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invariance groups like SU(4) or SU(6) have not been
explicitly assumed, the meson commutator is chosen
to yieM baryons belonging to representations of these
groups. Many of the results are independent of the
choice of any specific representation and are valid even
if baryons belong to representations of noncompact
groups. The sum rule p"=4p"=4p' ' is an example
of such a result. A large number of sum rules are ob-
tained from the group SU(3))&SU(2)g which may be
checked against experiment as results become available.
The method used throughout is rather simple and in-
volves only the knowledge of the relevant crossing

matrices. Under certain simplifying assumptions results
are obtained also for spin-Rip and spin-nonQip ampli-
tudes which generalize the work of earlier authors.
The nonfhp results are in agreement with the Johnson-
Treiman relations in the forward direction as was
shown in previous work.
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A phenomenological analysis is made of the pion photoproduction data in the energy range 535 &L&"~&850
MeV. The analysis is based on the pion-nucleon phase-shift analyses using a generalized isobar model. The
Watson theorem for the elastic pion-nucleon partial waves is imposed. g photoproduction data in the same
energy range is also analyzed using an eRective range expansion of the IC matrix. The nucleon-isobar electro-
magnetic couplings are determined.

I. INTRODUCTION

' 'N this paper we study the photoproduction of
~ - pions from protons in the region 535&ED&850
MeV where E~ is the photon laboratory energy. Anal-
ysis of pion photoproduction in the lower-energy re-
gion from threshold has been extensive' and has been
theoretically approachable in terms of dispersion rela-
tions following Chew, Goldberger, Low, and Nambu2
for two basic reasons. First, this region is dominated by
the nucleon isobar Es~s*(1238), J~=as+. Second, this
region (or at least the lower end of it) is elastic, and so
elastic unitarity and the Watson theorem apply. This
means that the yS amplitude is related to the zS ampli-
tude and that the dispersion integra1s can be reasonably
evaluated.

* Based in part on a thesis submitted to the University of
Sussex in 1966, in fulfillment of the requirements for the degree of
Doctor of Philosophy.

f Present address: Glasgow University, Glasgow, Scotland.' A. Donnachie and G. Shaw, Ann. Phys. 37, 333 (1966). This
paper has a fairly complete list of references.

~ G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345, (1957}.

The center-of-mass (c.m.) energy W of the photo-
produced pion-nucleon system in the second resonance
region is in the range 1375—1575 MeV, which contains
three 1V* resonances. These are the Et~s*(1525) J~= ss

(dr~ wave in the pion-nucleon system), the Et/s (1570)
J = —', (the Ãri resonance, stt wave in the pion-nucleon
system), and the cVr~s*(1400) J = —,'+ (ptt wave in the
pion-nucleon system). ' Furthermore, all three reso-
nances are appreciably inelastic and so we cannot expect
to be able to mak. e the same type of theoretical analysis
as in the lower-energy region. The details of the photo-
production of these resonances are of importance in con-
siderations of symmetry theories. Besides this resonance
question it has also become evident recently that a
knowledge of the multipole amplitudes for photoproduc-
tion in this energy region is necessary for the more exact
evaluation of some current commutator sum rules.

We have made a phenomenological analysis of the
photoproduction processes

y+ p —+ w'+ p, y+ p —+ w++ rs

3 A. H. Rosenfeld et a/. , Rev. Mod. Phys. 39, 1 (1967).
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In this section we will show how knowledge of the
~iV system in a given energy region can be used in the
study of the pN ~ xE process. A complete description
of the strongly interacting xE system will involve the
amplitudes for transitions to all allowed final states.
Ke do not expect to have a complete description of the
strong interactions. But a good approximation of multi-
channel strong interactions in the medium-energy region
where resonance formation is important is given by the
K-matrix formalism, whereby all channels are approxi-
mated by two-particle systems.

We erst review the formalism closely following the
treatment of Dalitz. ' We consider a state of definite
quantum numbers J, I', I connected with n two-particle
channels i = 1, 2, n as functions of total energy 8".
k; is the c.m. momentum of channel i. The E matrix
is then related to the scattering matrix T by

or
T=E(1—ikE) ',

E '= T'+ik, -
(2.1)

(2.2)

where k is the diagonal matrix (for the physical chan-
nels i=1, 2, , e as basis) whose ith element is k;.
It. is easy to show that E is a real symmetric matrix pro-

4 M. Gourdin and Ph. Salin, Nuovo Cimento 27, 193 {1963);
Ph. Salin, ibid. 28, 1295 {1963).' R, H. Dalitz, Ann. Rev. Nucl. Sci. 13, 346 (1963),

to find the photoproduction multipole amplitudes. We
have been enabled to make a considerable advance on
previous analyses, not only because of better photo-
production data but also because of the detailed knowl-
edge of the pion-nucleon system now available from
phase-shift analyses. Our point of view has been that
only by the fullest possible use of the pion-nucleon
scattering phase shifts could we hope to produce rea-
sonably unambiguous results for the photopion multi-
pole amplitudes. These results have been used in two
principal ways .'firstly, by using an isobar model for the
resonances and, secondly, by imposing the Watson
theorem on the elastic waves. In this way we generalize
the isobar-model work of Gourdin and Salin4 which in
this energy region only took account of the d&s and pss
resonances and some Born terms. The methods are ex-
plained in detail in the next section. Our results are also
consistent with the Srl production from z P and yP
states.

Finally we should explain that we have adopted the
phenomenological approach described above and below
(see Sec. II) because in the resonance-dominated situa-
tion we consider it is of the erst importance to elucidate
the multipole amplitudes. The introduction of disper-
sion relations would either be phenomenological, with
no advance on this analysis, or semidynamical, with
uncertainties about the input and thus inappropriate at
this stage.

II. THEORY

vided all the channels are open and hence n eigenstates
of E with real eigenvalues exist.

For one-channel (elastic) processes

T= e" sinb/k, and E= tanb/k, (2.3)

where 8 is the scattering phase shift.
In the multichannel case it is convenient to use the

dimensionless matrices T', IC', where

T'= k'IBTk'~' and E'= k'~ Ek'I

T'=E'(1—iE') '.
(2 4)

(2 5)

Clearly E' is real and symmetric if E is real and sym-
metric. Further, K' and T' have simultaneous eigen-

values. %'e denote the n eigenstates of E' and T' as

ln) and the corresponding eigenvalues of E' as tanb .
is necessarily real and is called the eigenphase. The

eigenvalues of T' are then e"~ sinb .
Any physical state

l i) is given in terms of the eigen-
states ln) by

n

li)= g c;ln),
a=1

(2.6)

where the c; form an orthogonal matrix. The com-

plete system is thus described at an energy 8' by the
rs(rs —1)/2 coefficients c; and the rs eigenphases 8 or
by the —,'e(n+1) matrix elements of E' (or E). The
matrix element of T' connecting physical states is

(il T lf)= P c;c.re*' sinb .
a=1

(2.7)

We will assume that the physical resonances w'e meet
are characterized by one resonant eigenstate lr) for
w'hich 8„ increases rapidly through —,'x as the energy in-
creases. All the other eigenphases are taken to be slowly

varying functions of energy.
In the vicinity of the resonance

tanb„= [~/(W* —W) j+C, (2.8)

where we are expanding in terms of 8'*—8'. We can
absorb the constant C by writing C= tanb„and then

tanb =—,
' I'/(W„—W),

where 6= 5„—8 . We then find

(2.9)

In terms of the partia1 widths I';=Fc„;2, Fy=Fc„y2,
we have

(I';I" ) 'n e2*s„

(il T'If)= T'*r=
W, —IV—i(-,' I') 2

+c„;c,~e" sinb„+g' c;c ge' sinb . (2.11)

lp
(ilT'l f)=c„c,f e"'-+e"- sinb„

W„—W—i(-,'I')

+P' c;c ress sinb . (2.10)



Ke then write

Q' c„e,fe" sin8„= A+iB,
(2.15)

where 3 and 8 are slowly varying functions of energy.
Finally we obtain

T;r'= e„;e,&e"' s. in8, +A+iB.

Equation (2.11) is the generalized Breit-Wigner exp
sion which we shall use in our analysis of photoproduc-
tion. We see from Eq. (2.11}that the phase of the reso-
nant term is rotated by the angle 2b from the usual
Breit-signer expression and that background terms
are included: c„;c„~e'~ sinb„ from the resonant eigen-
state and A+iB from the nonresonant eigenstates (it is
possible of course to include both these terms into a
single background but we found it convenient to sepa-
rate them).

If we plot T;f' as a function of 8' in an Argand dia-
gram and consider 2 and 8 to be effectively constant in
a given energy region, then we will obtain an arc of a
circle of diameter

~
e„c„r

~

= (I';I'r)'~'/I'. (A,B) is the
lowest point of the circle.

In the da,stic case wc can write

As C„and C„span the two-dimensional vector space, wc
have

C, '= eDC,+e,C„,
(2.17)

Q, =d„C„+d, C„.
Now if we require that C is an eigenvector of Q with
eigenvalue X„+X, we obtain

(2.18a,)

(2.18b)

(2.18c)

XCO= C&dr ~
&

X„e„+c~d~~=(X,+X)e„,

cod:+end;+q„c, = (X,+X)c,

wlleie ei +eg = 1. Tile corresponding eigeilvalues
(2 ~»)

The eigenvector C of Q which is a, perturbation of C,res-
can be written

T.-''= k''I" =—
W,—W —i(-, I') 2

I'.-
+—e"~ sinb +n+ip. (2.13)

I"

This shows that k;T;, plotted in an Argand diagram as
a function of W will describe a circle of base point (n,p)
and of diameter I';/I'.

A, B, n, and p will not be constant if the energy in-

terval is too wide or if the threshoM of one of the chan-
nels i is within the region being considered. We will re-
turn to this point later.

Ke now introduce the channel yi"It into the analysis.
Let us consider that the strong interactions are described

by the real symmetric matrix Q, (which can be E, EC',

R=k 'Ek ' or their inverses, for example) with ele-

ments qg, i, j= 1, 2, , e. Then the introduction of the
photon channel means that we have the additional n
first-order small quantities q;~ (we can neglect the
second-order quantity q») in a new matrix Q.

Wc can now investigate the shifts in the eigcnvalucs
and eigenstates on going from Q, to Q. For simphcity
we shall consider a two-channel strongly interacting sys-
tem which is then perturbed. We write

(2,14)

Equation (2.18a) shows that the perturbation X to the
eigenvalue X„ is of second order (as usual). Thus in

(2.18b) we obtain from the second-order terms (e„ is
thus very small)

(X,—X„}e„=c,d„&,

and from (2.18c) to first order

(2.19)

(2.20)

If C is normalized, co——1, neglecting second-order terms.
So we have

Q~=X,.e~C„+d„&C„; X=e,9i, . (2.21)

and so

T —~ sin

T,'= (qi,/qii)e" sinb= c,e' sinb,

argT = argTp = 6.

(2.23)

In order to analyze photoproduction in a given energy
I'cglon wc lcqulI'c a dctallcd aIlalysls of thc mÃ system
in that energy region. The more detailed the analysis,
the better the modd of photoproduction can be, in

principle. So we would like a E-matrix analysis for each
vrE state of given J, I', and I. Unfortunately there are
fcw such analyses. We know only one that we can use
for our purposes and that is a two-channel fjt to tpe s~~

state of the i', it% system,

This result contains within it the Watson theorem as
a special case. For if we write Q= E' and consider a, one-
channel process (qi2 = q22 ——em =0), then we 6nd from Eq.
(2.21)

(2.22)
or
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Otherwise the analysis of the strongly interacting
system is only in terms of xS elastic scattering. Several
sets of mE phase shifts have been published in recent
years. We will have to use these as the input for the
photoproduction problem. This implies that our yE
analysis will be less detailed, but also much simpler,
than a full E-matrix treatment.

We must convert the xE phase shifts into the form of
Eq. (2.13).The phase shifts are complex quantities, and
so we have two functions 8(W) and g(W) given where

T,.= (ge"' 1)—/2ik (2.24) 0.5
650~

We plot these on the Argand diagram of kT and
draw a circle to 6t them. Then the values 8'„ I', I".,
8„, n, and P can be obtained. Now with the values of
W„, I', 1'„and b„so obtained we can apply Eq. (2.12)
and search for 1'„, A

&
and 8, with i =y and f= n .

Thus we are led back to a Breit-Wigner formalism.
But whenever a E-matrix fit can be obtained, we will be
able to use it to provide an independent check on the
parameters of the Breit-Wigner model.

III. ANALYSIS OF EXPERIMENT

A. Input

-0.5 I
R&'rtre

FIG. 1. The best Gts of Eq. (2.13) to the s» waves.

TABLE I. Input parameters. Resonance parameters found from
Breit-Wigner its to the phase shifts of Bareyre eI, al. (Ref. 6), as
shown in Figs. 1—3.

8', r/2 r„/r
0,407 —8.21'
0.434 —2.70'
0.537 —21.35'

s11 1530.8 79.4 0.238 0.115
P11 1469.4 121.6 0.074 0.237
d13 1498.8 62.8 0.072 0.012

6 B.H. Bransden, P. J. O'Donnell, and R. G. Moorhouse, Phys.
Rev. 139, B1566 (1965); P. Bareyre, C. Bricman, A. V. Stirling,
and G. Villet, Phys. Letters 18, 342 (1965);P. Auvil. A. Donnachie,
A. T. Lea, and C. Lovelace, ibid. 19, 148 (1965);R. J. Cence, ibid.
20, 306 (1966).

'A. W. Hendry and R. G. Moorhouse, Phys. Letters 18, 171
(1965).

We erst consider the x3~ phase-shift analysis that we
will use to obtain the input parameters. Several sets of
phase shifts which include the energy interval 8'= 1375
to 1575 MeV have been published; all, ' except those of
Cence, are qualitatively and nearly quantitatively
equivalent. In the present experimental situation there
is no reason for preferring one to the other. The analysis
of Bareyre et a/. is marginally more convenient for us,
since it is compatible with two channels only (srÃ and
gN) for the sii wave, ' and this simplifies our photopro-
duction analysis of this resonance. (We should empha-
size that s~~ phase-shift inelasticities of other authors
are not markedly different from those of Bareyre et al. ,
and the two-channel hypothesis should be viewed as a
convenient approximation. )

In our energy region there are three states of the miV

system which vary rapidly with energy and thus qualify
as resonances for our purposes Lin the sense that we pa-

T',r =A+iB, (3.1)

where, as before, we take A and 8 to be constant.
p33 is, of course, energy-dependent but it is resonant

below our energy region. So the analysis of Sec. II is not
really relevant. But the inelasticity of the p» wave is
small' throughout the region and so we can use Kq.
(2.23) in modified form

T',r e,e"&~' sinb(W) —P, —— (3.2)

where b(W) is taken directly from the phase-shift analy-
sis and P is the projection of the pion pole on to the am-
plitudes. (The reason for this subtraction is explained in
the following paragraph. ) The pai wave is also elastic
and so the Eq. (3.2) applies to it as well.

It is well known that the t-channel pole in x+ photo-

' The resonance energies 5', of Table I dier from those of the
Berkeley tables quoted in the introduction. This is because the
W, of Table I are from the best Breit-Wigner fit throughout our
energy range, while the resonance energies of the Berkeley tables
are chosen as the point of fastest variation of 8, as a function of
energy.

rametrize them by the generalized Breit-Wigner expres-
sion Eq. (2.11)j.They are the s», p», and d» waves-
the 6rst suSx denotes 2I and the second 2J. Using Eq.
(2.13) we fit Bareyre's phase shifts by a circle in the
Argand diagram of kT,„(Figs.1—3) and the parameters
found are listed in Table I.'

I.et us now consider the other waves for which J~& +&.

The s», p», p», and d» waves are slowly varying func-
tions of energy in our energy region; therefore for these
waves we can just write
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production plays an important role in that process, and
so, as our final contribution to the photoproduction
amplitudes, we have to add this pole term. Conse-
quently (2.11), (3.1), and (3.2) are not the whole multi-
pole amplitudes, but the multipole amplitudes minus
the relevant projection of the pion pole. In (3.2) this
subtraction has to be done explicitly in order to preserve
the Watson theorem, but in (2.11) and (3.1) it can be
absorbed into the constant background term, the pion-
pole projections being either very small or slowly vary-
ing over our energy region. We have omitted from our
present analysis any explicit I-channel poles (baryon
exchange). If these play a role in photoproduction at
our energies, they would show up at angles near 180'
t'see Ref. 15 and Secs. III(C) and V below7.

Ke expected the waves for J& 2 to be small, ' so that
we wouM able to approximate them just by the pion
pole. We found, however, that there is some 6ne struc-
ture in the data, noticeable at higher energies of the
region, which requires the presence of J=~5 states in
addition to those implicit in the pion-pole term. The
dxs and fxs states constltutc tllc third resonance so tllcy
are energy-dependent but, like the pss, resonant outside
our energy region. They are also quite elastic. ' The
simplest way of dealing with them is to make them
satisfy the Watson theorem approximately by using Eq.
(3.2) but without subtracting out the small pion-pole
projection for these states. In this way only one param-
eter is used for each photon coupling to the isobar and

I.O

0.5

Pro. 3. The best Gts of Eq. (1.13) to the 0.13 a&aves.

slightly more freedom is allowed than would have been
the case if the Watson theorem were satisded exactly.

B. Analysis of Photoyroduction

We follow the conventional notation. ' We have for
pion production in the c.m. frame

I580
r

dT'

dQ k
(3.3)

I698

Ny &I470 S=se efx+e IIe (kXe)5s/qk
+so kII R5's/gk+so Ilg RF4/g' (3 4)

and the partial wave decomposition in terms of electric
and magnetic multipoles is

8'I——P $1$II++Ex+7I'I+I'(x)
)mao

+P(I+1)MI +Ex 7PI I'(x),

Fs——p p(I+1)&I++I&I 7PI'(x),
l~l (3.5)

rs ——p /Ex+ —MI+7PI+I"(x)+LEI +IVI 7/I I"(x),

e4——P tXMX+ EI+ MX= EX 7P—X"(X) .—

FIG. 2. The best 6ts of Eq. (2.13) to the plx waves.

C. Ward, thesis University of California, at Los Angeles, 1966
t,'unpublished).

EI~ (MI~) denotes an electric (magnetic) transition into
a mS state of orbital angular momentum j and total
angular momentum J=1&2.

q and k are the momenta of the pion and photon, re-
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spectively, x= cos8= q k/qk. Furthermore, transitions
can occur into isospin —,

' and ~3 6nal states. We will require

(3.6)

(qk) 'IPEp+'= A+ iB, (3.8)

and so on.
Here there are ten parameters.
For ppq and ppp we use Eq. (3.2) for the multipoles

Mi ', HEI+', and Ej+3. So explicitly

(qk)'IPMg+P= c,e"&~& sinb(W) —Mg+P(m), (3.9)

and so on, where M~+P(~) LM~ '(m), E~+P(w) j is the pro-
jection of the pion-pole term on the multipole Ml+3
(Mg P,Eg+') multiplied by (qk)'" and evaluated at
E~= 700 MCV. Ke make this approximation as the pro-
jection of a t-channel pole onto a y'vcn state is a slowly
varying function of energy. 8(W) is taken from Bareyre
e] al. ' and can be considered constant in our region for
the pp~ wave.

For d~p and fop we write for Ep+', Mp+', Mp ', Ep
simply (as we have already explained in the last section)

(qk)"'E '=c e'"~~ sing(W) (3 10)

'05' and 5' are amplitudes for photoproduction into pure I=)
and -', anal states; in terms of morc conventional photoproduction
amplitudes

P8 —2p(3)
sl —s'(0}+)s(1)

where
e&» =S++2e-,
e&» =@+—r-,

P=S&'&rp+5+bpm+1/2$' Prpr'ej

describes thc production of a pion of isospin p. Note that we have
to multiply F' and 5' by % and +{3/2), respectively, to convert
them to amplitudes for photoproduction from protons of normal-
ized isospin states.

Note that as we do not consider photoproduction OB

neutrons, we cannot decompose" 5' into its isoscalar
Rnd lsovcctox' coIDponcIlts»

Only the electric dipole amplitude Ep+' (E~p) can
lead to the sn (spq) state, and only the magnetic dipole
My ' (Mg ') leads to the P,g (Ppg) state. For all other
states both electric and magnetic multipolcs are
lnvolvcd.

We thus write for our resonating amplitudes Eo+',
Mx ', E2 ', Mp ' from Eq. (2.12)

(qk)'12Ep+'= c,~c„,e""sing, +A+iB, (3.7)

and so on, where W„, 1', 8„,and c„=(1' /1') '~P are taken
from Table I for the s~j resonance and A, J3 and c„~
= (I'~/3I')'I' for y=x2 and = (2F~/3I')'~P for y= pP" are
parameters to be found. Thus there are three parameters
for each of thc four resonant amplitudes.

The waves spq, pqp, and dpp are appreciably inelastic
but slowly varying in energy. So wc write for the multi-
polc RIDplltudes Eo+s ~&+i gj+c g 3 Rnd ~ 3

and so on. For completeness we included in our 6t the
very small elastic dpp and fpp states. The phase shifts
for these states are less than 4' in magnitude, 6 and so the
Watson theorem is satisfied without taking account of
the real pion-pole projections in these states. Thus Em+3,

Mp+p, Mp ', Ep p also satisfy Eq. (3.10).
So finally, we have 33 parameters to be found from

our 6t to pion photoproduction experiments.
Kc need the t-channel pion pole in m+ photoproduc-

tion in order to 6t the angular distribution observed.
The pion pole by itself gives a contribution to the angu-
lar distribution which is zero in the forward direction
and so the observed forward peaking must be due to
destructive interference between the contribution from
the isobar amplitudes and the pion-pole term. At back-
ward directions the pion pole should not be important,
and to allow for this we have included a form factor G(t)
to depress the pole contribution for large angles.

We can then calculate the pion pole" Rnd obtain

2eg G(t)
P3———

t—pp' W+M

2eg G(/)
F4 — — ———, (3.11)

$—p~ 8"—3f

egG(t) ( 1 1

t—ppp Es—M' u —M')
(3.12)

vrhere Az is the conventional manifestly gauge-invariant
relativistic amplitude used in theoretical work. "

"N. Dombey, Nuovo Cimcnto B1, 1025 (1964)."J.S. Ball, Phys. Rev. 124, 2014 (1964).

where 8:p——XpFp, &p ——Xppp, and Xp and X4 are the ki-
nematic factors.

Xp= q/(Eg+M)(Ep+M) J"(W—M)/Ss W,
Xp

——q'L(Eg+M)/(Em+M) j"'(W—M)/Ss. W,

and EI and E2 are the energies of the initial and 6na1
nucleon. These are isotopic (—) amplitudes" and, of
course, only contribute to x+ production.

Writing the pion pole by itself in this way is not
gauge invariant. Wc do not worry too much about this;
it is well known that the sum of the t-channel pion pole
and the s- and u-channel nucleon poles is a gauge-in-
variant quantity. The s-channel nucleon pole occurs
well below our energy region and so would be implicitly
contained in the background to the Pqq and sn coupling.
The e-channel nucleon pole contributes to all partial
waves; it will thus be implicit in the background terms
for waves for which J~& —,'. For J& ~5 we do not include
the projections but they are expected to be small, as
u=M' is well outside the physical region for these
cncI'gics.

Another way of looking at this is to start from the
usuRl gauge-1nvarlant folIQ fol the ploQ-pole lncludlng
the form factor G(t)



TAnLz II. Pion-pole projections. The projections oi the pion pole [Eqs. (3.11), (3.13)g multiplied by (qk)"' and evaluated at Z„=700
MeV are tabulated in units of 10 2. E0+'(m} = —E0+'(m-), etc. In this calculation me have taken g'/4x = 14.7, ) =3.708, X= 1682 Me~.

Eo+'{~}

—0.907

3f1 '{~}

+0.927

Mg+'(s) Eg+'(s.) E2 '{~)

+0.359

Sf' '{&} M2+'{m)

—0.122

8 +'{x}

+0.099

Z, I{~)

+0.155

3I, i()
+o.o5o

Using

we have

t—p,
' is small compared with s—M' apart from at back-

ward angles. At these large angles G(I)/(1 —ii') is small

anyway. So it is reasonable to approximate A2 by

~s = —2eaG(&)/(& —~')(s—iaaf') (3.14)

and this is exactly the form we have used in Eq. (3.11).
A simple form for G(t) is

t—p,
2

G(I) =1—)
t—X2

(3.15)

C. Discussion of Data

The pion photoproduction data we have consists of

(1) angular distributions of s+, (2) angular distributions
of s', (3) recoil-proton polarization, and (4) asymmetry
parameters from polarized-photon experiments.

(1) The s+ data are very detailed and we use the
recent Caltech experiments" of differential cross sec-
tions at angles from 6' to about 165' at 14 energies in
the region 589 &~ E~ ~& 813 MCV. In addition. , we have in-

cluded the backward angle points of Schacrf'4 which

notoriously disagreed with previous simple models of
photoproduction. In all, there are 350 x+ data points.

(2) The s' data present more problems. Ward' has

pointed out the large normalization errors between
various experiments. Ke decided that it was more useful
to use a consistent set of data and we chose that of de

"S.D. Ecklund and R. L. Walker (private communication).
~4 C. Schaerf, Nuovo Cimento 44A, 504 (1966).

where X and X are to be determined. In practice, we

searched for the best values of X and X together with
the other variable parameters while not subtracting out
the Pion-Pole Projection for Psi and Pss. We then fixed
X and X at their values for the best 6t under these cir-
cumstances, calculated the pion-pole projections (which
depend upon X and X) for the various waves (Table II),
and subtracted out the appropriate amount for the psi
alld pss waves.

Staebler t.t a/. ,
"" with the exception of a few additional

points at near forward angles. "
%e have omitted the measurement of the differential

cross section at 760 MeV and 80' (100' proton c.m.
angle), as it contributed a high amount to the X' in
all our 6ts. Also inclusion of the points at 180' markedly
increased the X', and the 170', 180' points werc not
included in thc 6ts prcscntcd herc; this ls discussed ln

Sec. V below. There are 94 ~o data points.
(3) and (4) Measurements of polarization of the recoil

proton in x' photoproduction and measurements of
asymmetry in m+ photoproduction using linearly polar-
ized photons provide sensitive tests of interference be-
tween the various amplitudes. In category (3) we have
16 data points at energies betw'een 572 and 850 McV'~
for the proton polarization E(8). In category (4) we

have 15 data points at energies between 535 and 780
MeV" for the asymmetry parameter Z(8).

9. Photoyroduction Formulas

From Eq. (3.3) for unpolarized photons

kdo
——(8)=(IFil'+IF I'+-:IF I'+llF I'
qdQ

+ReFiF4*+ReFsFs*)+(ReFsF4*—2 ReFi Fee) cos8

—(-,' I Fs I
a+as- IF, I

'+ReF,F,*+ReF,Fs*)cos'8

—ReFsF4* cos'8. (3.16)

The polarization P is given by

k dr
I' —(8)= sin8 ImD2FiFs +FiFs*—FsF1 —FsF4*)

gdQ
+(Fr&4 FsF3 )cos8+FsF4* cos'87, (3.1&)

and the asymmetry Z for polarized photons is

k do.
——~(8)= —&'Ll(IFsl'+ IF41')+Re(Fs*F4)cos8
q

d'0
+Re(Fs*Fs)+Re(Fr*F4)7sin '8, (3.18)

where E' is the linear polarization of the photon beam,

»H. de Staebler, Jr., E. I". Erickson, A. C. Hearn, and C.
Schaerf, Phys. Rev. 140, 336 (1965).

IOV. L. Highland and J. W. de Wire, Phys. Rev. 132, 1293
{1963);R. M. Talman, Ph.D. thesis, California Institute of Tech-
nology, 1963 (unpublished) [Quoted in Beale, Ecklund, and
Kalker, California Institute of Technology Report No. CTSL-42
(1966)j; K. Serkelman and J. A. %aggoner, Phys. Rev. 117, 1364
(1960).

"D, Lundquist, J. V. Allaby, and D. M. Ritson, Stanford
University Report No. HEPL 388 (unpublished); D. Lundquist,
D. M. Ri.tson, J. V. Allaby, and R. Anderson, Rutherford High-
Energy Physics Laboratory Report No. HEPL 451; 483.

'8 F. F. Liu and S. Vitale, Phys. Rev. 144, 1903 (1966).
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do
dA

0.5

700 750 800
Tg

850

FIG. 4. Z-matrix 6t to photo-eta production. do/dQ in
microbarns; T~ in MeV.

5», F2, $3, and F4 are given in terms of the multipole
amplitudes by Eq. (3.5). So our program is to evaluate
5», F2, $3, and f4 in terms of the multipole amplitudes
of Eqs. (3.7)—(3.10) and the pion-pole contribution of
Eq. (3.11).Then we search over the 33 parameters of
Eqs. (3.7)—(3.10) for the best least-squares fit to the 457
data points.

Q,=Q'+Q'(W —Ws),

and his results are

(4.1)

IV. g PHOTOPRODUCTION

The g-production threshold falls right at the lower
end of our energy region at Ws= 1488 MeV. Just above
threshoM it is natural to say that production occurs in
an s wave, which implies that the s»» is coupled to the
Eg system.

A E-matrix fit of the s»1 coupled to the two channel
mA' and gÃ has been attempted. Writing E,=E '
(channel 1 is re and 2 is glV), Davies" has written the
effective range approximation

TABLE III. Solutions (1) and (2). The parameters are those
of Eqs. (3.7)-(3.10), given in units of 10 ~.

cry
(1) (2) (1) (2) (1) (2)

p0+
M1
E2
M2
M1+.

M2+.

Mg

1.409 0.947
2.309 2.427
2.415 2.389
0.817 0.787

1.713 1.295—1.102 —1.100
1.685 1.262—0.324 —0.331

1.537—0.809
0.298—0.086
0.585
0.252

S

1.476—1.055
0.369—0.090
0.696
0.200

—0.307
0.286
0.122
0.050
0.160—0.092

—0.015
0.051
0.128
0.081
0.064—0.096

Eqs. (2.15)-(2.23) to obtain the r)1V diBerential cross
section in terms of the two quantities c„and c„/cr.
Fitting the results of Prepost, Lundquist, and Quinn, "
we obtain

c~= —8.594X10 ', c„/c„=5.563X10 ', (4.4)
X'/datum= 0.7 (14 points in our energy region) .

The details of the fit are shown in Fig. 4.
In order to compare the fit to the pion photoproduc-

tion data we must know the matrix E' ' instead of
E ', since a resonant eigenstate

i r) is deined to be an
eigenstate of E'.

g l'-» —P
—» /2g —1$-1/2

7

and so we can calculate the new parameters readily
at any energy. We choose the energy of the s»»resonance
8'„=1530 MeV, and then we find that the amplitude
coupling the resonant state to channel 3 is

c„=(1'„/P)'I'= 1.068X10 . (4.5)

This result is to be compared with that obtained in-
dependently from the fit to pion photoproduction, and
given in the next section, by noting that c„~ as defined
in Eq. (3.7) 8. is given by

c,„=c„/VS=0.62X10 s

V. RESULTS AND CONCLUSIONS

We tabulate the results for our parameters in Table
III, where our two best fits, each with 33 parameters,
are shown. Solution 1 has X' per degree of f'reedom= 1.93

607.0 113.9
0— MeV

113.9 150.9

-2.795 2.049'1—
2.049 2 243P—.

(4.2)

(4.3)

Xs/datum=1. 53 (for 12 points) .

We then couple the yX channel (channel 3) and apply

M 1+

E2
M2

d,~=cr~ sinb
0.311 0.490
0.008 0.027
0.008 0.003
0.148 0.205—0.085 —0.099

jM1
Mg+
E,~
E3-
Mg

2 652 3 308—0.044 —O.122 —1.403 —1.522—0.621 —0.605
0.209 0.161

o 043 —0.185
0.270 0.407
0.060 0.043

"A. T. Davies (private communication); A. T. Davies and R.
G. Moorehouse, Nuovo Cimento (to be published).

"R.Prepost, D. Lundquist, and D. Quinn, Phys. Rcv. Letters
18, 82 (1967).
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TAsLE IV. Solution (t), multipole amplitudes, multiplied by (qk)'&', aud given iu units of 10 '.

Ms+'

M4
M4+

M5
3f5+
ge

~e
3f6+
Ev-

Rc
IIQ
RC
IIQ
RC
IIQ
RC
IIQ
Rc
IIQ
RC
IIQ
RC
IIQ
Rc
IIQ
RC
IIQ
RC
IIQ

560

1.007—0.190
0.789
1.282
0.147
0.160
0.938
0.161
0.402—0.092
0.153
0.063—0.112
0.000
0.168
0.001
0.098—0.000
0.032—0.000—0.029
0.046
0.038
0.013-0.010
0.019
0.017
0.005—0.004
0.009
0.009
0.002—0.002
0.004

600

1.044—0.128
0.685
1.509
0.139
0.160
1.136
0.256
0.389—0.092
0.233
0.095—0.109
0.000
0.180
0.001
0.094—0.000
0.034—0.000—0.032
0.049
0.040
0.014—0.012
0.021
0.019
0.006—0.005
0.010
0.009
0.003—0.002
0.005

640

1.086—0.029
0.475
1.704
0.134
0.160
1.368
0.483
0.376—0.092
0.325
0.172—0.102
0.000
0.193
0.001
0.088—0.000
0.036—0.000—0.034
0.052
0.041
0.016—0.013
0.032
0.020
0.006—0.005
0.011
0.010
0.003—0.002
0.006

1.111
0.121
0.181
1.803
0.131
0.160
1.521
0.940
0.361—0.092
0.390
0.326—0.089
0.002
0.208
0.002
0.078—0.001
0.037—0.000

-0.036
0.055
0.043
0.017-0.014
0.024
0.021
0.007—0.006
0.012
0.011
0.003—0.003
0.006

720

1.070
0.322—0.127
1.773
0.131
0.160
1.316
1.553
0.346—0.092
0.335
0.534—0.069
0.007
0.229
0.003
0,063—0.005
0.037—0.001—0.038
0.058
0.044
0.018—0.015
0.025
0.022
0.008—0.006
0.012
0.011
0.004—0.003
0.007

0.908
0.516—0.380
1,640
0.132
0.160
0.'l16
1.884
0.330—0.092
0.146
0.646—0.036
0.021
0.260
0.005
0.040—0.013
0.035—0.001—0.040
0.060
0.046
0.019—0.016
0.026
0.022
0.008—0.007
0.013
0.012
0.004—0.003
0.007

800

0.651
0.592—0.549
1.460
0.135
0.160
0.163
1.790
0.313—0.092—0.027
0.614
0.016
0.059
0.320
0.015
0.005—0.038
0.026—0.003—0.042
0.062
0.047
0.021—0.016
0.028
0.023
0.009—0.007
0.014
0.012
0.004—0.004
0.007

840

0.424
0.520—0.644
1.278
0.140
0.160-0.149
1.548
0.296—0.092-0.118
0.532
0.077
0.173
0.526
0.081—0.036—0.112—0.010—0.016—0.044
0.064
0.048
0.022—0.017
0.029
0.024
0.009—0.008
0.014
0.013
0.004—0.004
0.008

rv
RC
IIQ
Rc
IIQ
RC
IIQ
Rc
IIIl
Rc
IIQ
RC
IIQ
RC
IIQ
Rc
IIQ
Rc
IIQ
RC
IIQ

560
—0.570

0.043
0.351—0.086—1.208
0.'l23

—1.000
0.270—0.021—0.012
0,057
0.060
0.109—0.001
0.015
0.002—0.082—0.001—0.124—0.001

600
—0.550

0.043
0.335—0.086-1.092
0.538—0.991
0.2/0-0.010—0.009
0.048
0.060
0.116—0.001
0.008
0.002—0.085—0.001—0.127—0.001

640
—0.536

0.043
0.324—0,086—0.960
0.404—0.987
0.270
0.002—0.007
0.039
0.060
0.122—0.001
0.002
0.002—0.087—0.001—0.131—0.001

680
—0.528

0.043
0.319—0.086—0.827
0.313—0.962
0.270
0.014—0.005
0.030
0.060
0.127—0.001—0.003
0.002

-0.089—0.001—0.134—0.001

720
—0.524

0.043
0.318—0.086—0.705
0.254—0.943
0.270
0.027—0.004
0.023
0.060
0.132—0.001—0.008
0.002—0.090—0.001—0.137—0.001

760
—0.524

0,043
0.320—0.086—0.597
0.220—0.921
0.270
0.042—0.004
0.016
0.060
0.137—0.001.—0.011
0.002—0.091—0.001—0.139—0.001

800
—0.528

0.043
0.326—0.086—0.503
0.203—0.898
0.270
0.056—0.003
0.009
0.060
0.141—0.001—0.015
0.002-0.092—0.001—0.142—0.001

840
—0.534

0.043
0.335—0.086—0.423
0.197—0.874
0.270
0.0/2—0.003
0.003
0.060
0.145—0.001—0.017
0.002—0.093—0.001—0.144—0.001

a The follovnng amplitudes are contributions of the pion pole only.
b The higher amplitudes are the negatives of the corresponding ones for I=$.

and solution 2 has X~ per degree of freedom= $.91, and
it vrill be scen that they are of similar type. In Figs. 5
and 6 @re have dravrn the multipole amplitudes of solu-

tion j. in Argand diagrams, excluding the pion-pole pro-
jections vrhich are given in Table II. In Table IV @re

give for so1ution 1 the whole multipole amplitudes (tha, t
is including the pion-pole projection) at various energies.

Note that by far the largest rnultipoles are the dipole

amplitudes, ~0+,, ~j. , Mj+, E2,' then come the quad-
rupole amplitudes SI2, E2+, the very small quadrupole
and octupole amplitudes leading to J=-,' states have
not been drawn. %e do not attach signi6cance to the
results for the smaller multipoles, E3 ', M3 3, 82+3,
M2+', Egg, M2 ', Zg+', Mg '.

It will be noticed from the graphs (Figs. 7—11) that
there is a discrepancy in the m+ angular distributions
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W.

FrG. 5. (a) Eo+', (b) Bo+', (c) M& ', (d)
M~ ' of solution 1 shown as functions of en-
ergy. Units of 10 ~. The end points of the
arcs represent S'= 1375 MeV and 8'= 1575
MeV. The multipoles here are not the com-
plete multipoles; the pion-pole projections
(Table II) must be added on.

0 (~)
=

2-

Fza. 6. (a) E~ ', (b) E~ ', (e) M~ ', (d) M~ ',
(e) ~&+', (f) M~+'of solution 1 shown as func-
tions of energy. Units of 10 '. The end points of
the arcs represent 8'=1375 MeV and S"=1575
MeV. The multipoles here are not the complete
multipoles; the pion-pole projections (Table II)
must be added on. Bj+' and Ej+' are not shown;
they are of the same magnitude as 3f& '.

20

15

T~ ~589
T~ &63

dd'
dll

10

0
0 30 60 90

e
Fro. 7. ~+ photoproduction; curve is solution 1.

do./dQ in microbarns; T~= 589 MeV.

180' 0
0 150 NO12030 60 90

e
Fro. 8. x+ photoproduction; curve is solution 1.

do/dQ in microbarns; T~=663 MeV.
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15

T ~733

There is substantial contribution to X' from some points
in the 180' m.+ data (Fig. 11) though the general magni-
tude of the cross section is quite good; we shall return
to this point shortly.

Examples of the fit to m' differential cross sections,
and to polarization and asymmetry measurements are
shown in Figs. 12—17. In the m' data near 1.80'„there is
some structure, most noticeable at 760 MeV where there
is a pronounced shoulder eAect. We have not been able
to 6t this type of angular distribution without including
higher waves, possibly coming from the I-channel pole. ""

There seems to be no need for such I-channel pole terms
in x+ photoproduction, and so if this effect is real it
arises from photon coupling to the proton charge. An-

0
0 30 60 90

e
120 $0' e 180

FIG. 9. m+ photoproduction; curve is solution 1.
do/dO in microbarns; T7= 733 MeV.

between the points" at 165' and those" at 180'; as
these are from diferent groups one suspects error(s) of
normalization. Our present solution seems to 6t the
180' data of Schaerf'4 better than the Caltech data. "
We also notice an undulation occurring in the backward
hemisphere of the 7t-+ angular distribution in the higher
energies of our range and becoming marked at E~= 813
MeV. This is due to J= ~5 waves, representing the tail
of the third pion-nucleon resonances, and is quite well

Gtted by our curves which include these resonances.

750 800 840

15

813
FIG. 11.m'+ photoproduction at 180'; curve is solution 1.

d0/dQ in microbarns; T~ in MeV.

0
0 30 60 90 120 150 &BG'

e
FIG. 10. ~+ photoproduction; curve is solution 1.

do/dO in microbarns; T~=813 MeV.

other possible, perhaps minor, complication in the back-
ward ~' photoproduction is the 11-cusp effect (see below).

It has been noted for some time that there is little
evidence of the dominant d~3 resonance in the forward
and backward photoproduction date. "The simplest ex-
planation is that the J,=2 helicity amplitude of the
resonance vanishes, or in multipole terms, E2 '= 3%2 '.
However, this type of qualitative argument does not
take account of possible complications due to other
waves, in particular the resonant srr and pn amplitudes.
Our quantitative analysis now veri6es the correctness
of this result (see Table III). We see that both for solu-
tions 1 and 2 the ratio c„~(E~ ')jc„„(352 ') is 3.0
approximately. Thus of the two independent helicity
amplitudes, A(J,= ~3) and A(J,=5'), for the y+E decay
(or production) of the d~a resonance it appears that
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A(J,= ~)~0. Now the L-excitation quark model in i'
simplest form assigns this resonance" to an {8I' of
SU3 and quark spin, with I-= 1 . It is easily seen that
interaction with the quark magnetic moments p only
leads to the result 2 (J,= s) =0. Thus our present result
cannot be obtained as a selection rule in this assignment
of the quark model. "

The coupling of the Pn resonance is also stable. This
is interesting in view of the uncertainties in the param-
eters of this resonance' illustrated by the fact that our
circular fit to the phase shift points is bad —compare

4-

3-

60 90 120
I

150

FIG. 13. m' photoproduction; curve is solution 1. The forward
point shown is an extrapolation by Beale, Walker, and Ecklund
(Ref. 16) of nearby experimental results. da./dQ in microbarns;
T~= 740 MeV.

30 60 90 120 150
8

180'

FIG. 12. m photoproduction; curve is solution 1. The forward
point shown is an extrapolation by Beale, Walker, and Ecklund
(Ref. 16) of nearby experimental results. do/dQ in microbarns;
T„=680MeV. 3-

Fig. 2. However, the s» coupling varies appreciably;
in one of the two 6ts shown

c,&=1.41X j.0 ';
and in the other,

c„=0~5X10 '.
The g-photoproduction Qt of c„~=0.62&(10 ' is in

"R. H. Dalitz, ProceedirIgs of the Thirteenth IrIterrlutional Con;
feremce on H~gh-Energy Physics, Berkeley, California, 1966 (Uni-
versity of California Press, Berkeley, California, 1967).

» Photoproduction experiments may give quite sharp tests of
assignments of higher resonances in symmetry schemes. The 6
Regge trajectory can be generated (see, for example, Ref. 21) by
adding orbital angular momentum L =0+, 2+, 4+ ~ ~ ~ to the {10}'
of the 56 (i.e., the ground state of the nonrelativistic quark model).
It can then be shown that the nonrelativistic quark model implies
photo-excitation of these resonances by magnetic multi poles only;
this is a generalization of the familiar, and experimentally verified,
result for L=O+. Some other selection rules are given by R. G.
Moorhouse LPhys. Rev. Letters 16, 771 (1966)j.

30 60 90 120
8

180'

FIG. 14. w' photoproduction; curve is solution 1. The forward
point shown is an extrapolation by Beale, Walker, and Ecklund
(Ref, 16) of nearby experimental results. do/dQ in microbarns;
T~= 780 MeV.
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-0.2-

-0,4-

-0.6-

135 118 108 95 89'
neighborhood of the g threshoM. There should actually
be a cusp in the trajectory of T, as a function of 8'
which we do not have, and which is not apparent in the
phase shifts of Bareyre et al. ,' although in some other
phase shifts, for example, those of Hransden et a/. ,

' it is
clearly present. Roughly speaking, the Eo+' amplitude,
in its attempt to ht the corner at the g threshold by a
circular arc, may take a larger or a smaller radius for
that arc, implying a larger or a smaller value of c„~.
We also see in the unsatisfactory detail of our 6t to the
180' m+ data in the neighborhood of the p threshold
another result of our inadequate parametrization.

-0.8-

600

FIG. 15. Polarization of recoil proton; curve is solution 1.
e~ in MeV; —',=135'-89'.

o
0

o

general agreement with the lower of these values, which
is in fact our best fit; however, the g-photoproduction
data is rather crude. This instability probably comes
from the inadequacy of our parametrization in the
Breit-Wigner form Eq. (2.13) for the su wave in the

0;2

4 112 102 74'

-0.2-

-0.4-

FIG. 17. Asymmetry parameter in photoproduction using
polarized photons; curve is solution 1. T~ in MeV.

In forward and backward directions the photoproduc-
tion differential cross section takes a particularly simple
form; we have

do—=-
~
Pr&Pg (

2,
dO k

(5.1)

-0.6-
where (—) is for 0=0'. Using the result that E, '

33II& ' we see that the des amplitude decouples from
the process in these directions; so to a reasonable
approximation

(Fg—fg) g=o'= E~—(cog —Mg+),

(51++2) 8=180 EO++ (~1— ~1+) ~

(5.2)

600 700 800 Tg

I zG. 16. Polarization of recoil proton; curve is solution 1.
T~ in MeV —'=102'—74'.

In vr' photoproduction, from Eqs. (3.6) and (5.2) we
see, looking at Figs. 5 and. 6, that the magnetic amp]. i-
tudes almost cancel; also Eo+=Eo+'+ ED+' is quite small.
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de.
de

Io

Tg ~ 403 MaV

Wc have llot Included (higher mulflpolc contrlbutlons
from) I-channel poles or 1-channel poles due to the ex-
change of particles heavier than the pion. It was ex-
plained in Sec. IIIB that qualitative considerations sug-
gest that the contribution to high partial waves from
the nucleon I-channel pole should be unimportant in
our energy region. Similar considerations apply to the
1-channel a& and p poles (though in a higher energy range
these may dominate photoproduction. " However,
SU(6) gives's

1
QPg 3 PQ'11 ~ (5.3)

50

FIG. 18. The pion-pole contribution to the cross section. A is
vrith G(t) = j,; 8 is with X=3.708 and X=1682 MeV. d47/dQ in
IniCrObarnS.

Consequently, from Eq. (5.2), the Irs cross section is
small in both forward and backward directions.

We now discuss x+ forward photoproduction. In
terms of the amplitudes of Eq. (5.2), using Eq. (3.6),
we see that My+ is relatively small while Eo+', Eo+',
M& ', M& 3 all interfere constructively leading to a
large forward peak. The problem now is to understand
why thcsc amplitudes lntclfcl c constructively ln thc
7t-+ photoproduction and this naturally leads to con-
sideration of the inAucncc of the pion pole. The com-
plete pion-pole term (see Fig. 18) contributes nothing
to the cross section in the forward direction, but the
projections of the pole on the Eo+', E0+', M~ ', nfl '
multipole amplitudes Rll interfere constructively
(though it may be noted that the sign is opposite to the
real part of our amplitudes of Figs. 5 and 6, see Table
II), but would by themselves only have given a magni-
tude of the forward peak of about 4 jab/sr. So the pres-
ence of the sII and pll resonance and the important ssl
wave must enhance this CRect, and it follows that at en-
ergies above these resonances the forward peak. should
drop sharply.

This discussion CRIl Rlso bc Rppllcd to thc bRckwRld
m+ data. As the d~3 is decoupled, the dominant ampli-
tude is Re+I+Mt '. This is small and so the details of
the cusp in Eo+' can be clearly seen about the g thresh-
oM. This is probably the clearcst cusp effect seen in
strong interaction physics. It should also be apparent in
forward x' photoproduction.

So it may be necessary to include an + pole in the analy-
sis of near forward direction m' production at some en-
ergies in or near our range. We therefore need more data
on m' photoproduction at forward and (especially)
backward directions at energies throughout our energy
region in order to decide definitely whether or and proton
poles have to be included in the analysis of the second
resonance region.

Our parameters can now be applied to evaluate the
contribution to the Drell-Hearn'4 sum rule from the
second resonance. We cannot, however, investigate
without further assumptions those sum rules obtained
from current commutators involving isovector cur-
rents" as our results do not separate the isoscalar and
isovector contributions to F'. Thus it is important that
accurate measurements of the process

(4.5)

be undertaken throughout this energy region.
Another experiment which needs to be performed is

a definitive measurement of the m' cross section in the
forward direction.
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