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et a/. ' have estimated the contribution of the I=O s-
wave interaction to low-energy s-wave x-nucleon scat-
tering. Their procedure effectively deduces one number,
which is an integral over the I=0 s-wave mw scattering
cross section multiplied by a weighting factor which falls
rapidly from threshold to an energy of about 900 MeV.
The largest contribution to the integral comes from xx
energies below 600 MeV. They And a fit with a phase
shift which rises rapidly at threshold to 30 and then
levels off at that value. However, it would seem probable
that other forms of variation of this phase shift would
produce the same value of the integral they determine;
in particular, a phase which is larger at higher masses,
such as we propose, would then imply a much smaller
scattering length at threshold. This smaller scattering
length would be in better agreement with the conclu-

' J.Hamilton, P. Menotti, G. C. Oades, and L. L.J.Vick, Phys.
Rev. 128, 1881 (1962).

sions drawn by steinberg" from an analysis of E,4

decay. Chiu and Schechter" have remarked how the
sum rule of Adler" can be completed if there is an s-

wave mw resonance with a mass of 390 MeV and a width
of 90 MeV. They then show that this sum rule could,
alternatively, be completed by a range of other s-wave

resonances; all that is needed is that M/I's have a cer-
tain value. Therefore, we could complete this sum rule
with ans-wave resonance with, for example, a mass of 700
MeU and a width of 520 MeV. The s-wave cross section
due to such a resonance would be very similar to the
conclusions which seem to be implied by these analyses
of reaction (I). It can therefore be suggested that the
sum rule of Adler" can probably be completed in this
way.

S. Weinberg, Phys. Rev. Letters 17, 336 (1966)."Y. T. Chiu and J. Schechter, Nuovo Cimento 46, 548 {1966).
n S. L. Adler, Phys. Rev. 140, 8736 (1965).
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It is shown that the possible identity between the various hadronic current operators and the corre-
sponding spin-1 meson field operators determines the general structure of the hadronic part of the total
Lagrangian. In particular, the identity between the isovector electromagnetic current and the neutral
p-meson Geld implies that the p dependence of the strong interaction must be the same as that in the Yang-
Mills theory, except for the mass term of the p meson. The explicit form of the interaction Lagrangian makes
possible a general study of the local equal-time commutators of the various hadronic current operators,
including the eGects of the electromagnetic interaction. Many of these electromagnetic correction terms
depend only on the general requirement of gauge invariance, and are independent of whether the proposed
Geld-current identities are valid or not. For example, the usual Schwinger term X(8/Or;)6'(r —r') in the
commutator between the time component of any charged hadronic weak interaction current and the jth
space component of its Hermitian conjugate should be replaced by X[(S/Sr;)+r'eA;]6'(r r'), where A; is-
the electromagnetic field operator. The contribution of such a correction term, i.e., XieA;8 (r—r ), remains
present in the integrated form of the commutator. In the usual current algebra, X is mathematically un-
defined. If field-current identities hold, then these current commutators are the same as the corresponding
algebra of the field operators, and P becomes a well-defined c number. Some speculative remarks concerning
the possible extension of the algebra of fields to the lepton currents are presented.

1. INTRODUCTION

ECENTLY, it has been suggested' that the entire
hadronic electromagnetic current operator is iden-

tical with a linear combination of the local field opera-
tors of the known neutral vector mesons, independent
of whether the unrenormalized masses of these vector
mesons are finite or infinite. ' This identity is shown to be

*This research was supported in part by the U. S. Atomic
Energy Commission and the National Science Foundation.

~ N. M. Kroll, T. D. Lee, and Bruno Zumino, Phys. Rev. 157,
1376 (1967).

'There exists an alternative proposal in which the unre-

consistent with the requirement of gauge invariance; it
gives a precise formulation of the idea of vector domi-

normalized isovector part of the hadronic electromagnetic current
is assumed to be the same operator as the unrenormalized current
generating the neutral p-meson field. In such a case, the field-
current identity holds only in the limit of an infinite unrenor-
malised meson mass. Lsee Refs. 1, 4, M. Gell-Mann and F.
Zachariasen, Phys. Rev. 124, 953 (1961).g It is important to note
that in this alternative possibility, the products of the current
operators would in general, be diBerent from the products of the
corresponding field operators even in the limit of infinite unre-
normalized masses; thus, the hadronic current operators entering
in the electromagnetic and the weak interactions satisfy the usual
current algebra instead of the algebra of fields.
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nance' in the language of a local Lagrangian field theory,
and it leads, among other consequences, to the con-
clusion that, in the absence of the l.eptons, the entire
hadronic contribution to the electric charge renormaliza-
tion is finite. ' 4 The generalization that such field-current
identities hold also for other observed hadronic currents,
such as the various weak-interaction vector and axial-
vector currents, implies that these observed hadronic
currents satisfy the algebra of fields, ' which is simpler
than the usual current algebra. ' It is found that all
successful applications previously obtained from the
current algebra can be rederived by using the algebra of
fields; in addition, the usually troublesome Schwinger
term7 becomes a well-defined c number in the algebra of
fields.

The purpose of this paper is to point out that these
field-current identities also determine the general struc-
ture of both the strong-interaction and the hadronic
part of the electromagnetic interaction. The explicit
form of these interaction Lagrangians enables one to
study systematically the electromagnetic corrections
of the equal-time commutator of the various hadron
currents. That some of these commutators must be
affected by the electromagnetic interaction follows
from general considerations of gauge invariance. For
example, suppose that, in the absence of the electro-
magnetic interaction, the commutator

LV k(& f) V wk(& f)t j
is'

2t'Bs(r r') Js&—(r', f)r=t+—X(B/Bra)P(r r'), (1.2)—
where (V„"~)s o is the hadronic strangeness-conserving

3 Y. Nambu, Phys. Rev. 106, 1366 (1957); %'. R. Frazer and
J.R. Fulco, Phys. Rev. 117, 1603 (1960);J.J.Sakurai, Ann. Phys.
(N. Y.) 11, 1 (1960); M. Gell-Mann and F. Zachariasen, Phys.
Rev. 124, 953 (1961);M. Gell-Mann, ibid. 125, 1067 (1962); Y.
Nambu and J. J. Sakurai, Phys. Rev. Letters 8, 79 (1962); M.
Gell-Mann, D. Sharp, and W. G. Wagner, ibid. 8, 261 (1962);
J. Schwinger, Phys. Rev. 140, B158 (1965).For further discussions
and applications of vector dominance ideas, see G. Feldman and
P. Matthews, Phys. Rev. 132, 823 (1963);S. Herman and S. Drell,
ibid. 133, 8791 (1964); R. F. Dashen and D. H. Sharp, ibid. 133,
B1585 (1964); L. Stodolsky, ibid. 134, B1099 (1964); G. Barton
and B. G. Smith, Nuovo Cimento 36, 436 (1965};R. Gatto,
Ergeb. Exakt. Naturw. 39, 106 (1965);M. Ross and L. Stodolsky,
Phys. Rev. 149, 1172 (1966);D. S. Beder, ibid. 149, 1203 (1966);
M. A. B. Beg and A. Pais, Phys. Rev. Letters 14, 51 (1965).

While the approximation that the matrix elements of the
hadronic vector current operator may be replaced by the corre-
sponding elements of the vector-meson field operator has been dis-
cussed in many of these papers, in the context of a Lagrangian field
theory the d)'LKculty has always been the apparent violation of
gauge invariance. )See, e.g., G. Feldman and P. Matthews (Ref.
5).]This difficulty is revolved in Ref. 1.

4 T. D. Lee and Bruno Zumino (to be published).
5T. D. Lee, S. Weinberg, and Bruno Zumino, Phys. Rev.

Letters 18, 1029 (1967).
6 M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63

(1964}.'T. Goto and T. Imamura, Progr. Theoret. Phys. {Kyoto)
14, 396 (1955); J. Schwinger, Phys. Rev. Letters 3, 296 (1959).
For an earlier discussion of a related term see R. Serber, Phys.
Rev. 49, 545 (1936).

8 Throughout the paper, the subscript p denotes the space-time
index, p=4 is the time component, x4=it, and +=i (or j, or k)
denotes the space component. The isospin index is represented by
the superscript, e.g. a, which can be 0, 1, or 2, and a=0 denotes
t;be neqtral component. AJl boldface le&tery denote isovectors.

part of the wea¹interaction vector current, (J„&)r=t is
the hadronic isovector part of the electromagnetic
current and X is the coeNcient of the Schwinger term.
The inclusion of the electromagnetic interaction requires
that the same commutator should be given by, instead
of (1.2),

2i P (—r r') (J—i&) r= t+ X L( B/Br s)+ seA s] Bs(r—r'), (1.3)
where 3„is the electromagnetic field operator. We note
that under the gauge transformation

A„—+ A„—(Bh/Bx„),
(V„"~)s=o ~ (V„"")s=o exp(i'),

the expression (1.1) acquires a multiplicative factor
exp[i'(r, t) ieA. (r, t—)j wh. ile (1.3) acquires an additive
term t'eX(BA/—Brs) P(r r'). It c—an be easily shown that
these two changes are indeed identical by using the
equality

exp[ieA (r t) ieA (r'&f) j—(B/Br, )P (r r')—
= (B/Br, )P(r r') —ie(B—fi,/Br, )Bs(r r') .—(1.4)

The contribution of this new term ieXAsBs(r —r ) in

(1.3) remains present even after one integrates the com-
mutator (1.1) over d'r, or d'r'. In the usual current
algebra X is mathematically undefined, therefore, so
wouM be the corresponding imtegra/ed equal-time current
commutator. In the algebra of fields, P, is a well-defined
c number, related to the renormalized mass m„and the
renormalized coupling constant g, of the neutral

p meson by
X= 2(m, /g, )'. (1.5)

In Sec. 2, we begin with the identity that (J„7)z, is

related to the neutral p-meson field by

P„'(*)jr=i= —(rise'/go) p, '(*)
= —(~,'/a. )Lp.'(x)j-. (1 6)

where (p, ')„,„ is the renormalized field operator, and
Bio, i7o, p&o(x) refer to the unrenormalized mass, the un-

renormalized coupling constant, and the unrenormalized
field operator of the neutral p meson. ' i.et 9„(x) be the

We sketch the renormalization procedure for the p meson
coupled to a conserved current. /For more details, see Ref. 1.jThe
renormalized and the unrenormalized propagators are related by
(Dfsv)unr =~p(Dpp)ren At zero four-momentum (D„p)unr =mo f)&., as
a consequence of current conservation. By assumption (D»)ren is
finite, and one can choose conveniently, Zp= (mp/mo}2, where the
renormalized mass m, of the p meson is defined as the zero of the
real part of the inverse propagator. If the renormalized coupling
constant g, is defined at zero momentum transfer, one sees from the
equation of motion of the p meson that it satisfies f,p/go

——mp/tao.
Since the current conservation holds more exactly for the neutral
p meson, we will choose m, and g, to be those of the neutral
p meson.

It is important to note that while the perturbation series of the
interaction between a single neutral vector meson and a conserved
current consisting of only spin-~ and spin-0 fields can be renor-
malized, this is not true for the perturbation series of the strong-
interaction Lagrangian of the isovector p-meson system given by
Eq. (2.6) following. Nevertheless, we shall assume in the same spirit
as that used in the p-limiting process that the renormalized theory
does exist PT. D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962);
T. D. Lee, ibid. 128, 899 (1962)j.The failure of the perturbation
series method implies only that the renormalized theory does not
have a power-series expansion in terms of the square of the
renormalized coupling constant g,2. For example, it may. contain
terrgs sgch as lng» or g,'/', et'.



unrenormalized isovector p-meson 6eld whose 0th
component' is the neutral p-meson field p„'(x). The
identity (1.6) implies that und. er the strong interaction,
the p-meson 6eld satisfies the equation of 6eld
cons cI'vatlon &i-.(o)= —-'G.'—2(~oy.)' (2.1)

2. STRONG lmEIU CrloN

For clarity, we consider first only the system of the
p-meson 6clds. Thc fI'cc Lagrangian ls

y.(*)=o.
8$p (2.2)

As we shall see, this 6eld-conservation equation deter-
mines the general form of the p-meson part of the strong
interaction. The resulting Lagrangian 2,& is identical in
form to that in the Yang-Mills theory, " except for a,

mass term —-', {may„)'. The presence of this mass term
destroys the local isospin invariance which forms the
starting point of the Yang-Mills theory. Such a local
ga,uge invariance plays no role in the present paper; in-
stead, we emphasize the importance of the 6eld-conser-
vation Eq. (1.7), which is a necessary consequence of the
field-current identity (1.6).

The extensions of this Lagrangian to include the elec-
tromagnetic and the weak interactions are discussed in
Sec. 3. The resulting algebra of fields, valid to all orders
in e, is given in Sec. 4. The generalization to an arbitrary
broken symmetry is discussed in Sec. 5. As an illustra-
tion of the general formalism, we give in Sec. 6 the
special example of the SUSX5U3 6eld algebra which is
valid to all orders in e.

In Sec. 'I, some speculative remarks are made con-
cerning the lepton currents. It is pointed out that at
present, our experimental information is completely con-
sistent with the possibility that the leptonic part of the
electromagnetic current (or, the weak interaction cur-
rent) may also satisfy the algebra of fields. The experi-
mental consequences of such a possibility are discussed.

It may be emphasized that the distinction between
fields and sources (or, currents) has its origin in the
study of the electromagnetic and gravitational 6elds.
Both 6elds, having a zero rest mass and satisfying Bose
statistics„do approach their respective classical limits
at large distances. Therefore, there is a clear physical
distinction between such 6elds and their sources. The
same physical distinction does not exist for a massive
boson 6eld. The di6erence between whether a set of
observed hadron, or lepton, current operators are
identical with a corresponding set of massive meson
6elds, or not, lies only in the algebraic relations that
such operators satisfy. Although throughout the paper
all derivations are based on the usual local Lagrangian
field theory, it is hoped that the resulting equal-time
commuta, tion relations can be of a more general nature,
not necessarily depending on the validity of the local
Lagrangian 6cld theory.

In order that the field-current identity (16) holds
it follows from, e.g., Eq. (2.8) of Ref. 1 that, since
the charged p meson does interact with the electro-
magnetic Geld, there must also exist a strong-interaction
term between the neutral p meson and the charged

p mesons. Such a, term should be proportional to
(G„„'p„2—G„„2p„')p„o; from the isospin invariance, it
becomes proportional to (G„„&(y„) (y„). Thus, we as-
sume the strong-interaction Lagrangian density of the
p-meson system to be of the general form

&. (oi)=kgoG" (y.&&y.)+P(y.) (2.3)

where, for simplicity, F is assumed to depend Owly on p„.
This restriction is equivalent to the usual minimal
principle in which the p-meson coupling is assumed to
consist of only the minimal number of derivatives.

Theorem. If y„(x) satisfies the field conservation
equation

By„(x)/Bx„=0,
then the function P must bc of the form

~go (yi&&y~) .

(2 4)

(2 5)

Therefore, the total Lagrangian density of the p-meson
system is

&abef bo c (2 g)

where the superscripts a, b, c denote the isospin indices
and e~" is +1, —1, or 0 depending on whether obo is an
even permutation of Oj.2, an odd permutation, or other-
wise. The isospin invariance of the strong interaction
implies that in the absence of other 6elds

(2 9)

(2.6)
where

f"= (By./B*.)—(By./B*.)—go(y.~ y.) (2 'I)

Proof. Let S„(p)be the current operator, whose com-
ponents are de6ned by

(Bp~
~. (o)= —""B&(o)/B~

(Bx„

"C. ¹ Yang and I.Mills, Phys. Rev. 96, 191 (1954).A discus-
sion of the implications of the Geld conservation equation for the
Yang-Mills theory has been given by V. I. Ogievetskij and I. V.
Polubarinov, Ann. Phys. (¹Y.) 25, 358 (1963); and by Bruno
Zumino, Acta Phys. Austriaca, Suppl. II, 212 {1966).

From (2.1) and (2.3), the equation of the p-meson field is

8
f" mo'y. =gos—.+go'(y. &&y.)&&y. (BP!By.) —(2 1o)

8$p
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(2.12)

In this problem, the three spatial components y;
(i =1 2, 3) and their 6rst time derivatives (Bg,/Bf) are
independent variables. The time component y4 is) on
account of (2.10), a function of (Bp;/Bt) and y, . Thus (in
the c-number theory), at any given time the values of y;
and g4 can be arbitrarily chosen. In order that (2.12)
hold at all times, one must have (BA a'/Bx„) =0. Thus,
2 ~=if:5'~ where ~ is a constant. It follows from Kq.
(2.11) that F is given by

F= —o~(e.)'--'-go'(e. Xe )'.

Ill fills cxprcsslonc thc tc1111 —oK(p„) sllollM bc coiil-

bined with the mass term —iomo(y„)' in (2.1). The
theorem is then proved.

We note that the first term —iof„o in (2.6) is exactly
the same as the Lagrangian in the Yang-Mills theory. '0

In contrast to the Yang-Mills theory, the second term
—

o (nsoy. )' destroys the loca/ isospin gauge invariance.
The fact that mo@0 makes it possible to connect the
6eld conservation equation with the equation of motion.

The above considerations can be readily extended to
include other 6elds. In the absence of the electromag-
netic and the weak interactions, the total Lagrangian Z
is known to be invariant under isospin transforma-

tions. If we assume the minimal principle, the 6eld-
conservation equation (2.4) then requires the sum of the
free and the strong-interaction Lagrangian densities to
be of the form

Zr„,+Z,c=Z,+2 (P,D„f),

where Z is invariant under the isospin rotation, Z, is

given by (2.6), f represents all other matter 6elds of
either half-integer or integer spin, and DpP is related to
the matrix representation —iT of the isospin generator
on P by

8
4+go(T. e.)4.

8Ãy

(2.13)

If f is an isospin —,
' field, then T= ioiz, where ~ is the

usual lsospln Pauli matrix.
For the purpose of our subsequent discussions, the

minimal principle is by no means necessary. The
Lagrangian density can, then, assume a more general

form
(2 14)

~"~.'= L
—(BF/Be.)+gp'(e. && e.)&& e.3 (211)

This is always possible since the right-hand side is an
isovector function of y„, and it is also a space-time
4-vector. From Eqs. (2.4), (2.9), and (2.10), it follows
that

where the uth isospin component of S, is given by

BZ Bg
$ a pape f O + ~

c

Bfac Bfca

P(Bz—„/BD„&)T'P. (2.16)

Both the current S„and the held y„are conserved

l9 8
S„= g„=0,

Bxp 8xy
(2.17)

and the spatial integrals of both 4th components are
proportional to the generators of the isospin group.

3. EI ECTROMAG+ETIC AND WEAK
rmVERAnIOKS

%e discuss 6rst the explicit form of the electro-
magnetic-interaction Lagrangian which yields the Geld-

current identity (1.6). By following the general pro-

cedures given in Ref. 1, one can easily construct such a
gauge-invariant electromagnetic interaction from any
hadronic free and strong-interaction Lagrangian density

(Zl„,+Z,c) of the form (2.14). It is convenient to sep-

arate (Zr„,+Z,t) into two parts:

2j +aC t, o (dopa) +2'p (3 1)

&o= afa. '+~-(4,D—.4,f"). (3.2)

The corresponding electromagnetic interaction can be
generated by replacing p„and (By„/Bx.) in Zp by p„and
(BP„/Bx„), where the isospin components of P„are
related to those of Io„by

~1 1
@II =PI

I".'= ~'+ (co/go)~.

A„ is the unrenormalized electromagnetic held and eo

the unrenormalized charge of the electron. The resulting

Lagrangian density 2=Zl„,+2„+(Z~) 1=, is then

given by
Z= —V'a. '—o (~oy,)'+ Zo', (3.4)

~o'= ~p(e. ~ P.)= 'f"'+~-(4,D'—4-,A.) (3 3)

f"=(Bf./». ) (BP./». ) go(P—.&& P.) —(3 6)

(3 7)

showing explicitly that Z may also depend on f„„which
contains the derivatives of the p-meson 6eM.

The p-meson equation becomes

B/ Bz
f„„— + —mp'y. =goS„(2.15)

gx~ 8'fop Bfpp
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F„„=(BA„/Bx„) —(BA„/Bx,). (3 &)

The Lagrangian density (3.4) is obviously gauge
invariant. We note that from (3.4) both y„and
(BF„„/Bx„)are proportional to the variational deriva-
tive (5Zo'/8p„), which is defined to be [(BZo'/Bp„)
—(8/Bx, )Bzo'/B(B p./Bx„)7

and

mo'p, = &so'/&P„ (3.9)

(3.10)

Thus, one has

ilF„„/Bx„=—(eomo'/go) p„', (3.11)

which gives the field-current identity (1.6).
For clarity, only the hadronic electromagnetic iso-

vector current [J„&(x)7r i is included in the above
Kqs. (3.4)—(3.11).It has been shown in Ref. 1 that the
inclusion of the hadronic isoscalar electromagnetic
current [J„&(x)7r=o can be made in a similar way. In
addition to the change y„—+ p„ in the strong-interaction
Lagrangian, one replaces also the unrenormalized field
P„o by [g„o+-,'(eo/gro)A „7 where P„o is defined to be the
field operator coupled to the hypercharge current with a
coupling constant gr'. As a result, (J&'r)r ois pro=por-

tional to p„which in turn is proportional to a linear
combination of the renormalized fields [P„(x)7„„and
[oo„(x)7„„for the g meson and the oo meson. We have,
according to Eq. (1.6) of Ref. 1,

(J„~)r o= ', gr '—[c-os&—rm&'(Q„), ,„sin8r—m„'(oo„)„7,
(3.12)

where p„+ is the field operator that annihilates (creates)
the positively (negatively) charged p mesons. In terms
of the renormalized mass rn„ the renormalized coupling
constant g, and the renormalized field (p„+)„„(3.13)
can be written as

(V."")s-o= ~&(m. '/g. )(p')- (3.14)

R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
{1958).

where gy is the renormalized coupling constant, 8~ is
one of the two mixing angles and m~, m„are the re-
normalized masses of the p meson and the &o meson,
respectively.

Next, we discuss the weak-interaction currents of the
hadrons. The field-current identity (1.6) together with
the isotriplet current hypothesis of Feynman and Gell-
Mann" require that the strangeness conserving hadronic
weak;interaction vector currents (V„"")s o be pro-
portional to the appropriate charge component of y„.

(V„-k),=.= —(m"/g. ) (p.'—'p. ')
=——v2(mo'/go) p.+) (3 13)

It is natural to extend the field-current identity also
to other weak-interaction currents. For example, one
would assume the strangeness-nonconserving hadronic
weak-interaction current (V„"k)s=i to be proportional
to the field operator of the E*(890) meson, and the
strangeness-conserving and nonconserving parts of the
hadronic weak axial-vector currents (A„"")s o and
(A „"")s=ito be, respectively, proportional to the field
operators of a charged axial-vector meson such as Aj.
and its corresponding SU3 multiplet member, e.g., E~*.
Such a generalization and some of its consequences have
already been discussed in Ref. 5. One has then

[vp"k(x) 7s=i = v2 (m—o'/go)E„*(x)
V2 (m,—'/g, )[E„*(x)7,,„,

[A „"k(x)7s=o = —~2 (m o'/go)A 1„(x)
= —~2(m. '/g. )LA1.(*)7--,

[A p "k(x)7s=i = —K2 (m o'/go)E ~„*(x)
~~(m. '/g. )[Es.*(x)7-.,

(3.15)

where E„*(x),A 1„(x),and Eg„*(x)are the unrenormal-
ized field operators of E*, A1. and E~* mesons. These
are assumed to have the same unrenormalized coupling
constant go and the same unrenormalized mass mo. [The
general case that these mesons may have different un-
renormalized masses is discussed in Sec. 5.7 For con-
venience, we have chosen in (3.15) the same wave-
function renormalization factor' Z=Z, = (m,/mo)' for
all these different meson fields, where m, is the re-
normalized mass of the neutral p meson.

In the above expressions, all hadron currents are
properly normalized, so that the semileptonic weak-
interaction Lagrangian density is

where
2—'i'GJ ""j""+H.c. , (3.16)

4. SU HELD ALGEBRA (INCLUDING
ELECTROMAGNETIC EFFECTS)

An important consequence of the field-current identi-
ties is that the observed hadronic electromagnetic and
weak-interaction current operators should satisfy the
same equal-time commutators as the corresponding
fields. The details of these commutation relations which
are called the field algebra have been analyzed in
Ref. 5. The explicit Lagrangian density given in the
previous section makes it possible to include in these
algebraic relations also the necessary e8ects of the elec-
tromagnetic field.

"N. Cabibbo, Phys. Letters 10, 513 {1963).

J wk cosg (V vrk+A wk)

+sin&, (V„"k+A„~k)s,, (3 Iy)

8, is the Cabibbo angle, " t" is the Fermi constant for
p decay —(10 '/m~'), and i„ is the leptonic weak-
interaction current.
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(BA "/Br.) =0. (4 1)

In the Coulomb gauge, the 4-vector potential A„ is
given by

A; =A 44' and A 4 i et)——, (4 2)

We begin with the Lagrangian density g given by
(3.4) and, for convenience, adopt the Coulomb gauge.
Let 2;"be the 3-vector which denotes the usual trans-
verse electromagnetic vector potential; it satishes

Besides (4.7)—(4.9), there are other commutation rela-
tions between the electromagnetic fields and p„, these
are given in Appendix A. Throughout the paper, e
denotes the renormalized charge of the electron.

From the f(cld-current identities (1.6) R,nd (3.13), it
follows that

(V."')e o= =12—p"= (p—." sp—.")

where, on account o ( . ), p is t e so ution o t e These observed hadronic current operators, therefore,
satisfy the following field algebra (valid to all ordersLaplace equation
111 e

To apply the canonical formalism, it is convenient to
replace the —~~F„„' term in the Lagrangian density
(3.4) by

1f(p .tr) S+ (g .long) S IJ,Sj (4 4)

where H; = e;sl(BA 44'/Bro) denotes the magnetic field. Et

is clear that the spatial integral of (4.4) is the same as
that of —~F„„'.The Geld algebra can then be most easily
derived by choosing p, , A4", and P as the generalized
coordinates. By llslllg (3.4)q (3.5)q alld (4.4) ollc fill(ls

that their conjugate momenta are, respectively,

»'=4LJ'4' (B~-/Bf—e )+(B~-/BA4')]

and (4.5)
Po= 4(BZ /BD4'P-) .

It is useful to introduce the renormalization-indepen-

dent Geld operators

p,"(r,t)= (mo'/go) p: (r, t) = (m, '/g. )Lp. (r,t)j-- (4 6)

From the canonical commutation relati. ons it follows

that the Geld operator p„' satisGes the following equal-
time commutation relations:

Lp'"(r t),p "(r',t)1=o;

L ."(,t),.;"(",t)j= "~ ( —");"(",t)
+ (m,/g, )'Bo'(B/Br;)P(r —r')

+ee'"(m, /g„)'LA44r(r', t)1„, (4.8)

L. "(,t),."(",t)j=""B( -")."(",t). (4.9)

In deriving these, we have made use of the fact that

p"=mo 'L(B/Br;) (4»') —sgo( —""&"p'+&O'V) j,
and the renOrmaliZed eleC'tlolllRgIICtlC 6eld (A j )een alld

that the renormalized charge e are related to the unre-

Imrmalized quantities A;" and eo by

e (AP)„„=eoAI"' ~ (4.10)

Art) = 4 (comes/go) p4"

Correspondingly, the electric Geld E, can be written as
8 =8"+8 Ion(4 where

E,"=—(BA,"/Bt) and J' ""s= —(B(t/Br ) . (4 3)

LV "'(,t),V.""(",t)3=0,
Lv4""(r,.t), v4""(r', t)t]=24bs(r —r') J41'(r', t),

(4.16)

(4.17)

$V4"'(r t) V ""(r' t)tj= —24Bs(r—r')J'(r' t)

where the dagger denotes Hermitian conjugation. For
clarity, we have omitted the subscripts I= 1 and 5=0;
in tile above Eqs. (4.11)-(4.18)~ Jn~ stands fol' (Jn~)l
and V„"~for (V„"")em.

Although for convenience we have adopted the
Coulomb gauge in our derivation, it can be readily
shown that the above Eqs. (4.11)—(4.18) are valid in
any gauge, provided that in (4.18) one replaces (A;")„,
by the appropriate (A;)„„.

All above formulas, except (4.18), are formally un-
changed with the inclusion of the electromagnetic inter-
action. They di8er from those of current algebra
by havolg thc Schwingcl term fln1tc and thc com-
mutators of all spatial current components zero. '3 As
already noted in the introduction, the presence of a
term proportional to eA;Bs(r r') in the commutato—r
)V4""(r&t),V4""(r',t)tg is a general consequence of gauge
invariance.

"In principle, since the matrix elements of these current
operators are measurable, the validity of these commutation
relations can be tested. A convenient way is to use, e.g., the ap-
propriate sum rules for the high-energy neutrino processes de-
veloped by S. L. Adler Lpbys. Rev. 143, 1144 (1965}g.At present,
it is unclear whether the assumption of unsubtracted dispersion
relations made in deriving these sum rules is justifted or not.

[J;1(r,t),J;v(r', t)j=(Jp(r, t),J41(r', t)j=0, (4.11)

LJ "(r,t),J'(",t)j= (m,/g, )'(BIB~)
XB4(r—r'), (4.12)

fV;""(r,t),J47(r', t)j=0,
L«"'( t) J.'(",t)3=-LJ (,t), v,"'(",t)j

= 484(r —r') V„""(r',t), (4.14)

LV'""( t) V ""(",t)j=LV'"'(,t),V;"'(",t)'j=o,
(4.15)
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The presence of the electromagnetic interaction
destroys the isospin invariance. Nevertheless, one may
still define the generator I of the isospin group by

I=i y4'd'r. (4.14))

Is = i —(J4&)i=id'r,

Through the Geld-current identities, its components
I' (a=0, 1, 2) are also given by

of X spin-1 fields P„', g„z, P„~ consisting of both
vector and axial-vector fields which include the three
p-meson 6elds. The total number X of pa is the same
as the number of generators of g. For example, in the
case g=SUzXSUz, one has %=6, and the set of spin-1
meson fields P„consists of three p-meson fields and
three additional axial-vector meson Gelds. As we shall
see, the existence of these spin-1 meson field operators
makes possible a unified treatment of these broken
symmetries.

It is useful to separate the total free and strong-
interaction Lagrangian density of the hadrons into two
parts

I = ,'(I' iI-') =——i2 'i' (V4e") e bd'r =(4.20) @iree++at= +4++ra (5 2)

a11d

I+= z (I'+zI') =+z2 'i' (V e )ze=od'r.

where Ze depends ozzty on the meson fields p„e, g„
depends on pa' and also on other matter 6elds, repre-
sented by P. The infinitesimal transformations of the
symmetry group g can be represented by

[I.(t),Ib(t))= "I (t), (4.21)

The equal-time commutator of I'(t) is, on account
of (4.9), and

y e ~ y e+Cebc(fig) by c

4'~k+T (+)V

(5.3)

(5.4)

[p,"(r,t),A,' (r', t)j=0, (4.22)

which is valid to all orders in e.
By using (4.7)—(4.9) and the additional canonical

commutation relation

where 88 is a set of infinitesimal numbers, C "is the
totally antisymmetric structure constant of the sym-
metry group given by (5.1), and iT' is the—matrix
representation of its Hermitian generators on f which
satisfies

one 6nds (valid to all orders in e) [Ta Tbj CabcTc (5 5)

but
[I (t) p'( t)j="" '( t) (4.23)

[I (t),P (r,t)j=4'"p,'(r, t). (4.24)

Thus, under the isospin rotation, the components of y4,
or the equivalent current operators

[V4""( ,r)tj=e,4[A'(r, t)jr=i,
and [V4""(r,t)jze~, (4.25)

In this section all superscripts a, b, or c, vary from 1 to
1V. [For SUz symmetry, C "=—4'", and T' is related
to the Pauli matrices r' by T =-,iv for the isospin-~
fields. j

%e assume that the meson part Z~ is ievariuet under
the transformation (5.3), but 2 may violate the sym-
metry; i.e., under (5.3) and (5.4)

(5.6)
form an isotriplet, but for the spatial part it is those
of p;, or ~ 2 —I"M (5.7)

[V; "(r,t)je~, Pt (r,t)]r .i+e(nz, /gc)'[A;"(r, t)1„„
and [Vr""(r,t) jze s, (4.26)=

that form an isotriplet.

S. BROKE3% SYMMETMES

As shown by Eq. (3.15), the generalization of the
Geld-current identities to other wea¹interaction cur-
rents requires the existence of both vector and axial-
vector Geld operators. In place of the isospin symmetry,
the appropriate symmetry group g becomes either

g —SUzXSUz, or SUs, or SUsXSUs, (5.1)

or some other possibilities. All such symmetries are
known to be broken or badly broken by the strong
interaction. In the following, we assume the existence

8 8
f e — y a y a+tr Cab' by c

8$p 8$p
(5.9)

In the case of broken symmetries, there is a great dea1.
of arbitrariness in the symmetry-violating interaction

'4 Except for the mass term, Z~ is the same as the Lagrangian
of the generalized Yang-Mills theory discussed by R. Utiyama,
Phys. Rev. 101, j.597 (1956); M. Gell-Mann and S. Glashow,
Anii. Phys. (N. Y.) 15, 43/ (1961).

Sy assumption, the p-meson fields are included in the
set @„;therefore, the p-meson part of the Lagrangian,
given by (2.6), is contained in Zb. Thus, the invariance
assumption of 2» under the larger group of transforma-
tions (5.3) requires that"

(5.8)
where



g . We will assume that, slilillai to (2.14), Z is of
the form

&-=&-Q,D.4 f"'); (5 1o)

i.e., Z can be an. arbitrary function of P, f„„,and D„P,
where

where P is given by (5.7). The usual PCAC (partially
conserved axial-vector current) approximation implies
that for the divergence of the axial-vector isovector
Geld g„', the corresponding P' can be approximated by
a constant times the pion Geld; i.e.,

DpP = (BP/Bx.)+goT'P. 'P. (5.11) (By„'/Bx„) ~ 7r'(x),

This symmetry-violating Lagrangian density (5.10) is
quite general. Among others, it may contain symmetry-
violating terms like

&'bf„„~f„„b, IV„„'f„„', etc. ,

where o'(x) denotes the pion fields and i represents the
isospin index. Llf one wishes, similar approximations
can also be made for other pseudoscalar fields. j

If the following combination of derivatives of g
commutes with Q;b at equal time:

where E"can be an arbitrary set of constants, or it can
be an arbitrary set of (space-time) scalar functions of P
and D„P, and M„.' can be an. arbitrary set of (space-
time) tensor functions of P and D„f.

It can be readily verified that, independent of the
detailed structure of the symmetry-breaking form of, the canonical commutation rules imply that, in the
absence of the electromagnetic interaction, P„' satisfied
the following algebra of Gelds':

Ly;.(»,t),y, b(r', t)j=0,

L~~-/Bf4' (»,t) BZ /—af;, (r, l), $ b(r', t)j=0, (5.20)

then one has in addition

L(a/at)4; (r,t)—i(a/ar, )o4 (»,t), y, (»',tg
= —i~"~'(r—r') &;b—iC'"(go/»~to') y '(r t)

X (a/Brb)a (r r)+i (go/rpb—o)oC+o+Cobaao(» —r )
Xtt (r,t)o4'(r', t) . (5.21)

(5.12) As an example of (5.20), g„can be of the form

L4 (,t)A '( t)]
= —(g /rrbo')C "a'(r—r')44'(r', t), (5.13)

Po= i (BZ /BD4$). —

Through the equation of motion

(5.15)

8 BZ BZ
f s +

axe Bop Bfyo

—rrbo'g„= goS„', (5.16)

Pq. (»,t),q, b(",tq= (go/~')—C."a'(» ")~, (",—t)
rambo

oa.b(a/Br~) ao-(r r ) (5 14)

In deriving these, we have used the fact that the
canonical momenta conjugate to P, and P, and are,
respectively,

P, =i[f&,' (BZ /Bf4—P)+(BZ /Bf;4 )j,
and

(5.22)

where M„„'=BZ /Bf„; depends only on f
We note that according to (5.8), the unrenormalized

masses of g„' are all equal. A simple way to break the
symmetry is to introduce different unrenormalized
masses for different P„'. Such a possibility can be easily
incorporated in our scheme by introducing a symmetry-
breaking term (E,bf„„'f„„b)in 2 . The unrenormalized
masses of the mesons P„become, then, the different
eigenvalues of the (1VXcV) matrix mo'(1+X') ', where
E=matrix (IC,b). In this case, the commutation rela-
tions (5.12)—(5.14) remain valid, but (5.21) should be
modified.

If the symmetry-breaking interaction 2 is indepen-
dent of f„„,but otherwise can be an arbitrary function
of f and D„P, then one has the following additional
equal-time commutation relations

where L(Blat)4»'(r t) —i(a/Br;)4'(r, t), 4 '( ',t)]
—(go/~ )Co"&'(»—r')(( y;B/at) —i(ay, '/ar, ))

+& (go/rrbo') C"'pb'(r, t) (B/Br;) a'(r r'), (5—.23)
S,'=C "[f (B&-/Bf )+—(B~ /Bf"')34 '

g(az /BD.—&)T&, (5.17)
and

the 4th component $4' is given by

yp= rlbo 'p(8/ar;) (iP;)—
igo(C "P 'P —PoT P)j. (5.—18)

The Geld. -current identities (1.6), (3.14), and (3 15)
imply the, t the various hadronic electromagnetic and

weak. -interaction current operators satisfy the same

algebra of fields. From (5.16) and (5.17), it follows that

—(rrbo'/go) (By, /Bx„)= BS, /Bx„=P', (5.19)

Lfot (» t),f b(r', t)3=0. (5.24)

(a/Bt)p; (r,t) i (a/ar;)$4'(», t), —
and

(a/at)A ( b',r) ti(a/ar. ')y—"(»', t),

though its explicit form is somewhat lengthy.

By adding these algebraic relations to those already
derived, one can also determine the equal-time com-
mutator between
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6. BU0XSU0 FIELD ALGEBRA (INCLUDING
ELECTROMAGNETIC EFFECTS)

As an illustration of how the above considerations
can be extended to include the electromagnetic inter-
action, we discuss in some detail the special case of

(6.1)

[The general case is discussed. in Appendix A.$ We
assume the existence of eight vector fields e„', v„', ~ ~ .,
~„', and eight axial-vector fieMs u„', a„', , a„', where
the vector 6elds e„are related to the p-meson fields y„

the gQ+ ++0 eso 6elds by

&f =P~ ~ &~ =P~ ~ &f =Pf ~

1 C 2 2 3 0

(6.2)
2-&/0(v 4 iv 0) —+»+ and 2-&/0{v 0 iv 7) —goo

In this case, it is convenient to represent the 6eld tensors
(5.9) by V„„and A„„:

8 8V»= v» — v» —
g f»e7(v ev&+a ea') (63)

~Sp ~Tv

t9 8
a gof »(v //a, &+—a ev &) (64)

~Sp ~Tv

A;=A;" and A4 ——+, (6.13)

where A;" satisfies (4.1) and P is the solution of the
Laplace equation

Ap=ieo(mo'/go) (v4'+3 '/'v4') . (6.14)

It is convenient to regard 8/, a,", A,", and iP as inde-
pendent variables. Similar to (4.5), their conjugate
momenta are, respectively,

(P.), =i[V; —(BZ /Bf'4, )+(BZ /BV;4 )j,
(&.),'= [A,'—(B~ /BA, ')+(B~ /BA,.)j

II"= E"'= (BA—"jB/) (6.15)

8 8
a„— a„go—f ~&(8pea„&+a„ev„&). (6.11)

Bxp Bxy

Correspondingly,

+2 (P,D„'P,Vp„,A„„»).

To derive the field algebra valid to all orders in e, we
follow the steps outlined in Sec. 4. In the Coulomb
gauge, A„ is given by

—f »= totally sntisyrnmetric structure constant

of the SUo group, (6.5)

and a, P, y vary independently from 1 to 8. According to
(5.8) and. (5.10), the free and the strong-interaction
Lagrangian density of hadrons can be written as

Z„ee+ g„=——,'ego'(v„)' —-,'PP/0'(a )'+so, (6.6)

~.=--:(V.,-) —:(A.,-) +~.(~,D,~,V.,-,A.,-), (67)

whereDpP is defined by (5.11).
Following the arguments given in Sec. 3, one Qnds

that, similar to (3.4), the Lagrangian density, Z =g/„,
+Z.e+2„ is

1p 0 1~ 0(v»)0 %pm 0(a»)0+@ ' (6 8)

The function 0' is the same as Zo except for the replace-
ment of sp by vp ~ and 8p is given by

v."=(~0'/go) v:= (~'/g p) (v:)--
a' = (P//0'/go)a: = (~p'/gp)(a:)- (6.16)

8p"= (~0'/go)v: = (~'/g )(v:p)-. ,

where the subscript ren denotes the renormalized
operator. For convenience, we have chosen the same
wave-function renormalization for all v„and u„as that
of the p meson; i.e.,

go p —gp( p )renr goap gp(ap )ren& {6.17)

Ee= i(BZ /BD—4'P).

By using the canonical commutation relations, the
algebra of fields (5.12)-(5.14) can be easily generalized
to include the electromagnetic e6ects. In writing down
these expressions, it is convenient to use the renormali-
zation-independent field operators introduced in Ref. 5.
%'e define

vp + (eo/go)A p r

8p'= v'+3 '"(eo/go)A.

pp sp for 3y AQ 8 ~

(6.9)

(go!g,)= (neo/pp/, ) .
Since, by dednition, the renormalized electromagnetic
field (A„)„,and the renormalized charge 0 are related
to the unrenormalized quantities A„and eo by

This replacement changes D„P, V„„,and A„„"to D„'iP,
0„„»,and A„„,respectively, where

8 8
8, —— 8„gof »(8„e8.&+—a„ea„&), (6.10)

Bxp 8$y

e(A„),.=eoA„,

one finds from (6.9) that

(vp )ren= (vp )ren+ (e/gp) (A p)ren r

(v.'),,= (.„')„.+3-'/'(e/g, ) (A„)..., (6.18)



1676 T. D. LEE AN D B. ZUM I NO

alld

(J ~)r=i= —v " (J ')r=p= -3 "'v,",
(V )s-o= (vcc ivcc )

(V,"')s=i= —(vo"—»~")

(A „"")S=o= —(a,"—i43o")

(A wk) S 1= (a c4 ia cp) '

(6.24)

These Geld-current identities imply that these hadron
current operators satisfy the same equal-time commuta-

tion relations as those of the Gelds. Most of the com-

mutators of these hadron currents do not explicitly
depend on the electromagnetic Geld. Those which are
modified by the presence of the electromagnetic fields

are

[V4"k(r,t) s=p, VP"(r', t) s=.p]

= [A.-k(r, t) s=o,A;"'(",t)"s=.]
= —2iP(r —r') (J,') r =i

+ie (A;),.„B3(r—r'),+2 (m, /g, )'
Bfj

(6.25)

[V."'(.,t).=i,V;"'(",t)"=i]
= [A,""(r,t) s=i,A;"k(r', t)ts=i]
= —i83(r—r')[(J )i=i+3(JP)r=o]

(v„)„„,= (v„),.„ for 3/e408

The equal-time commutators (5.12)—(5.14) become
(valid to all orders in e)

[v'"(r, t), v/'(r', t)]= [a'"(r «) a/'(r' t)]
= [v (r,t),a e(r', t)]=0, (6.19)

[v4' (r, t),v4'e(r', t)]=[a4' (r,t),a4'e(r', t)]
=f »83(r r') v4—'&(r', t), (6.20)

[v,"(r,t),a4'e(r', t)]=f »&3(r—r')a4'&(r', t), (6.21)

[v "(r,t),v, 'e(r', t)]= [a "(r,t),a e(r', t)]
=f.»B'(r r')v—+ (m, /g, )'

)& Bwe(B/Br, )B3(r—r'), (6.22)
and

[.;-(.,t), (",t)]=L "(,t), ,'(",t)]
=f »B3(r r')a &(r',t)—. (6.23)

In the above expressions, the electromagnetic Geld

enters explicitly only in (6.22) through v,
' . [Further

commutation relations are given in Appendix A.]
In terms of v„' and a„', the observed hadronic

electromagnetic current operators and the weak-inter-
action current operators become

In both expressions the Schwinger term has a finite
constant coefficient and the covariant derivative
[B/Br,+ie(A;)„„]occurs.

7'. LEPTON CURRE5TS

In this section, we will discuss some speculations con-
cerning the lepton currents. Consider Grst the electro-
magnetic interaction. The hadronic part of the electro-
magnetic current J„7and the leptonic part of the electro-
magnetic current j„& are, by deGnition, related to the
electromagnetic Geld J „„by

BF„„/Bx„=eo(J'c+j,~) . (7.1)

Through the current field identities (1.6) and (3.12),
the hadron currents satisfy the following field algebra:

[JP(r,t) Jk'(r', t)]=LJ4'(r, t),J4'(r', t)]=o~ (7 2)

[J47(r,t),Jp(r', t)]=Xk(B/Br, )83(r—r'), (7.3)

where Xk is a finite constant. [In the SV3 6eld algebra,
one has Xk= —', (m,/g, )'.] Equations (7.2) and (7.3)
reduce to (4.11) and (4.12), respectively, if only the
isovector part is included in J„&.

A natural question to ask is whether the lepton cur-
rent operator j„& can satisfy a similar set of algebraic
relations. As we shall see, our present experimental
information is completely consistent with the proposal
that the leptonic part of the electromagnetic current
jz& also satisfies the algebra of fields; i.e.,

[j4&(r, t)ej &&(r',t)]=[j 4&(r,t)j 4&(r', t)]=0, (7.4)

[j 4~ (r,t)j k~ (r', t)]= Xi(B/Brk) 5'(r —r'), (7.5)

where X~ is a Gnite constant. To be sure, in the usual
quantum electrodynamics, the operator jq& is assumed
to be equal to

SR= 34'e "«4VX4'c+ZQCc "«47)/le c (7.6)

—P Pity4 y„ifpBpo I+mio A, (7.—7)
Bx„ )

where P, and P„are the Geld operators of the electron
and the p meson; therefore, it cannot possibly satisfy
the algebra of Gelds.

The feasibility of (7.4) and (7.5) can be demonstrated
by considering a particular model in which one assumes
the existence of a (hypothetical) neutral spin-1 boson
field B„o(x).There is a direct interaction between B„(x)o
and the charged lepton. This interaction can be repre-
sented by the Lagrangian density

8
Z „„+Z;„,= ', (msoB„P)3 —B-„' B„'—— —

4 a~„" ax„"

+2( / 3
'

A B3(r rc) (6 26) where fp is the unrenormalized coupling constant, ms',
m& are, respectively, the unrenormalized masses of 8'
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and the charged lepton l, 1=0 or tt, and iPI is the field

operator of the lepton.
Just as in (3.1), we may write

+frse+@int, = 0 (mB Bo ) ++0 ~ (7.8)

Zo'= Z,(8„8„o). (7.11)

It can be readily veri6ed that in this model, if one
includes also the hadron current J„&, the Maxwell
equation is

The electromagnetic interaction Lagrangian Z~ is then
generated by replacing in Zo the operator B„o( z) by

&„'=8„'+(eo/fo)~ „ (7.9)

and ($8„0/r)g„) by (88„0/cia„); i.e., in the absence of
hadrons, one has

&I,„+&;,„+g,= ——,'p„„'——',(mII'Bo')'+go', (7.10)

where

photon-exchange amplitudes are the same as the usual
ones. Since quantum electrodynamics has been tested
by the colliding beam experiment" for 4-momentum
transfer

~
q'~ Its up to (—,

' BeV), one should require, in
the same range of q', the matrix element due to 8'
exchange (f'/4tr)(q'+mIis) ' to be much smaller than
that due to photon exchange (tr/g'). Thus, one expects

m '&) '(f'/4 ) (-,' BeV)' (f'/41r) (5 BeV)', (7.16)

wlllcll 1111plIcs tllat mtt))5 BcV If (f /4ir) Is ~0(j ) andlss

mII))s BCV if (f'/47r)~Q(tr).
If (f/ms) is of the same order of magnitude as the

weak-interaction coupling constant G [i.e., (f'/47r)
~10 o(mII/mtlr)s], it would be natural to identify 8 as
the neutral component of the (hypothetical) inter-
mediate boson 5"+ of the weak interaction. One may
then expect m~ to have a comparable lower limit

2.5 BeV to that of W+. )See remark (4) below. ]
(ii) The 80 meson can be produced through inelastic

processes by scattering p+ or e+ on hadrons; e.g.,
F„.= —(eo/fo) (mtto)'B, o+eoJ, &

BXy
(7.12) tt +p +tt +p+8 (7.17)

Comparison between (7.12) and (7.1) leads to the
identity

&, (*)=-n ")/f.]8. (*)
= —(mti'/f)(8. 0(x)].. . P.13)

where LB„o(g)]„„is the renormalized field, rcia«d to
the renormalized coupling constant f and the re-
normalized mass m~ by

(8„')„=(mtto/ms)8„' and (mso/mII)= (fo/f). P.14)

Consequently j„&(x)satis6es the 6eld algebra (7.4) and
(7.5), and the constant Xt is given by

)it= (mao/fo)'= (ma/f)'. (7.15)

In P.10), there is a direct 8'-photon coupling through
'tile I'cPlaccIIlellt, Bo ~Ao 1I1

—-', L(M,o/Bx )—(itB 0/cia„)]'.

As will be shown in Appendix IIl, this direct 8'-photon
coupling can be removed by a canonical transformation.
Furthermore, the physical consequences of the 8' meson
become particularly simple if one assumes that the
unrenormalized theory is divergent; i.e., the un-
renormalized mass ns~o —+~. In this case, as a result of
the canonical transformation, the 8 meson becomes
coupled only to e* and p~ with the same renormalized
collpllllg collstallt, f glvcn by (7.14).By llslllg 'tllc results
derived in Appendix 8, one sees that the existence of
the J30 meson has essentially only the following two
experimental consequences:

(i) Scattering between charged leptons (e.g., e+ on
e+) can occur, besides through the usual photon
exchanges, also through a virtual exchange of the 80
meson. The Iowcst-order perturbation forinulas for all

80~ (0++0 ), or (tt++tt —). (7.19)

The 8'-meson production cross section o(l++p-+
l++p+80) at an energy high above the threshold can
be roughly estimated to be n 1(f'/4tr) times the cross
section 0 (1++p —+ I++p+y) for a photon-emission
process at the same incoming lepton energy and with a
comparable 4-momentum transfer to the proton. The
rates for the 8' decay can be estimated by using the
lowest-order perturbation formula. One 6nds, upon
neglecting the lepton mass,

Rate(8 ~ tt++tt )=Rate(80 ~ e++e—
)

s(f'/4rr)mtt. (7-.20)

Fl'onl (1)~ ollc expects mn to be )(~1 BCV). Thus
the effective way to investigate reactions (7.17) and
(7.18) is to use either the high-energy electrons from

"%.C. Barber, B. Gittelman, G. K. 0'ÃeiH, and B. Richter,
Phys. Rev. Letters 16, 1127 (1966).

"'Note added At proof. In the case f'/400(a), a stronger
lower limit for mg can be obtained by using the recent result for
the anomalous magnetic moment of the negative p,-meson. I"arley
e& gl. (at the 1967 Stanford International Symposium on Elec-
tron-Photon Interactions) reported the experimental value

(g—2), p
——(23332W10)&10 '.

The usual quantum electrodynamics prediction for the same
quantity is

(g—2) f,h=23312&10 '.
Assuming that the discrepancy is due to the existence of the
80 meson, and using the relation

Sg = (f'/kr) (1/3~) (et„/rtto)',
one 6nds m~&1.6 BeV, provided (p/47r) —0.. We wjgb (g thang
Professor L. I ederman for pointing this out to us.

ek+p ~ ek+p+80 (7.18)

Subsequently, the 8' meson wouM decay into lepton
pall s
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where» is given by (7.6). Nevertheless, j.'r satisfies the
algebra of fields, but s. does n.ot. LSimilar conclusions

also apply to the hadrons. I 4)

(2) By using 'tile ssme arguments given 1n Refs. 1

and 4, one 6nds that, independently of whether the un-

renormalized mass m@0 is 6nite or in6nite, the un-

renormalized photon propagator must be 6nite. As a
result, the ratio between the unrenormalized charge eo

and the renormalized charge e is also Gnite. %e note
that the Maxwell equation for the renormalized electro-
magnetic 6eld tensor

(~;)--= («/e)(F")

can bc decomposed into a leptonic part

(7.22)

(F,.)... = («/e)'e(m~'/f) (&')--—, (7.23)
—icy

a hadronlc I= 1 part

(~»)-- =—(«/e)'e(m. '/g)(I')-- (724)
8$p

e.g., SLAC, or the high-energy muons from, e.g., the
AGS and CERN, provided (f /4r) is not much
smaller than n. At present, we are unaware of any such
experiments. "

In the model, the existence of this hypothetical 80
meson implies that j„& satis6es the algebra of fields. At
present, the converse, which is perhaps the more
interesting question, whether the algebraic relations
(7.4) and (7.5) also imply the existence of a vector
meson, like 8', remains an open one. It is hoped that
these algebraic relations and the generalized Geld-
current identities may have a wider domain of appli-
cability than the special local-6eld-theoretical model. In
this connection, the following remarks, though based on
the special model, may clarify some of the implications
of these Geld-current identities.

(1) The Lagrangians (7.7) and (7.10) are both re-
normalizable in the usual sense. The mathematical
problem is identical with the one discussed in Ref. 4
The unrenormalized mass m~0 cannot be zero; it can be
inhnite, if the unrenormalized theory is divergent. In
the limit of an in6nite mg', the matrix element of sz
between any two states

I e) and Ib) becomes identical
with that of j„&(x)= (mII'/—f)(B„o(oo)$„„;i.e.,

»m (f l»l~&=(f I j "(z) Ia&
m, go=to

and a hadronic I=a part

(~»)ren
BXp

= —s (eo/e)'(e/ar)

n(fs/4x)-'=0(n'I')«1, (7.27)

where n= (e'/4s. )—(137)—', the leptonic contribution
can be explicitly calculated.

From a straightforward perturbation calculation, one
finds that, to first order in (f'/47r), the relormulised
80-meson propagator is

(qs+me') '(5»+me —
'q„q,)-

XL1+(q'+ms') '(f'/4 )q'(q'~. . q,q )Fj—(7 2g)

The function Ii can be most conveniently expressed in
terms of the usual spectral representation

(7,29)

' (3—2z)zs(1 —2z)dz
FI(q') = —— (7.30)

o mI'+q'z (1—x)

where l= e or p, , and m~ is the renormalized lepton mass.
The unrenormalized photon propagator (D„„'r)o can be
obtained by using Eq. (55) of Ref. 4. In the limit that
the unrenormalized mass m~' is inhnite, one has, upon
neglecting the hadronic contribution and higher-order
terms inn(fs/4Ir) ', (fs/4Ir), andn,

(D"')'=q-'(~» q'q. q )L& n(f—'/4 ) '—
)& (qs+mIIs) 'mss+n(q'+-mII') sms4q'F j (7.31).

Thus to the same order, the leptonic contribution to
(eo/e)' is

(eo/e)'= 1+n(fs/4or) ' (7—.3.2)

From (7.31), one sees that the usual vacuum polariza-
tion term" n(15m. ) 'q L s'm+m„sj is uow changed to

nqsk(15m') I(m s+m s)+ (fs/47r)
—Ima —sj. (7 33)

(3) The possible presence of the flo meson leaves s,

X [cos0rmg'(g„)„„—sin8rm„'(&o„),.„j. (7.25)

Except for (eo/e)', only renormalized quantities occur
in these expressions. The finiteness of (eo/e)' and
(eo/e)')1 make possible the general expectation that
the matrix elements of the renor'malized fieM operators
(F»)„„, (p„')„» between any two physIcal states
should be Gnite.

The hadronic contribution to the photon propagator
has already been discussed in Refs. 1 and 4. For the
special case that

(7.26)

'6%'e wish to thank Dl'. R. Cool and Dr. W. Panofsky fox
disANsions Qf (base experiInent» p~obleIns

"E A. UehiiIIS, Phys. Rov. 48, 55 (1955); R, Sorher, shed 48, .
49 I',1935).
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I
Fpv 8$Sv y

BXy

where s„ is given by (7.6)

(7.35)

and
ei= L1+ (eolfo)'I "'«

F„„'=(aa „'/»„)—(8&„'/», ) .

(7.36)

certain arbitrariness in the definition of the electro-
magnetic Geld A„. For example, one may define

~.'= Ll+(eo/fo)'5"'~.
+(eo/fo)L~+(eo/fo)'3 '"~: (734)

Thus, by using the Lagrangian (7.10), one sees that, in
the absence of hadrons, A„' satisfies

the hadronic part of the free Lagrangian density can be
written as

o~—o'(0:)'+&oQ,D,k,f,:), (A.1)

where Zo is related to 2 of (5.10) by

z,= ——,'(f„:)'+z.. (A.2)

The function Zo is invariant under isospin rotations;
otherwise, it can be an arbitrary function of f, D„P,
and f„„'.

The total Lagrangian density 2&„,+2.4+2~ can be
derived from (A.1) by replacing in go

4„~4„'=4„'+(eo/go) Pa. , (A.3)

where p depends on the group g. If 5 is the isospin SUo
group, or the usual SU2)&SV2 group, then

If the hadron current J„& is included, then A„' satisfies $'=1 for g„'= p
"

=0 otherwise. (A'.4)

F„„'=eg( s„+J„&)—.
BXp

for p„=e„'=p„',
for $~ = 'v~

otherwise.

p
3-I/2LFurther discussions will be given in Appendix B.l

From (7.14) and the finiteness of (eo/e)', it follows that
in the limit of the unrenormalized mass m~o= oo, (7.21)
holds and F»'=F».

(4) If the renormalized coupling constant (f /4r) is
of the same order as the semiweak coupling constant,

(A.5)=0

Through the replacement (A.3), the total Lagrangian
density becomes

&4-+&.4+& = —V '—-~o'(4.')'
4(f"')—'+~-(4».V,f" ), (A 6)

where

(f'/47r)-10-o(me/tm~)' (7.38)

where m~ is the nucleon mass, then it becomes natural
to identify the 8' meson as the neutral component of the
usual charged weak-interaction intermediate boson 8'+.
One replaces the lepton current j„~ in (3.16) by the
8'+-meson field operator S"„. The weak-interaction
Lagrangian density (3.16) becomes, then,

(A.7)D„'P= (8f/»)+goT @ P
and

f a j a j a+g Cabcj bj c

~Sy ~Sv
(A.8)

(7 37) If cJ is the usual SUo, or SUb&&SUb group, then

fJ„""W„+Hc. (7.39)
From the Lagrangian density (A.6), one sees that the
Maxwell equation takes the form

where J„""is given by (3.1'7). In addition, there is a
direct 8'-lepton coupling, in complete analogy with the
direct Bo-lepton coupling in (7.7),

F„=—(eo~o'/go)p yc .
BXp

(A.9)

where
fs„""W„+H.c. ,

Z A 'Y47g(1+Vb)W &

(7.40)

and P„ is the field operator of the neutrino vb.

A full investigation of these interesting, but hypo-
thetical, possibilities clearly lies outside both the scope
and the spirit of the present paper.

APPENDIX A

In this Appendix, we discuss the complete set of
equal-time commutators of the local Gelds for the
general case discussed in Sec. 5, but extended to include
also the electromagnetic field. On account of (5.2) and
(5.8), the strong-interaction Lagrangian density and

Just as in Secs. 4 and 6, we will, for convenience,
adopt the Coulomb gauge, and regard p;', A,bc, and f
as the generalized coordinates. Their conjugate mo-
menta are, respectively,

»'= bTf4' (~~-/~f4—')+ (~&-/~f44')3,
II;bc= —L~ c= (aA,"/Bt), (A.10)

and
Pe = i (BZ„/BD4'P) . —

For g=SUo, (A.10) reduces to (4.5), and for g=SUo
&(SUo, (A.10) reduces to (6.15). From the equations of
motion, it follows that

y44=4rbo '[(8/gr, )(4P4 )
-&go(c'"&'&' ~eT f)3 (A 11)
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ie—oC"po$4'8pV '8s(r »')—, (A.25)

[y;.(r,t),a, (r', t)]
=&(ep/go) (k ~»p goC—'"('4«,'8 pV ')8s(r r')—. (A.26)[&' (» t)A»'(r', t)]=0, (A.12)

The totality of the canonical commutation relations [p4 (r,t),E&(r', t)]
between these generalized coordinates and their con-
jugate momenta determines the complete set of field
algebra. The following equal-time commutators for
4«t„o(r, t) are valid to all orders in e':

[y,.(»,t),y4'(r', t)]
= —(gp/mp') C"'y4'(r' t) 84(r—r') (A.13)

and

[~4 (r,t),~,'(",t)]
= —(gp/mp') C'"s« '(r', t) P (r—r')

+mp '8"(-8/8r;)8'(r r'). —(A.14)

We note that (A.12) and (A.13) are not affected by the
presence of the electromagnetic field; they are identical
with (5.12) and (5.13), respectively. Equation (A'. l4)
differs from (5.14) by the presence of ltd,', instead of ltt, ',
on the right-hand side. The above Eqs. (A.12)—(A.14)
become (4.7)—(4.9) for b=SU» and (6.19)—(6.23) for
g= SUsXSUs

In the Coulomb gauge, the transverse part of the
vector potential A;" and the corresponding transverse
part of the electric held E," are canonical variables.
They satisfy

[A "(r t)vt!4"(r' t)]
i(8,p 8,8gV —')84(r —r'), (A.15)—

Q„(r,t),A&"(r', t)]=0, (A.16)

[&44(r,t),Ep"(r', t)]=0, (A.17)

I!t;(r,t),&p"(» t)]
= [8et '(r t)—48,y4 (r «) A ,"(r' t)]
=i(ep/gp)P(8;p 8;8pV ')8—s(r r'), (A.1—8)

and

[8,y; (r, t) —8,y, (, ),Z, (r', t)]=0, (A.19)

where 84——(8/8«)& 8,= (8/8r;), V'= 8 and

V '~'(r —»')= —(4~) '[Z(» —»')'] "' (A 20)

APPENDIX 8
In this Appendix, we discuss some consequences of

the (hypothetical) Bo meson. For clarity, we consider a
model containing the 8' meson, the electromagnetic
field, the electron and the muon, but in which the
hadrons are represented only by the proton and the p'
meson. The total Lagrangian density is

Z = —-',F„,'--,'(m 'B„')'—-', (m, 'p„')'

1 BBv ~B I

a~ 4 a~. a

«' 8—Q fttp4 y„~ ifpB„p ~+—mlp $4"&8x„")

where

(8—1«,'v4 v.l +igoP' I+m.' 4., (B.1)
&8x„

All these commutation relations are valid independently
of the detailed form of 2, and to all orders in e. It has
been shown in Sec. 5 that, in the absence of the electro-
magnetic interaction, one has the additional commuta-
tion relations (5.21), if 2 satis6es (5.20), and also
(5.23), if 2 is independent of f„„'.The generalization
of (5.21) and. (5.23) to include the electromagnetic
effects can be derived in a straightforward, though
somewhat tedious, way by using the above commuta-
tion relations together with the canonical ones;

[i; (r, t),j,'(r', t)]= —i8,,8 &8s(r —r'),
[Ir '(r t),Pp'(r', t)]=0,

and the definitions of I'„' and @I,'.

The magnetic fMld H; is related to A,"by p„'= p,'+ (eo/go)& „ (B 2)

II~'= ~~I I,~I~ t (A.21)

The electric field E, consists of two parts

g.—g tr+g, long (A.22)

in which E;" g is not an independent variable, but is
determined by lt 4'. One has, on account of (A.9),

8;I'-' "g= i(eomo'/go) —pttl4' (A.2.3)

&„'=B.'+ (eo/fo)~. (B.3)

We find that (B.l) becomes the same as (7.10) if one
neglects the hadrons p and pp. From (B.1), the electro-
magnetic field satisfies

8
lv„= eo[fo '(me')'B.—'+go '(mn')'p'] (B.4)

8$ttt

From (A.21)—(A.23) and the above commutation re- It is convenient to define
].ation. s, i& cap. be readily verified that

Sv Q Zpl "»4 tvPlv (B 5)
[e.'(r, t),& (",t)]=o, (A.24)



(3.6)

, I, (3.11),)1+( o/f. )' —"/(f.go)&

go) 1+(«/go)')

)0

Eo ElOne can readily verify that both s„and S„are conserved. &—eo'/(fo
Similarly, both p, and 8„' 6elds satisfy the 6eld-
conservation equation. There exist in (3.1), besides the
(p„oS„) and the (B„os„) interactions, also a p„o-photon
interaction and a 8„-photon interaction with coupling
constants (eo/go) and (eol fo) T.h~se photon-meson ( go/—1+(eo/ fo)'j
direct couplings can be removed by the transformation

eo o

(3.12)

« /go

, l. (3.13)
f08+ («/go)'j)

FIELD CU RRENY I DENT'&TIES A&D ALGEBRA OF FIELDS

Ko, 3E0, and Go are all (2)&2) matrices,

where A p ls. deGned by

~»'=& '~»+&L(«/go)I»0+(eo/fo)3»oj, (3.7)

One sees that the transformed electromagnetic fmld
A „' satisfies

(3 14)

& = —
~fP» "+8»'&08"'j—k4»'~0'4»0 mao —+~ and m»' —+00 . (3.1&)

RIll
The mathematical problem of the two coupled Gelds

E=L1+(eo/fo)'1(eo/go)'1 '~
~ (3 g) p»0 and B»0 is identical with the p-~ mixing problem

discussed in Ref. 1.Here we will only discuss the caseIn terms of 3„', the Lagrangian density (3'1) that the unrenormalized theory is divergent. In this
becomes case, the unrenormalized masses m~0 and ns, o tend to

inhnity; i.e.,

+ei(e» ~»)~»'+4»'G08» The renormalized coupling constants f and g are related
to the unrenormalized ones by

2 fl 74 7» +ml lg'l
ax„ (f/fo) = (me/me') and (g/go) = (m, /m, ') . (3.1|i)

In the limit (3.15), (eo/e)' remains Quite, but fo and go
both become infinity; therefore,

pv4 r»
ax„

where denotes the transpose of a matrix,
Zo~

l

&0 1)
' (3.17)

eg= Neo,

8 8
F„„'= -A,'—— -A„',

Bsp 8$p

4» l )I t 8» I( )la3 0
Sp

8 8
g 0 — 40 . yo

~X@ ~Xp

( 0 fo&

By substituting these limiting forms into (3.9), one
finds that in the same limit the po meson is coupled
only to the hadron, while the 8' meson is coupled on/y

(3.10) to the leptons. Equation (3.14) is exactly the same as the
Maxwell equation in the usual electrodynamics without
the 8' meson. The experimental consequences of the
possible existence of such a 8' meson have already been
discussed in Sec. 7.


