The
identity (1.6) implies that under the strong interaction,
the p-meson field satisfies the equation of field
conservation

d
——@,,(x)=0. (1-7)
d

Xu

As we shall see, this field-conservation equation deter-
mines the general form of the p-meson part of the strong
interaction. The resulting Lagrangian £ is identical in
form to that in the Yang-Mills theory,' except for a
mass term — 3 (mop,)2% The presence of this mass term
destroys the local isospin invariance which forms the
starting point of the Yang-Mills theory. Such a local
gauge invariance plays no role in the present paper; in-
stead, we emphasize the importance of the field-conser-
vation Eq. (1.7), which is a necessary consequence of the
field-current identity (1.6).

The extensions of this Lagrangian to include the elec-
tromagnetic and the weak interactions are discussed in
Sec. 3. The resulting algebra of fields, valid to all orders
in e, is given in Sec. 4. The generalization to an arbitrary
broken symmetry is discussed in Sec. 5. As an illustra-
tion of the general formalism, we give in Sec. 6 the
special example of the SU;X.SU; field algebra which is
valid to all orders in e.

In Sec. 7, some speculative remarks are made con-
cerning the lepton currents. It is pointed out that at
present, our experimental information is completely con-
sistent with the possibility that the leptonic part of the
electromagnetic current (or, the weak interaction cur-
rent) may also satisfy the algebra of fields. The experi-
mental consequences of such a possibility are discussed.

It may be emphasized that the distinction between
fields and sources (or, currents) has its origin in the
study of the electromagnetic and gravitational fields.
Both fields, having a zero rest mass and satisfying Bose
statistics, do approach their respective classical limits
at large distances. Therefore, there is a clear physical
distinction between such fields and their sources. The
same physical distinction does not exist for a massive
boson field. The difference between whether a set of
observed hadron, or lepton, current operators are
identical with a corresponding set of massive meson
fields, or not, lies only in the algebraic relations that
such operators satisfy. Although throughout the paper
all derivations are based on the usual local Lagrangian
field theory, it is hoped that the resulting equal-time
commutation relations can be of a more general nature,
not necessarily depending on the validity of the local
Lagrangian field theory.

.9 C. N. Yang and F. Mills, Phys. Rev. 96, 191 (1954). A discus-
sion of the implications of the field conservation equation for the
Yang-Mills theory has been given by V. I. Ogievetskij and I. V.
Polubarinov, Ann. Phys. (N. Y.) 25, 358 (1963); and by Bruno
Zumino, Acta Phys. Austriaca, Suppl. IT, 212 (1966).
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2. STRONG INTERACTION

For clarity, we consider first only the system of the
p-meson fields. The free Lagrangian is

Liree(p) = "'%Guﬁ‘"%(mOQV)z ) (2.1)
where
d i)
Guv'_"_@v""_—gn . (22)
Xy 0%y

In order that the field-current identity (1.6) holds,
it follows from, e.g., Eq. (2.8) of Ref. 1 that, since
the charged p meson does interact with the electro-
magnetic field, there must also exist a strong-interaction
term between the neutral p meson and the charged
p mesons. Such a term should be proportional to
(Guwp2—Gu2p,)p,?; from the isospin invariance, it
becomes proportional to (G, Xe,)- (o). Thus, we as-
sume the strong-interaction Lagrangian density of the
p-meson system to be of the general form

Lint(p)= %goGuv “(0uX QV)'I'F(Qu) ) (2.3)

where, for simplicity, F is assumed to depend only on g,.
This restriction is equivalent to the usual minimal
principle in which the p-meson coupling is assumed to
consist of only the minimal number of derivatives.

Theorem. If g,(x) satisfies the field conservation
equation

904(%)/0x,=0, (2.4)
then the function F must be of the form
F=—%g(0uX ). (2.5)

Therefore, the total Lagrangian density of the p-meson
system is
L= £iree(P)+£int(P) )
= —§(£w)*—5(mogy)?,

f,= (09,/800;,)— (69ﬂ/axv)“go(9#>< o). (2-7)

Proof. Let S,(p) be the current operator, whose com-
ponents are defined by

sua(p>=—eabc[a;:(p)/a(%)]pyv,

=ebef,,bp,c (2.8)

where the superscripts a, b, ¢ denote the isospin indices
and e*®¢is 1, —1, or 0 depending on whether abc is an
even permutation of 012, an odd permutation, or other-
wise. The isospin invariance of the strong interaction
implies that in the absence of other fields

(2.6)
where

d
—Su(0)=0. (2.9)
9

X
From (2.1) and (2.3), the equation of the p-meson field is
i)
—f— mo’0r= goSy+go® (e X pu) X ox— (0F/d9,). (2.10)

0xy
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Let us define 4% by
A°p,b=[—(0F/dg,)+go* (0, X 0u) X 0"

This is always possible since the right-hand side is an
isovector function of g,, and it is also a space-time
4-vector. From Egs. (2.4), (2.9), and (2.10), it follows
that

(2.11)

0
pt—A=0.
ox,

(2.12)

In this problem, the three spatial components g;
(i=1 2, 3) and their first time derivatives (d¢./d¢) are
independent variables. The time component g4 is, on
account of (2.10), a function of (9g;/d¢) and g;. Thus (in
the c-number theory), at any given time the values of g;
and g4 can be arbitrarily chosen. In order that (2.12)
hold at all times, one must have (94 ¢%/dx,)=0. Thus,
Ab=y§%® where « is a constant. It follows from Eq.
(2.11) that F is given by

F=—%x(0)— g0’ (euX 00)*.

In this expression, the term —3«(p,)? should be com-
bined with the mass term —3mo(g,)? in (2.1). The
theorem is then proved.

We note that the first term —3£,,2 in (2.6) is exactly
the same as the Lagrangian in the Yang-Mills theory.!®
In contrast to the Yang-Mills theory, the second term
—1(mop,)? destroys the local isospin gauge invariance.
The fact that me>%0 makes it possible to connect the
field conservation equation with the equation of motion.

The above considerations can be readily extended to
include other fields. In the absence of the electromag-
netic and the weak interactions, the total Lagrangian £
is known to be invariant under isospin transforma-
tions. If we assume the minimal principle, the field-
conservation equation (2.4) then requires the sum of the
free and the strong-interaction Lagrangian densities to
be of the form

eefree'}" Let= £p+ Lm (IP,D;J/’) )

where £, is invariant under the isospin rotation, £, is
given by (2.6), ¥ represents all other matter fields of
either half-integer or integer spin, and D,y is related to
the matrix representation —¢T of the isospin generator
on ¢y by

3
Dvx//=:9—«l/+go(T' o (2.13)
Xy

If ¥ is an isospin % field, then T=%}ix, where « is the
usual isospin Pauli matrix.

For the purpose of our subsequent discussions, the
minimal principle is by no means necessary. The
Lagrangian density can, then, assume a more general
form

£free+ Lot= £p+ Lm (‘l’,kab:flw) ’ (214)
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showing explicitly that £,, may also depend on f,, which
contains the derivatives of the p-meson field.
The p-meson equation becomes

a 0Lm
'_<fuv— +
Oy of,,

0Lnm
)—m029,=gos,,, (215)

af,,

where the ath isospin component of S, is given by

0L
+ >PMc
0 fou®

— 2 (0Lm/ DY) T . (2.16)
17

0L
3 fu

Sya____ — eabc(fmb__

Both the current S, and the field g, are conserved

P S )
—S,=—p,=0
ox, o ’

(2.17)

and the spatial integrals of both 4th components are
proportional to the generators of the isospin group.

3. ELECTROMAGNETIC AND WEAK
INTERACTIONS

We discuss first the explicit form of the electro-
magnetic-interaction Lagrangian which yields the field-
current identity (1.6). By following the general pro-
cedures given in Ref. 1, one can easily construct such a
gauge-invariant electromagnetic interaction from any
hadronic free and strong-interaction Lagrangian density
(Lireot Lst) of the form (2.14). Tt is convenient to sep-
arate (Lreet Lst) Into two parts:

cefrce"l"eest: —%(mf)@y)z"l"ﬂeﬂa (3'1)

where
Lo=— %fuv2+ L (‘prD"tp’f"”) :

The corresponding electromagnetic interaction can be
generated by replacing g, and (dg,/dx,) in £o by p, and
(8p,/dx,), where the isospin components of p, are
related to those of g, by

(3.2)

put= puts Pu’= pu’s
and

Pu’=pu+ (30/g0)/1u' (3.3)

A, is the unrenormalized electromagnetic field and eo
the unrenormalized charge of the electron. The resulting
Lagrangian density £= Lot Lot (Lq)r=1 is then
given by

L= —{F w—5(mogu)*+L£4, (3.4)

where
2o = Lolou— pp)=—1fw*+ Len@Df), (3.5)
Fuv=(85y/ 0,) — (3pu/ 9%,) — go(BuX B:) , (3.6)
D/ y=(8y/0x,)+go(T-p)¥, (3.7)



163

and

Fu=(34,/0x,)— (04 ,/ 0x,) . (3.8)

The Lagrangian density (3.4) is obviously gauge
invariant. We note that from (3.4) both g, and
(0F 4,/ 9x,) are proportional to the variational deriva-
tive (8L0/8p,), which is defined to be [(8L4"/85,)
—(8/0%,)9L4’/9(3p/ 0,) ]

Moy = 5£o’/5ﬁy y (39)
and
81",‘,, €y 5::‘30/
—= — <—> . (3.10)
0xy g0/ 0p)
Thus, one has
OF 4/ 0xu= — (eomo?/go)p,°, (3.11)

which gives the field-current identity (1.6).

For clarity, only the hadronic electromagnetic iso-
vector current [J,7(x)]r=1 is included in the above
Egs. (3.4)-(3.11). It has been shown in Ref. 1 that the
inclusion of the hadronic isoscalar electromagnetic
current [J,*(x)]r=o can be made in a similar way. In
addition to the change g, — 5, in the strong-interaction
Lagrangian, one replaces also the unrenormalized field
6,0 by [¢,0+3 (eo/gv®)A ] where ¢,° is defined to be the
field operator coupled to the hypercharge current with a
coupling constant gy°. As a result, (J,¥)r—o is propor-
tional to ¢,° which in turn is proportional to a linear
combination of the renormalized fields [¢, (%) Jren and
[w,(®)Jren for the ¢ meson and the w meson. We have,
according to Eq. (1.6) of Ref. 1,

(Jy) 1=0= —3gv [ o8Oy 4*(by)ren— SN0y, (Wp)ren ] s
(3.12)

where gy is the renormalized coupling constant, 8y is
one of the two mixing angles and mg, m, are the re-
normalized masses of the ¢ meson and the w meson,
respectively.

Next, we discuss the weak-interaction currents of the
hadrons. The field-current identity (1.6) together with
the isotriplet current hypothesis of Feynman and Gell-
Mann' require that the strangeness conserving hadronic
weak-interaction vector currents (V,"¥)s—o be pro-
portional to the appropriate charge component of g,.

(V™) s—0=— (m0*/go) (pu' —ip4?)

=—V2(mo*/go)pst, (3.13)

where p,t is the field operator that annihilates (creates)
the positively (negatively) charged p mesons. In terms
of the renormalized mass m,, the renormalized coupling
constant g, and the renormalized field (p,*)ren, (3.13)
can be written as

(V™) gmo= —\Q(m,z/ 20) (pu)ren-

uR. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958).

(3.14)
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It is natural to extend the field-current identity also
to other weak-interaction currents. For example, one
would assume the strangeness-nonconserving hadronic
weak-interaction current (V,%*)s_; to be proportional
to the field operator of the K*(890) meson, and the
strangeness-conserving and nonconserving parts of the
hadronic weak axial-vector currents (4,"%)s— and
(4 ,¥%) s=1 to be, respectively, proportional to the field
operators of a charged axial-vector meson such as 41
and its corresponding SU; multiplet member, e.g., K 4*.
Such a generalization and some of its consequences have
already been discussed in Ref. 5. One has then

[V () Js—1=—VZ (mo*/go) K ,* (x)
= —V2(m,*/g,) LK ,*(2) Jren,
(A4 (2) Js—o=—V2 (m0*/g0) A1, (%)
=—V2 (mp2/gp)[A ln(x)]ren )
(4,7 (%) Jsm1= —V2 (m0*/ g0) K 4,* ()
=—=V2(m,*/go) K 4,* () Jren,

where K *(x), A1,(x), and K 4,*(x) are the unrenormal-
ized field operators of K*, 41. and K 4* mesons. These
are assumed to have the same unrenormalized coupling
constant go and the same unrenormalized mass 7z, [The
general case that these mesons may have different un-
renormalized masses is discussed in Sec. 5.] For con-
venience, we have chosen in (3.15) the same wave-
function renormalization factor? Z=2Z,= (m,/m)? for
all these different meson fields, where m, is the re-
normalized mass of the neutral p meson.

In the above expressions, all hadron currents are
properly normalized, so that the semileptonic weak-
interaction Lagrangian density is

(3.15)

2G4 Hoc. | (3.16)
where
JuVe=cos0c(V e+ 4 ,75) 50
+sin(V, "o+ 4,%) sy, (3.17)

6. is the Cabibbo angle,”® G is the Fermi constant for
u decay ==(10-%/my?), and i,°* is the leptonic weak-
interaction current.

4. SU: FIELD ALGEBRA (INCLUDING
ELECTROMAGNETIC EFFECTS)

An important consequence of the ficld-current identi-
ties is that the observed hadronic electromagnetic and
weak-interaction current operators should satisfy the
same equal-time commutators as the corresponding
fields. The details of these commutation relations which
are called the field algebra have been analyzed in
Ref. 5. The explicit Lagrangian density given in the
previous section makes it possible to include in these
algebraic relations also the necessary effects of the elec-
tromagnetic field.

12 N. Cabibbo, Phys. Letters 10, 513 (1963).
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We begin with the Lagrangian density £ given by
(3.4) and, for convenience, adopt the Coulomb gauge.
Let A4,t* be the 3-vector which denotes the usual trans-
verse electromagnetic vector potential; it satisfies

(94,/dr;)=0. (4.1)

In the Coulomb gauge, the 4-vector potential 4, is
given by
(4.2)

Aj’—'Aj"' and A4=’i¢,

where, on account of (3.11), ¢ is the solution of the
Laplace equation

A¢p=1i(eomo?/go) ps-

Correspondingly, the electric field E; can be written as
E;=E*+Ej°*¢, where

Ejr=—(0A4%/01) and Ejoe=—(3¢/0r;). (4.3)

To apply the canonical formalism, it is convenient to
replace the —%F,? term in the Lagrangian density
(3.4) by

S(B) (Boney— ], @4)

where H ;= ej;1(34 %/ dr;,) denotes the magnetic field. It
is clear that the spatial integral of (4.4) is the same as
that of —1F,,2. The field algebra can then be most easily
derived by choosing 3,2, 4%, and ¢ as the generalized
coordinates. By using (3.4), (3.5), and (4.4) one finds
that their conjugate momenta are, respectively,
Pio=i[f12— (08m/0f4i*)+ (0Ln/8f1s)], Tj"=—E;t,
and 4.5)
Py=—i(3L,/0DJY).

It is useful to introduce the renormalization-indepen-
dent field operators

P“'a(":t)= (mo2/g0)p““ (r,l) = (mpz/gp)[w“ (":l)]ren . (4.6)

From the canonical commutation relations it follows
that the field operator p,’® satisfies the following equal-
time commutation relations:

[Pi,a(ril)!pf,b(rlyt)]=0;
Lod@(r,0),p1 (' 1) 1= €*¥6* (r—7")p *(r',1)
+ (m,/8,)23°(3/ 0r)8*(r—1")
+eeabc(mp/ gp)2[A]'tr(r,’t)]ren )

@7

(4.8)

and

Lodo(rt),0d b (¢ ) ]= €282 (r—1")pd (7',1) . (4.9)

Tn deriving these, we have made use of the fact that
pat=mg [ (8/3r;) (iP %) —ige(— e P*p;+PyTH)],

and the renormalized electromagnetic field (A4 #);en and
that the renormalized charge ¢ are related to the unre-
normalized quantities 4, and ¢ by

e(A4 ) ren=e0d ;" (4.10)
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Besides (4.7)-(4.9), there are other commutation rela-
tions between the electromagnetic fields and p,?; these
are given in Appendix A. Throughout the paper, e
denotes the renormalized charge of the electron.

From the field-current identities (1.6) and (3.13), it
follows that

(]u7)1=l= _Pulo ’

and
(VMWk) 8=0= —\/Q-p,,l“": - (Pu,l—ipulz) .

These observed hadronic current operators, therefore,
satisfy the following field algebra (valid to all orders
ine):

LT (0, T (" ) ]=[T 4 (r,0), T (7' ,1)]=0, (4.11)
LT4*(r,0), 77 (' 1) 1= (m,/8,)*(3/ )
X&3(r—r"), (4.12)
[Vi'Wk(7')t),Jj7 (71)1)] =0 ) (413)
[V4Wk (1’,1),],47 (71’0]: - []41 (r,t):.V#Wk (rlyt):]
=33 (r—7 )V, Ve (1), (4.14)

LV (), V(' ) J= LV (), V()T ]=0,

(4.15)
LV (r,), V™ (r",1)]=0, (4.16)
LV (r,8), V4 (¢ ) ] = 2083 (r— ") T 7 (¢ 1) , (4.17)

and

[V 7% (1), V() = — 208 (r— ") T 170" )
fé]

+z(m,,/g,,>2(a—+ie[A,-"<r',z>1en)aa<r—r’), (4.18)
4]

where the dagger denotes Hermitian conjugation. For
clarity, we have omitted the subscripts /=1 and S=0;
in the above Eqgs. (4.11)-(4.18), J, stands for (J,*)1—1
and V" for (V,"%)g—o.

Although for convenience we have adopted the
Coulomb gauge in our derivation, it can be readily
shown that the above Eqs. (4.11)-(4.18) are valid in
any gauge, provided that in (4.18) one replaces (4;%)zen
by the appropriate (4 ;)ren.

All above formulas, except (4.18), are formally un-
changed with the inclusion of the electromagnetic inter-
action. They differ from those of current algebra
by having the Schwinger term finite and the com-
mutators of all spatial current components zero.'® As
already noted in the introduction, the presence of a
term proportional to ed;63(r—7’) in the commutator
LV 4™(r,0),V;¥(+',)'] is a general consequence of gauge
invariance.

3 In principle, since the matrix elements of these current
operators are measurable, the validity of these commutation
relations can be tested. A convenient way is to use, e.g., the ap-
propriate sum rules for the high-energy neutrino processes de-
veloped by S. L. Adler [Phys. Rev. 143, 1144 (1965) . At present,

it is unclear whether the assumption of unsubtracted dispersion
relations made in deriving these sum rules is justified or not.
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The presence of the electromagnetic interaction
destroys the isospin invariance. Nevertheless, one may
still define the generator I of the isospin group by

I=i/94’d37.

Through the field-current identities, its components
I° (a=0, 1, 2) are also given by

(4.19)

I0= —’L/ (]47)1=1d37,

I—=%(I1—iI2)=—i2—1/2/(V4‘”“)s=od3r, (4.20)

and

=3I il%) =iV / (Var)Ts—od’r.

The equal-time commutator of I¢(¢) is, on account

of (4.9),
[Ze@),1b() ]=erI°(8) ,

which is valid to all orders in e.
By using (4.7)-(4.9) and the additional canonical
commutation relation

(4.21)

Lode(rt),47(r' ) 1=0, (4.22)
one finds (valid to all orders in ¢)
L1°@),pa*(r,0) 1=€tpat (r,1) (4.23)
but
LL2(0),p;>(r ) ]=ebep;o(r,1). (4.24)

Thus, under the isospin rotation, the components of gq,
or the equivalent current operators

LVa(rt)1s—0, [J&"(r)]r=1,

and EV4Wk(r)t)]TS=0: (425)
form an isotriplet, but for the spatial part it is those
of p;, or
[ViWk (r7l)]s=0 ’ []J"Y (7’,1)]1,,1""6(7%,,/&,)2[14 J"r(rJ)]ren )

and [V;"*(r,) ] s—0, (4.26)
that form an isotriplet.

5. BROKEN SYMMETRIES

As shown by Eq. (3.15), the generalization of the
field-current identities to other weak-interaction cur-
rents requires the existence of both vector and axial-
vector field operators. In place of the isospin symmetry,
the appropriate symmetry group G becomes either

G=SU,XSUs, or SUs, or SUsXSUs, (5.1)

or some other possibilities. All such symmetries are
known to be broken or badly broken by the strong
interaction. In the following, we assume the existence
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of NV spin-1 fields ¢,', ¢,2, -+ -¢," consisting of both
vector and axial-vector fields which include the three
p-meson fields. The total number N of ¢,° is the same
as the number of generators of G. For example, in the
case G=SU,XSU,, one has N=6, and the set of spin-1
meson fields ¢,* consists of three p-meson fields and
three additional axial-vector meson fields. As we shall
see, the existence of these spin-1 meson field operators
makes possible a unified treatment of these broken
symmetries.

It is useful to separate the total free and strong-
interaction Lagrangian density of the hadrons into two
parts

£iree+ eest: £¢+ Lm ) (52)

where £4 depends only on the meson fields ¢,%, £n
depends on ¢,* and also on other matter fields, repre-
sented by . The infinitesimal transformations of the
symmetry group G can be represented by

Su® — G+ C%(30) %, , (5.3)

and
Y —y+T(80)%y, (5.4)

where 66 is a set of infinitesimal numbers, Ce%¢ is the
totally antisymmetric structure constant of the sym-
metry group given by (5.1), and —47 is the matrix
representation of its Hermitian generators on y which
satisfies

[Te,T?]=CabeTe, (5.5)

In this section all superscripts ¢, , or ¢, vary from 1 to
N. [For SU, symmetry, C***= —¢%bc, and T* is related
to the Pauli matrices 7¢ by T%=%ir for the isospin-%
fields.]

We assume that the meson part £, is invariant under
the transformation (5.3), but £, may violate the sym-
metry; i.e., under (5.3) and (5.4)

£y — Ly, (56)

but

L —> L— P250%. (5.7)

By assumption, the p-meson fields are included in the
set ¢,%; therefore, the p-meson part of the Lagrangian,
given by (2.6), is contained in £,4. Thus, the invariance
assumption of £, under the larger group of transforma-
tions (5.3) requires that4

Ly= _%(f#»ay*%mﬂz(d’na)z: (5.8)
where
i) a
f’“a= ¢va‘——‘¢u“+gocab°¢pb¢y° . (5.9)
oz, ox,

In the case of broken symmetries, thereis a great deal
of arbitrariness in the symmetry-violating interaction

14 Except for the mass term, £4 is the same as the Lagrangian
of the generalized Yang-Mills theory discussed by R. Utiyama,
Phys. Rev. 101, 1597 (1956); M. Gell-Mann and S. Glashow,
Ann. Phys. (N. Y.) 15, 437 (1961).



1674 T. D. LEE

Ln. We will assume that, similar to (2.14), £, is of

the form
L= "Gm(‘P:Dvip;fnva); (5-10)

i.e., £,, can be an arbitrary function of ¢, ., and D,
where

D= (84/ 0x,)+goT °p"p -

This symmetry-violating Lagrangian density (5.10) is
quite general. Among others, it may contain symmetry-
violating terms like

Kabfuvafuvb ’ anafnva 3

where K¢ can be an arbitrary set of constants, or it can
be an arbitrary set of (space-time) scalar functions of
and Dy, and M ,,* can be an arbitrary set of (space-
time) tensor functions of ¥ and Dy.

It can be readily verified that, independent of the
detailed structure of the symmetry-breaking form of
£m, the canonical commutation rules imply that, in the
absence of the electromagnetic interaction, ¢, satisfied
the following algebra of fields®:

[¢‘,a (r:t):d’jb(r,:t)] =0,

[fa(r,0),94°(r',1) ]
= — (80/ma’)C**86*(r—1")¢a*(r' 1) ,

(5.11)

etc.,

(5.12)

(5.13)
and

Lopae(r,0),05° (' £) 1= — (go/mo*) C**°8% (r—1")p;°(r' 1)
+mg2620(9/0r;)83(r—7"). (5.14)
In deriving these, we have used the fact that the

canonical momenta conjugate to ¢;* and ¢, and are,
respectively,

;0= i[f4ja”‘ (6£m/6f4,-“)+ (6£m/3fj4“)] )

and
Py=—1i(0Lm/dDsy). (5.15)
Through the equation of motion
d 0Lm O0Ln
ax,, af‘"a a f vna

where
Syt= Cabc[fuvb- (6£m/6f,,,,b)+ (0£m/3fv,‘b)]¢,,°
“Z(acew/aDu‘P)T"‘//; (517)
¥

the 4th component ¢4* is given by

¢u*=mq 2 (9/0r;) (iP,*)
—igo(C**Pj*¢;°—PyT%)]. (5.18)
The field-current identities (1.6), (3.14), and ‘(3.15)
imply that the various hadronic electromagnetic and

weak-interaction current operators satisfy the same
algebra of fields. From (5.16) and (5.17), it follows that

- (m°2/go) (8¢,“/ax,) = aS,ﬂ/ax,,:Pa y (519)
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where P is given by (5.7). The usual PCAC (partially
conserved axial-vector current) approximation implies
that for the divergence of the axial-vector isovector
field ¢, the corresponding P* can be approximated by
a constant times the pion field; i.e.,

(a¢ui/axu) <ri(x),

where 7#(x) denotes the pion fields and ¢ represents the
isospin index. [If one wishes, similar approximations
can also be made for other pseudoscalar fields.]

If the following combination of derivatives of £,
commutes with ¢;° at equal time:

L9Ln/0fus®(r,t)— 0L/ 8 fis®(r,1), (' )]=0, (5.20)

then one has, in addition,

[(3/00)@s*(r,0)—i(3/0r;)a®(r 1), dx®(r' 1) ]
= — 18900 (r—1")8;s—1C " (go/me®)b;* (r,1)
X (8/0rk)6% (r—r")+1i(go/mo)2Ca4eCabe3 (r —y")
Xoi*(ri)git(#',1).  (5.21)

As an example of (5.20), £, can be of the form

Mpva (\b)f,‘,,a‘l- c’em, (‘lb;DV‘lb) )

where M %= 0L,/9 f,,* depends only on .

We note that according to (5.8), the unrenormalized
masses of ¢,* are all equal. A simple way to break the
symmetry is to introduce different unrenormalized
masses for different ¢,° Such a possibility can be easily
incorporated in our scheme by introducing a symmetry-
breaking term (Kq3fuw®fw?) in £,. The unrenormalized
masses of the mesons ¢,® become, then, the different
eigenvalues of the (VX N) matrix me?(14K)~, where
K=matrix (K,s). In this case, the commutation rela-
tions (5.12)-(5.14) remain valid, but (5.21) should be
modified.

If the symmetry-breaking interaction £,, is indepen-
dent of f,,% but otherwise can be an arbitrary function
of ¥ and Dy, then one has the following additional
equal-time commutation relations

L(8/00)¢;*(r,t)—i(3/ Ir;)pa®(r,2), pa* ()]

= — (go/mo*)C*6* (r—1") ((3¢p;%/ 01) — i (04%/ 37;))
+i(go/me?)C%ps*(r,1) (8/dr;)83(r—7"), (5.23)

(5.22)

and

Lfa*(r0), far® (' ,£)]=0. (5.24)

By adding these algebraic relations to those already
derived, one can also determine the equal-time com-
mutator between

(a/at)¢ia(ryt)-i(a/arj)‘ﬁ‘ia(r:t))

and
(8/00)i® (7' 1) —1i(9/ 0ri")pa* (7' 1)

though its explicit form is somewhat lengthy.
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6. SU;XSU; FIELD ALGEBRA (INCLUDING
ELECTROMAGNETIC EFFECTS)

As an illustration of how the above considerations
can be extended to include the electromagnetic inter-
action, we discuss in some detail the special case of

G=SU;XSUs. (6.1)

[The general case is discussed in Appendix A.] We
assume the existence of eight vector fields »,}, 9,2, - - -,
1,8, and eight axial-vector fields a,}, .2, - - -, a,%, where
the vector fields v, are related to the p-meson fields g,
and the K*+, K* meson fields by

vl=pt, vl=p2, vi=p0, 6.2)

2712 (g, t—dp,5) = K*t, and 27V2(y,5—ip,7)=K™,

In this case, it is convenient to represent the field tensors
(5.9) by V> and 4,,%:

9
V;wa: U — _’l)na_-gl)fo‘ﬁ7 (vnﬁvy‘)’_l_a“ﬁaﬂ) ’ (63)
c')x,, axv
and
d
A“va=_a”a_____a“a_g0faﬂ‘y (v“ﬁavv-‘—a“ﬁvﬂ) ) (6'4)
ox " axv
where
— f*f7=totally antisymmetric structure constant
of the SU; group, (6.5)

and e, 3, v vary independently from 1 to 8. According to
(5.8) and (5.10), the free and the strong-interaction
Lagrangian density of hadrons can be written as

Lrroot Lst= — %moz (.U#u)2_ %mo2 (a"a)2+ Lo, (66)

and
Lo=— % (Vuva)z'_ % (A uva)2+ Ln (¢,D,\0, V,,,,"‘,A uva) ’ (67)

whereD,y is defined by (5.11).

Following the arguments given in Sec. 3, one finds
that, similar to (3.4), the Lagrangian density, £= o
+£st+£7; iS

= 1= — (@ P+ o (69)

The function £’ is the same as £ except for the replace-

ment of v,* by 9,% and 9,* is given by
9u8= 10,5+ (60/ gO)An y
9,8=1,84-37112 (50/ g 0)4 I'T) (6~9)

and

for 3=a=8.

This replacement changes Dy, V%, and 4, to D,'y,

V.w?, and 4,2 respectively, where

ﬁ"dx .U“a

a d
V= —10,%——0,%— gof*#7(9,%0,7+a,fa,7), (6.10)
Bx,, 9z,

IDENTITIES

AND ALGEBRA OF FIELDS 1675
and
R ] d
A pt=—10a,"——0a,—gof*¥7 (9,fa,"+a,f,7). (6.11)
0x, o,
Correspondingly,

£0'= Lo, 8,:5) = =1 (P~ 1 ()"
+ "em (‘p,Dl'lw) V}wa;A /.wa) . (6.12)

To derive the field algebra valid to all orders in e, we
follow the steps outlined in Sec. 4. In the Coulomb
gauge, 4, is given by

A=A and A,=i¢, (6.13)

where A4;t satisfies (4.1) and ¢ is the solution of the
Laplace equation

Ad)= ieo(mo2/go) (7)43+ 3_1/2'048) . (614)

It is convenient to regard 9%, a,;%, 4;%, and ¢ as inde-
pendent variables. Similar to (4.5), their conjugate
momenta are, respectively,

(Po)i= =4[ Vs;*— (08m/8V4*)+ (3Lm/8V;4%)],
(Po)j*=1[A 4%~ (0Lm/ 04 4%+ (8Lm/ 04 ;5%) ],

IIjtr=—E;t*= (94 ,t/ 1), (6.15)
and
Py=—1i(0L,/0DsY).
By using the canonical commutation relations, the

algebra of fields (5.12)~(5.14) can be easily generalized
to include the electromagnetic effects. In writing down
these expressions, it is convenient to use the renormali-

zation-independent field operators introduced in Ref. 5.
We define

vlt'a= (m02/go) V= (mpz/gp)(vua)ren’

@)/ *= (mo*/g0)a,*= (m,%/g,) (04)ren,  (6.16)
and
ﬁn,az (moz/go)ﬁ"a= (mpz/gp) (ﬁ#a)ren ,

where the subscript ren denotes the renormalized
operator. For convenience, we have chosen the same
wave-function renormalization for all v,* and a,* as that
of the p meson; i.e.,

govu=g, (u)ren 800,°=g,(84%)ren

(6.17)
where

(80/85) = (mo/m,).

Since, by definition, the renormalized electromagnetic
field (4,)ren and the renormalized charge ¢ are related
to the unrenormalized quantities 4, and e by

e(4 wren= €04 B
one finds from (6.9) that

(94%)ren= (24®)ren+ (e/ 80) (A w)ren

(ﬁus)ren= ('Uus)ren'Jr's—l/Z (e/gp) (A p.)ren ’ (6. 18)
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and
(ﬁna)rcn: (vua)ren for 3#&758.

The equal-time commutators (5.12)-(5.14) become
(valid to all orders in e)

Lod*(r,0),0/° (") 1=[a/*(r),a/* (" ,1)]

=[v/= (r)t):aj’ﬁ(r,:t):lz 0, (6.19)
[7}4’a (7‘,1),7)4,/3 (7,,0] = [a4’a (7,t),(l4lﬂ(7",l)]
— e (r—r )oY ),  (6.20)
Lo (r,0),a4 P (r' 1) ]= f*P783 (r—1")ad" (r',1) , (6.21)
Lvde(r,0),0/(r" ) ]=Las'*(r,1),a/2(r' 1) ]
= faﬁ753 (7—7,)751',74" (mp/gp)2
X 68 (3/0rj)8%(r—r"), (6.22)
and
[0/ )= Lo (0,040’0
— B (r—r)af V(). (6.23)

In the above expressions, the electromagnetic field
enters explicitly only in (6.22) through 9;/7. [Further
commutation relations are given in Appendix A.]

In terms of v,/* and a@,’%, the observed hadronic
electromagnetic current operators and the weak-inter-
action current operators become

M r==—v/2, (Ju)r=0=—371%,3,
(V%) gmo= — (9,1—149,'%) ,
(V") g=1=— (v,*—1v,/%), (6.24)

(A4,7) s=0= — (@, —ie,"?)
and )
(4,79) g=1= — (@,"*—1a,/%).

These field-current identities imply that these hadron
current operators satisfy the same equal-time commuta-
tion relations as those of the fields. Most of the com-
mutators of these hadron currents do not explicitly
depend on the electromagnetic field. Those which are
modified by the presence of the electromagnetic fields
are

LV ™ (7,8) 50, V(7 1) T 50
= [A 4Wk (r!t) 5=0JA.7'Wk (r',t)'l's=0:|
=—2i6°(r—7) (J;)1=1

1¢]
+2(m,/g,) 2[——+ie (Aj),en]as (r—7"), (6.25)
31','
and
LV (r,8) s=1, V5 (7 1) T s—1]
=A% (1) = 1,47 ) 5=—1]
=—i83(r—7")[(JM)1=1+3(J)1=0]

9 ,
+2 (mp/g,,){g;—l—w (Aj)ren]63 (r—7"). (6.26)
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In both expressions the Schwinger term has a finite
constant coefficient and the covariant derivative

[8/0r;+ie(A ;)ren] occurs.

7. LEPTON CURRENTS

In this section, we will discuss some speculations con-
cerning the lepton currents. Consider first the electro-
magnetic interaction. The hadronic part of the electro-
magnetic current J,” and the leptonic part of the electro-
magnetic current 7,7 are, by definition, related to the
electromagnetic field 77, by

61",,,,/690,,,= eO(Jy’Y"I_jv'y) . (7.1)

Through the current field identities (1.6) and (3.12),
the hadron currents satisfy the following field algebra:

[]].'y (T,l);fk"' (7",15)] = []47 (7'70,]47 (1’/,15):] =0 ’ (72)
and
LT ()T (") 1= 0 (8/0r)8 (r—1"),  (7.3)

where )\, is a finite constant. [In the SUj; field algebra,
one has M=%(m,/g,)%.] Equations (7.2) and (7.3)
reduce to (4.11) and (4.12), respectively, if only the
isovector part is included in J,7.

A natural question to ask is whether the lepton cur-
rent operator j,¥ can satisfy a similar set of algebraic
relations. As we shall see, our present experimental
information is completely consistent with the proposal
that the leptonic part of the electromagnetic current
/Y also satisfies the algebra of fields; i.e.,

Ly (), () 1= L3457 (r,0), 57 (1) =0,

Lie" 0,50 () 1=Na(8/ )8 (r—1"),  (7.5)

where A; is a finite constant. To be sure, in the usual
quantum electrodynamics, the operator 7,7 is assumed
to be equal to

=W et W v, (7.6)

where ¥, and y, are the field operators of the electron
and the u meson; therefore, it cannot possibly satisfy
the algebra of fields.

The feasibility of (7.4) and (7.5) can be demonstrated
by considering a particular model in which one assumes
the existence of a (hypothetical) neutral spin-1 boson
field B,°(x). There is a direct interaction between B,%(x)
and the charged lepton. This interaction can be repre-
sented by the Lagrangian density

(7.4)

and

] 0 2
l’eiree—l" Ling=— % (WLBO,B"O) 2— —(——Bvo___B“O)
4\0x, x,

9
- ; ¢1T74|t‘)’p<—"" ifoBuO)-I-mzo:I\//l , (1.1
X

where fo is the unrenormalized coupling constant, m°,
m°® are, respectively, the unrenormalized masses of B°
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and the charged lepton /, I=¢ or g, and ¢; is the field
operator of the lepton.
Just as in (3.1), we may write

Lireet Lint= —%(mBOB,;")g-I-eGo. (78)

The electromagnetic interaction Lagrangian £, is then
generated by replacing in £o the operator B,°(x) by

Bu(): B+ (eO/fO)A ') (7~9)

and (8B,%/dx,) by (8B,%/dx,); i.e., in the absence of
hadrons, one has

£free+ £int+ oe'y = %Fuvz—' %‘ (mBano)2+ £0’ ]

where

(7.10)

£o/=Lo(B,'— B,9). (7.11)

It can be readily verified that in this model, if one
includes also the hadron current J,¥, the Maxwell
equation is

9
—F = — (eo/fo) m %) 2B,"Feo] 7.

X

(7.12)

Comparison between (7.12) and (7.1) leads to the
identity

35 (®)=—[(mz°)?*/ fo]B,*(x)
= (mBz/f)[BvO(x)]ren ) (7-13)

where [B,°(x) Jren is the renormalized field, related to
the renormalized coupling constant f and the re-
normalized mass m g by

(B, ren= (mp°/mp)B,° and (mg’/mg)= (fo/f). (7.14)

Consequently 7,7(x) satisfies the field algebra (7.4) and
(7.5), and the constant A; is given by

A= (m g%/ fo)*= (mp/ f)*. (7.15)

In (7.10), there is a direct B%-photon coupling through
the replacement B,%— B,° in

—3L[(8B,%/ 0x,)— (0B,%/ox,) ]

As will be shown in Appendix B, this direct B%-photon
coupling can be removed by a canonical transformation.
Furthermore, the physical consequences of the B meson
become particularly simple if one assumes that the
unrenormalized theory is divergent; ie., the un-
renormalized mass m % — 0. In this case, as a result of
the canonical transformation, the B° meson becomes
coupled only to e+ and p* with the same renormalized
coupling constant f given by (7.14). By using the results
derived in Appendix B, one sees that the existence of
the B° meson has essentially only the following two
experimental consequences:

(i) Scattering between charged leptons (e.g., e* on
et) can occur, besides through the usual photon
exchanges, also through a virtual exchange of the B°
meson. The lowest-order perturbation formulas for all
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photon-exchange amplitudes are the same as the usual
ones. Since quantum electrodynamics has been tested
by the colliding beam experiment!® for 4-momentum
transfer |¢?|Y2 up to ~ (3 BeV), one should require, in
the same range of ¢?, the matrix element due to B°
exchange (f%/4r)(g?+ms*)~" to be much smaller than
that due to photon exchange (a/¢?). Thus, one expects

mpt>a(f%/4r) (5 BeV)2~ (f2/4x) (5 BeV)?, (7.16)

which implies that m53>>5 BeV if (f2/4r) is ~O(1) and!%
mp>% BeV if (f2/4n)~0(a).

If (f/mg)? is of the same order of magnitude as the
weak-interaction coupling constant G [i.e., (f%/4r)
~10=8(mp/mx)?], it would be natural to identify B° as
the neutral component of the (hypothetical) inter-
mediate boson W= of the weak interaction. One may
then expect mp to have a comparable lower limit
~2.5 BeV to that of W=. [See remark (4) below.]

(ii) The B° meson can be produced through inelastic
processes by scattering u* or ¢ on hadrons; e.g.,

wrtp— pEtp+BY, (7.17)

and

ex+p — et p4 B0, (7.18)

Subsequently, the B% meson would decay into lepton
pairs
B'— (et+e), or (ut4u). (7.19)

The B°-meson production cross section o(l*+p—
I#4p-+4-B°) at an energy high above the threshold can
be roughly estimated to be ~a~1(f%/4r) times the cross
section ¢(/*4p— I¥4p-+y) for a photon-emission
process at the same incoming lepton energy and with a
comparable 4-momentum transfer to the proton. The
rates for the B° decay can be estimated by using the
lowest-order perturbation formula. One finds, upon
neglecting the lepton mass,

Rate(B®— pt+pu~)=Rate(B*— e+--¢7)
=5(f¥/4m)mp. (7.20)

From (i), one expects mp to be > (~1 BeV). Thus,
the effective way to investigate reactions (7.17) and
(7.18) is to use either the high-energy electrons from,

18 W. C. Barber, B. Gittelman, G. K. O’Neill, and B. Richter,
Phys. Rev. Letters 16, 1127 (1966).

Y6a Note added in proof. In the case f2/4r~0(a), a stronger
lower limit for 7 p can be obtained by using the recent result for
the anomalous magnetic moment of the negative y-meson. Farley
¢t al. (at the 1967 Stanford International Symposium on Elec-
tron-Photon Interactions) reported the experimental value

(g—2)exp=(23332£10) X 1077,
The usual quantum electrodynamics prediction for the same

quantity is
(g—2)m=23312X107".

Assuming that the discrepancy is due to the existence of the
B® meson, and using the relation

8g=(f*/4x) (1/3x) (mu/m5)?,

one finds mp2 1.6 BeV, provided (f?/4r)=a. We wish to thank
Professor L. Lederman for pointing this out to us.
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e.g., SLAC, or the high-energy muons from, e.g., the
AGS and CERN, provided (f%/4r) is not much
smaller than . At present, we are unaware of any such
experiments.'®

In the model, the existence of this hypothetical B°
meson implies that 7,” satisfies the algebra of fields. At
present, the converse, which is perhaps the more
interesting question, whether the algebraic relations
(7.4) and (7.5) also imply the existence of a vector
meson, like B°, remains an open one. It is hoped that
these algebraic relations and the generalized field-
current identities may have a wider domain of appli-
cability than the special local-field-theoretical model. In
this connection, the following remarks, though based on
the special model, may clarify some of the implications
of these field-current identities.

(1) The Lagrangians (7.7) and (7.10) are both re-
normalizable in the usual sense. The mathematical
problem is identical with the one discussed in Ref. 4
The unrenormalized mass m5° cannot be zero; it can be
infinite, if the unrenormalized theory is divergent. In
the limit of an infinite m 5% the matrix element of sa
between any two states |¢) and |b) becomes identical
with that of 7,7 (x)=— (ms*/ f)[B,°(%) Jren; i.€.,

lim (6|sx|a)= (|5, (x)]a)

m pd=00

=— (m5*/ f)B] (B )sen| @), (7.21)
where sy is given by (7.6). Nevertheless, 7,7 satisfies the
algebra of fields, but s, does not. [Similar conclusions
also apply to the hadrons.»*]

(2) By using the same arguments given in Refs. 1
and 4, one finds that, independently of whether the un-
renormalized mass mg° is finite or infinite, the un-
renormalized photon propagator must be finite. As a
result, the ratio between the unrenormalized charge ¢,
and the renormalized charge e is also finite. We note
that the Maxwell equation for the renormalized electro-
magnetic field tensor

(F ;w)ren_'—' (80/ e) (F m)

can be decomposed into a leptonic part

(1.22)

a9
[»w,,),en] = — (eo/)e(ms/ ) (B)sen, (1.23)

0%y

a hadronic =1 part

a
['_ (Fﬂv)ren:] = (60/3) %e (mpz/g) (pvo)ren ) (724)
I=1

0%y

18 We wish to thank Dr. R. Cool and Dr. W. Panofsky for
discussions of these experimental problems.
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and a hadronic /=0 part

ad
[ (mm] = eo/e)(e/gy)
ax# I=0

X [cosOymy?(pu)ren—sinOymo(@u)ren . (7.25)

Except for (eo/e)?, only renormalized quantities occur
in these expressions. The finiteness of (eo/e)? and
(eo/€)*>1 make possible the general expectation that
the matrix elements of the renormalized field operators
(Fu)reny (pu®ren, + -+ between any two physical states
should be finite.

The hadronic contribution to the photon propagator
has already been discussed in Refs. 1 and 4. For the
special case that

(f#/4r) =01, (7.26)

and, therefore,
a(f/4r)1=0()KL, (7.27)

where o= (¢?/4m)=2(137)"", the leptonic contribution
can be explicitly calculated.

From a straightforward perturbation calculation, one
finds that, to first order in (f%/4r), the renormalized
B°-meson propagator is

(92+m32)"1 (Buv"{'" mB_qu(b)
X1+ (g4+mp?) 7 (f%/47)¢* (¢*0w—quq)F].  (7.28)

The function F can be most conveniently expressed in
terms of the usual spectral representation

F(@)=F@)+Fu(g?, (7.29)

and
1t (B—2w)x2(1—2x)dx
Fl (‘12) = )
37 0 ml2+q2x(1—-x)

where /=¢ or u, and 7, is the renormalized lepton mass.
The unrenormalized photon propagator (D,,)° can be
obtained by using Eq. (55) of Ref. 4. In the limit that
the unrenormalized mass m5° is infinite, one has, upon
neglecting the hadronic contribution and higher-order
terms in a(f%/4r)~Y, (f2/4r), and o,
(D“,7)°=q—z(é,,,—q"zq“q,)[l—a(fz/4qr)“
X(gms) " mp+a(g+mp?)mp*F].  (1.31)

Thus to the same order, the leptonic contribution to
(eo/e)? is
(eo/€)*=14a(f2/4r). (7.32)

From (7.31), one sees that the usual vacuum polariza-
tion term!” o (157)~1g?[m,2+m, 2] is now changed to

o[ (150) X (m24-m )+ (f2/4x)tmp2].  (7.33)

(3) The possible presence of the B° meson leaves a

(7.30)

1 E. A. Uehling, Phys. Rev. 48, 55 (1935); R. Serber, ibid, 48,
49 (1935).
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certain arbitrariness in the definition of the electro-
magnetic field 4,. For example, one may define

A =1+ (eo/ fo) ]2 A
+ (eo/ fo)[14 (eo/ fo)’T 2B, (7.34)

Thus, by using the Lagrangian (7.10), one sees that, in
the absence of hadrons, 4,’ satisfies

d
'_F;w/= — €1y, (7.35)
0%y
where s, is given by (7.6)
e1=[1+ (eo/ f0)*1%e0, (7.36)

and
F,/= (04, /0x,)— (04, /dx,).

If the hadron current J,” is included, then 4, satisfies

d
—'—'Fl.w,= el(_sv+JV7) .
0xy

(7.37)

[Further discussions will be given in Appendix B.]
From (7.14) and the finiteness of (eo/e)?, it follows that
in the limit of the unrenormalized mass m %= o, (7.21)
holds and F,,/=F,.

(4) If the renormalized coupling constant (f?/4r) is
of the same order as the semiweak coupling constant,

(f*/4m)~10"5(mp/mx)*, (7.38)

where my is the nucleon mass, then it becomes natural
to identify the B® meson as the neutral component of the
usual charged weak-interaction intermediate boson W#.
One replaces the lepton current j,* in (3.16) by the
W#-meson field operator W,. The weak-interaction
Lagrangian density (3.16) becomes, then,

fTW +He., (7.39)

where J,"k is given by (3.17). In addition, there is a
direct ¥ -lepton coupling, in complete analogy with the
direct B-lepton coupling in (7.7),

fsu™W,+H.., (7.40)

(7.41)

where
SuWk= 1 Zl: \blT‘Yﬂ’u (1 +'}’5)'p'x ’

and y,, is the field operator of the neutrino »;.

A full investigation of these interesting, but hypo-
thetical, possibilities clearly lies outside both the scope
and the spirit of the present paper.

APPENDIX A

In this Appendix, we discuss the complete set of
equal-time commutators of the local fields for the
general case discussed in Sec. 5, but extended to include
also the electromagnetic field. On account of (5.2) and
(5.8), the strong-interaction Lagrangian density and
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the hadronic part of the free Lagrangian density can be
written as

_%m02 (¢va)2+£0(¢’DV‘//;fpva) ) (Al)
where £ is related to £, of (5.10) by
Lo=—1(fw)+Ln. (A.2)

The function £ is invariant under isospin rotations;
otherwise, it can be an arbitrary function of ¢, Dy,
and f,°

The total Lagrangian density £grect £st-+L£, can be
derived from (A.1) by replacing in £

6. — d;#az w®t (eo/go)f“/l,‘, (A.3)

where £ depends on the group G. If G is the isospin SU,
group, or the usual SU,XSU, group, then

a=1 for ¢,°=p,

=0 otherwise. (A:4)
If G is the usual SUs, or SU3;X.SU; group, then
fe=1 for ¢.°=v,%=p,0,
=312 for ¢,2=0,8,
=0 otherwise. (A.5)

Through the replacement (A.3), the total Lagrangian
density becomes

oefree'i— £st+ £7 = %FWF - ‘%moz (¢Va)2
- 71" (f#va)2+ Lm (gl/,D,'l[/,f,,y“) ) (A~6)
where
D)= (3¢/ %)+ gl ¢, , (A.T)
and

]

F A a A P A
Sw'=—0,"— a_¢ua+g<)cabc¢ub¢vc . (A.8)
Xy

0xy

From the Lagrangian density (A.6), one sees that the
Maxwell equation takes the form

I¢]
—F = — (eamo?/g0) °¢,°. (A.9)

Xu

Just as in Secs. 4 and 6, we will, for convenience,
adopt the Coulomb gauge, and regard ¢;2, 4,t, and ¢
as the generalized coordinates. Their conjugate mo-
menta are, respectively,

Pie=ilfi2— (3&m/0f %)+ (0Lm/3f5s)],
M= — ;= (84,*/91),

and

(A.10)

Py=—i(0L,,/0DY).

For g=SU,, (A.10) reduces to (4.5), and for G=SU;
XSUs, (A.10) reduces to (6.15). From the equations of
motion, it follows that

pe=mit[(/or)P)
—igo(CP = PyToy)]. (A1)
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The totality of the canonical commutation relations
between these generalized coordinates and their con-
jugate momenta determines the complete set of field
algebra. The following equal-time commutators for
¢u%(r,0) are valid to all orders in e?:

[ (r1),8:t (" )]=0, (A.12)
[¢4a (r,l),¢4b(r',l):]
=— (go/md*)C¥s(r' )5 (r—1"),  (A.13)
and
[¢4a (r7l) :¢jb(rlit):|
= — (go/mo?)Cav,e (' )83 (r—7")
+mg26%2(3/0r;)8%(r—r"). (A.14)

We note that (A.12) and (A.13) are not affected by the
presence of the electromagnetic field; they are identical
with (5.12) and (5.13), respectively. Equation (A’14)
differs from (5.14) by the presence of ¢,, instead of ¢,°,
on the right-hand side. The above Egs. (A.12)-(A.14)
become (4.7)-(4.9) for G=SU,, and (6.19)-(6.23) for
G=SUsXSUs.

In the Coulomb gauge, the transverse part of the
vector potential 4 and the corresponding transverse
part of the electric field E;** are canonical variables.
They satisfy

[A Jtr (T,t) 7Ektr (rl,t)j

== —i(6jk——6j6kV“2)53(r~—r’) , (A].S)
[¢l‘a(r)t)7A ktr(r,’t):]=0 b (A‘16)
[¢4a (r,t),Ek"(r’,l)]= 0: (A17)
[‘l’ja (r,t),Ek“(r',t)]
=[0u;*(r,1)— 19,04 (r,1), A1t (r' 1) ]
=1(eo/g0)£*(8js— 0,0, V23 (r—7"), (A.18)
and
[:at(i’ja (7:t) - iaj¢4a (r,t) 7Ek“ (rl’t)]z 0 ’ (A‘19)
where 9,= (8/91), 9;=(8/9r;), V*=09,2 and
V=258 (r—r") = — (4m) [ (ry—r)* T2, (A.20)
j
The magnetic field H; is related to 4, by
H = €jridrd . (A.21)
The electric field E; consists of two parts
Ej=Ejtr+Ejl°”g , (A22)

in which E;°¢ is not an independent variable, but is
determined by ¢4° One has, on account of (A.9),

;L 1one= —i(eomo®/go) E°b". (A.23)

From (A.21)-(A.23) and the above commutation re-
lations, it can be readily verified that

[bu(r,0),Hi(r' ) ]=0, (A.24)
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[¢4a (771)’Ek (7",1)]
= —egCbEbp 40, V20%(r—7"), (A.25)
and
[¢fa (’71))Ek (T’,)f)]
=1(eq/go) (£°0;5— goC?*£%;°0, V283 (r—7").  (A.26)

All these commutation relations are valid independently
of the detailed form of £,,, and to all orders in e. It has
been shown in Sec. 5 that, in the absence of the electro-
magnetic interaction, one has the additional commuta-
tion relations (5.21), if £, satisfies (5.20), and also
(5.23), if £, is independent of f,,% The generalization
of (5.21) and (5.23) to include the electromagnetic
effects can be derived in a straightforward, though
somewhat tedious, way by using the above commuta-
tion relations together with the canonical ones;

I:Pj“ (f,lf),(i)‘kb(f,,l):|= _iajkaabag(r—fl) s
Epia(r:l):Pkb(/)t):]=0 )
and the definitions of 2,¢ and ¢®.

APPENDIX B

In this Appendix, we discuss some consequences of
the (hypothetical) B® meson. For clarity, we consider a
model containing the B° meson, the electromagnetic
field, the electron and the muon, but in which the
hadrons are represented only by the proton and the p°
meson. The total Lagrangian density is

L= —1F 2 —3(mp’B,0)?—5(m,0p,")*
1[31?,0 aB,ﬂ]z 1[6,6,.0 aﬁ,ﬁ]z
4 9x,  Ox, 4L 9x, 0w,

d .
_y xbz*74[vu<———ifoBu°>+Mz°:l¢z
l

Xy

a
"“pr'ﬂl:')’n(_‘{“ ig Uﬁu()) + mpo]‘pp , (B.1)

0%y
where
pu0=p+ (eo/g0)A 4, (B.2)
and
Bu(]:BuO"' (eo/ fo)A u- (B.3)

We find that (B.1) becomes the same as (7.10) if one
neglects the hadrons p and p°% From (B.1), the electro-
magnetic field satisfies

0
—Fu=—e fo (ms")2B,"+ g (m,)?%,0]. (B.4)
X
It is convenient to define
s=0_ Wilvayabi, (B.5)

1
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and

Sy=wpvayWp- (B.6)

One can readily verify that both s, and .S, are conserved.
Similarly, both p,° and B,° fields satisfy the field-
conservation equation. There exist in (B.1), besides the
(0,°S,) and the (B,%,) interactions, also a p,>-photon
interaction and a B,%-photon interaction with coupling
constants (eo/go) and (eo/fo). These photon-meson
direct couplings can be removed by the transformation

4,— A4,
where 4,/ is defined by

Ay =N"4,+N[ (eo/go)p’+ (eo/ f0) BL], (B.7)

and
N=[14(eo/ fo)*+ (eo/g0)* 112

In terms of 4,/, the Lagrangian density (B.1)
becomes

(B.8)

= %EF IW’2+ gl"’oK Oguvoj_% ~u0M 02¢u°
+e1(su—Sp)A)+6,.Gogu

d
*? ¢z*74(7ua——+mz°)¢z

an

d
- ¢rT74<7n'(9_—+ mp0>¢p ,

T

(B.9)

where ~ denotes the transpose of a matrix,

61=N60,

FIELD-CURRENT IDENTITIES AND ALGEBRA OF FIELDS

1681
Ko, My, and G, are all (2)X2) matrices,
_ 2(H-(eo/fo)2 —302/(f080)> (B.11)
U\ (o) 1 e/er)
(o
M, —( 0 (mB°)2> , (B.12)
Y FROVTAY, By
G0=N2< gL/ Ve ) (B.13)
eo*/ fo Jo[1+(eo/g0)%]

One sees that the transformed electromagnetic field
A,/ satisfies

0
—F ' =e1(S,—s,).
X

(B.14)

The mathematical problem of the two coupled fields
e’ and B0 is identical with the ¢-w mixing problem
discussed in Ref. 1. Here we will only discuss the case
that the unrenormalized theory is divergent. In this
case, the unrenormalized masses m5° and m,0 tend to
infinity; i.e.,

mp®—co and m,0—oo .

(B.15)

The renormalized coupling constants f and g are related
to the unrenormalized ones by

(f/fo)=(mp/ms’) and (g/go)=(m,/m,"). (B.16)

In the limit (B.15), (eo/e)? remains finite, but fo and g,
both become infinity; therefore,

10
() ).
0

—g 0
Go d ( g ) .

0 fo
By substituting these limiting forms into (B.9), one
finds that in the same limit the p° meson is coupled
only to the hadron, while the B° meson is coupled only
to the leptons. Equation (B.14) is exactly the same as the
Maxwell equation in the usual electrodynamics without
the B® meson. The experimental consequences of the

possible existence of such a B meson have already been
discussed in Sec. 7.

(B.17)

and

(B.18)



