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Noninvariance Groups and Low-Energy Meson-Baryon Scattering*
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The object of the paper is to show that consideration of noninvariance groups as well as the Cook-Goebel-
Sakita strong-coupling solution may be used to derive low-energy sum rules for p-wave meson-baryon
scattering. In particular we obtained two sum rules for pion-nucleon scattering which are in fair agreement
vnth experiment. These are p"=4p~ 3=4p'j. The method is generalized to 5V(3) to obtain twelve sum rules
for the fourteen p-wave amplitudes. Throughout, a rather simple method of using crossing Inatrices of the
groups SU(2)1&SU(2)g and SU(3) &(SV(2)q Is employed, Several new results are obtamed whIch were not
obtained in the previous treatments.

and derive two sum rules that are fairly well sa,tis6ed
by the p-wave scattering lengths. In Sec. III, we con-
sider the group SU(3)XSU(2) q and derive some of the
consequences of this group. In Sec. IV, we summarize
our conclusions.

I. INTRODUCTION

ECKNTLY, Kuriyan and Sudarshan' ' have con-
sidered the consequences of an intermediate-
s

~

coupling model. This model is based on the static
Chew-Low model for p-wave scattering, as was the
Cook Gocbcl and Saklta (CGS) stlollg-collpllllg
model. The model considered by the former authors
differs from that of CGS in the fact that commutators
of meson matrices are assumed to be Qonvanishing,
and are set equal to a certain linear combination of the
generators of the invariance group. Such a model
derives its validity from the fact that even in the
limit of strong coupling, differences between ininite
quantities may still remain 6nite. However, much of
its predictive power comes from assuming that the
coupling cor star ts are 1Q fact 6nite. For example, the
noninvariance groups involved are compact, leading to
6nitc dimensional 1cpl cscntat10QS foI' baryons. Thc
authors further explore the consequences of their as-
sumption on the spin-Alp aQd spin-DOQAlp Incson-
baryon clastic scattering ampHtudes. 2 3 Not all the sum
rules are, however, exhausted by their method.

In this paper, we consider meson-baryon scattering
within the framework of the intermediate-coupling
model and rederive sum rules for p-wave scattering
amplitudes. These sum rules are expected to be valid
at low energies where the Born approximation. has
some validity. %c consider the cGect of the CGS mass-
splitting term as well as the term arising f1om the
commutators of meson matrices. The method used is
the familiar one involving crossing matrices. Such a
method is rather simple to use because the crossing
matrices are well known for the groups involved here.
Thc Incthod also glvcs a clcal"cl physical understanding
of the different forces involved in the problem. In Sec.
II, wc consldcl the lllvallallcc group SU(2)rXSU(2) J',

II. MESON-BARYON SCATTERING IN
SU(2)rX~U(2) J

A. Intermediate-Coupling Model

We consider the p-wave pion;nucleon scattering as-
suming the invariance group SU(2)rXSU(2)~. The
Born approximation for the process

8+M;„~8'+M; p,

where i and a refer to spin and isospin, respectively,
and 8 and M stand for baryons and mesons, is given
as a matrix in the space of baryons 8 and 8' by

In this expression A; are meson matrices, a,nd 6 is the
mass operator. The intermediate-coupling model as-
sumes that in the limit g' —+ ~,

g'k~'- 4t j=&L"u.l.~"+e;;sA~' j
I and J; are the generators of the invariance group
SU(2)r and SU(2)q, respectively If 8 —+O. „we recover
the results of the CGS strong-coupling model. The form
of Eq. (2) though seemingly arbitrary, is the only one
that allows S and E~ in the baryon spectrum as we
shall show. An analogous assumption about meson
commutators based on vector exchange has been sug-
gcstcd by Polklnghol. nc' 1Q a slightly dlGcrcnt con-
text. Usc has also been made of such commutators by
Capps' in a model based on SU(6)s to construct a
complete theory of baryon and meson bootstraps. Thus,
it may be possible to obtain Eq. (2) based on a theory
involving exchange of mesons, although we do not
pursue that question here.

~ This work is supported by a NSF research grant.
x J. G. K«iyan and K. C. G. Sudarshan, Phys. Letters 2I

(1966).' J. 6. Kuriyan and E. C. G. Sudarshan, Phys. Rev. Letters
16, 825 (j.966).

J. G. KuI'Iyan and E. C. G. Sudarshany Phys. Rev. 162» 1600
(1967).'T. Cook, C. J. Goebel and B. Sakita, Phys. Rev. Letters 15,
35 ($965).' C. J. Goebel, Phys. Rev. Letters 16, 1130 (1966).
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The dynamical postulate3 made now is that the
scattering amplitude in some range of energies is de-
scribed by terms of the type in Eq. (1) multiplied by
arbitrary functions of energy co. Thus, we have

t;.,;p(oi)= ei—[e p,I,h'~ +e';,7Jih P]ft(oi)
[A'—,L~,A p Zfs(~) (3)

The functions ft(oi) and fs(oi) are, respectively, 1/co
and 1/ois at low energies, while they restore unitarity
to the amplitude at high energies.

We now study the two terms on the right-hand side
of Eq. (3). Using standard formulas involving Clebsch-
Gordan coeKcientss we obtain from Eq. (2), in the
space of pion-nucleon elastic scattering, the 4)(4
matrix equation

CI' —I'= OA, (4)

where C is the crossing matrix, and I' is the coupling
constant vector. A is obtained by projecting the right-
hand side of Eq. (2) in the four channels, i.e., (1,1),
(1,3), (3,1), and (3,3) [notation is (2I,2J)], respec-
tively. The vector A is'explicitly given by —,(8, 2, 2, —4)
and C ls

~
—21

—4 —4 16
—1 8 4
+8 —1 4

2 2

With Iil and E* exchange assumed, I' is (pit, 0,0,ass)
where ytt=3f'=3(g'/4w)(p„/2Miii)'=0. 25. If 8=0, we
have the reciprocal bootstrap' solution 2y33 ——y~~. How-
ever, it is interesting to observe that any departure
from this solution requires A to be of precisely the form
assumed by Kuriyan and Sudarshan. Thus, their as-
sumption is the only one compatibl. e with E and 3'"t

exchange.
The commutator [A „[A,A p,]]can be easily evalu-

ated with 1V and Iil* exchange regardless of the form of
the mass operator D. Using methods similar to those
used in getting Eq. (4), we have for the mass-splitting
term in the space of the 4 channels, M= (C+1)1"with
I"—= (0,0,0,e). Thus, M is e(8,2,2,5) where e is a measure
of the X-E*mass difference.

We finally have for the p-wave scattering amplitude

If we further assume that. the E-E*mass difference
is small, we have from Eq. (7)

pl, s pl, l —ps, s ps, l (10)

B. Relations between Spin-Fliy and
Syin-N onQiy Amplitudes

The scattering amplitude can be separated into spin-
Qip and spin-nonQip amplitudes as

2"=f+grr n,

where f is the spin-nonflip and g the spin-flip amplitude.
If we assume that otsly the first term il Eq. (3) is ins
portatit, we get the result that only e,;&J&5 p contributes
to g and only e p~I~8'& contributes to f It then fo. llows
that for spin-Rip amplitudes we have the following
relation between isospin amplitudes A' and A'.

and fo~. Spin-nonAip the relation

rf'= —2A'

Using the well-known formulas"

(13)

(14)

f(8) =P [(l+1)fi~+ifi ]Pi(cosg), (15)

g(0) =2 (fi+ —fi-)I'i'(cosg),

we obtain two sum rules

This sum rule is, however, in poor agreement with
experiment, because the E-E*mass difference certainly
cannot be ignored. The two sum rules in Eq. (9) are,
however, in good agreement with p-wave scattering
lengths, which are given by Hamilton and Woolcock" as

a"= —0.101+0.007, u"= —0.029&0.005,
(11)c"= —0.038+0.005, a~ =0.215+0.005.

It is to be noted that the sum rules obtained in Eq.
(9) are valid also for the CGS theory. We also observe
that since we study Eq. (3) directly, we get predictions
for elastic xE scattering. The method used by Kuriyan
and Sudarshan' ' yieMs absolutely no predictions" for
this case.

with

ps' '~(ai) = flf, (oi)It" '~ f—s(oi)M" '~, —(6) p3, 8 ps, i —pl, s pi, i (17)

X=-', (8, 2, 2, —4),
M= e(8,2,2,5) .

We, therefore, have the following two sum rules:

pl, l —4pl, s —. 4ps, l

(7)

(8)

(9)

2p' s+p' '= —2[2p' '+ps '] (18)

These sum rules are already contained in the three
sum rules in Eqs. (9) and (10).These are, however, in

poor agreement with experiment again the reason being

V. Singh and B. Udgaonkar, Phys. Rev. 149, 1164 (1966).
Note that any function iX~ f;p;~iV)=p P P",, where I'" are
projection operators for the different channels. F is the matrix
representation of f;,p, in the space of meson-baryon scattering.
Thus (E~i» p„I„P"+i~;,iIis P~N)=P„I'„Ii" defines A.

' G. F. Chew, Phys. Rev. Letters 9, 233 {1962).

' J. Hamilton arid W. S. Woolcock, Rev. Mod. Phys. 35, 737
(1963)."E.C. G. Sudarshan (private communication). In Ref. 2 note
that Y should be defined as &(BI&I,B2M2) =g {BI+JINNI&~B2+~s)
+g (3IIg+BI ~ M1+B2)."S. C. Frautschi and J. D. Kalecka, Phys. Rev. 120, 1486
(1960).
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that p' ' is very sensitive to location Ã*(33) resonance.
Thus the assumption of ignoring the CGS mass-
splitting term is in poor agreement with the experi-
ment, at least at low energies. At energies much higher
than the E*-E mass difference these relations however
could play an important role.

cr—r= —0X, (20)

where C is a 14X14crossing matrix obtained by finding
the direct product of the SU(3) crossing matrix" and
the SU(2)~ crossing matrix. We label the channels, in
an obvious generalization of the notation used earlier,
by (S,2J) where S takes the values 1, 8„,8„,8„,10*,
10, and 27, while J= ~ and ~3. The nucleon contribution
to I' in the channels (8„,1), (8„,1) and (8.„1)depends
on the D/F ratio, and is (2+5)u(1—u)ys, 3(1—u')ys,
5u'ys, respectively, where D/F=u/(1 —u). The contri-
bution of the decuplet of spin--,' resonances is y~o in the
channel (10,3). The projection of A., unlike the previous
case, depends on the D/F ratio, which in turn depends
on the choice of F. For example, if F has contributions
from nucleon and (1,3) only, the coupling is pure D,
and A takes the form A.=—0(—2, —26, 0, 0, —3, —12,—19, —4, —12, 6, —12, 6, 6, 6). The channels are in
the order (1,1); (1,3); (8„,1); (8„,3); (8„,1); (8„,3);
(8sa, 1); (8am, 3); (10+,1); (10*,3); (27,1); (27,3). With
nucleon and (10,3) exchange, the value of A is found
to be

A=0( —42, —6, —8+5, 4+5, —23, —2, —7,
—10, 12, —6, —4, 2, —2, 10) . (21)

If this term dominates the low-energy scattering, we
would have 13 independent sum rules, which can be
obtained from Eq. (21) in an obvious way.

The CGS mass-splitting term may be calculated as
before, and is (6+1)F', where F' has only a (10,3)

See for example, S. Gasiorowicz, E/ementury Particte Physics
Qohn Wiley & Sons, Inc. , New York, 1966}.

III. MESON-BARYON SCATTERING IN
SU(3) && SU(2) g

A. Intermediate-Coupling Model with Mass Splitting

We now consider the elastic scattering of a p-wave
octet of pseudoscalar mesons off an octet of baryons.
The scattering amplitude is the same as in Eq. (1),
where u now refers to SU(3) index. The appropriate
intermediate-coupling hypothesis for this group is

g'LA. )Am]
=io[f p~F~5,,+2e;,s(Js8 p/3+d p~As„)7 (19.)

Here, F is the generator of SU(3), and f p, andd p,
are the usual antisymmetric and symmetric tensors of
SU(3). The scattering amplitude is again given. by the
combination of two terms in Eq. (3). Specializing to
Eq. (19) in the space of 14 channels of SU(3)XSU(2),
we have

B. Relations between Spin-Rip and
Spin-nonfHp Amplitudes

If we again assume that the meson commutator term
(19) dominates the scattering, we have the result that
only f p~F~o" contributes to spin-nonfiip amplitude f;
and only e;,s(Js5 p/3+d pcs~) contributes to g. The
spin-nonAip amplitude is independent of the choice of
baryon representation and by projecting it into SU(3)
invariant amplitudes, we have the result

A"=A"*=A' a= 0

3'=22' =23' = —3A"
(23)

(24)

These equations give essentially all the results for
spin-nonQip amplitudes obtained in Ref. 3. Since only
the nonAip amplitude survives in the forward direction,
these relations are valid for the complete amplitude
in the forward direction. They also imply the Johnson-
Treiman relations as is pointed out in Ref. 3. They
yield six independent sum rules for p-wave scattering
amplitudes, and these can be obtained from Eq. (15).
Spin-flip results assuming (10,3) resonances are given by

3'=33"= 6A"= —2A"*=—122'"
= (12/7)A'«= (3/2+5) V'*. (25)

These equations give six more sum rules, which can
be obtained using Eq. (16). All the twelve sum rules
are contained in the thirteen that follow from A in
Eq. (21). However, the twelve sum rules that are
obtained by including the CGS term are probably in
better agreement with experiment.

IV. CONCLUSIONS

%e have derived sum rules for low-energy meson-
baryon scattering using the intermediate-coupling
theory, which is based on the static Chew-Low model.
Such a theory, although approximate, may have a
certain validity for low-energy phenomena as borne
out by the success of static SU(6). Though higher

The CGS solution for 0 ~ 0 contains 10* and 27 exchange
also; however, now 6i may be taken as nonzero to obtain the
value of the CGS term consistent with only 10 exchange.

contribution" for the 56 representation of baryons in
SU(6). Thus

M—= e(—60, —15, 24+5, 6+5, 0, 0, 24, 6,
12, 3, 12, 39, 4, 1) . (22)

It is clear that by combining the two terms A and M
we get 12 independent sum rules. These include the
two sum rules that we have obtained in Sec. II. It
may be possible to check these sum rules as data on
other meson-baryon scattering becomes available. How-
ever, it should be emphasized that SU(3) mass splitting
has not been taken into account, so that the agreement
is not expected to be too good.
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invariance groups like SU(4) or SU(6) have not been
explicitly assumed, the meson commutator is chosen
to yieM baryons belonging to representations of these
groups. Many of the results are independent of the
choice of any specific representation and are valid even
if baryons belong to representations of noncompact
groups. The sum rule p"=4p"=4p' ' is an example
of such a result. A large number of sum rules are ob-
tained from the group SU(3))&SU(2)g which may be
checked against experiment as results become available.
The method used throughout is rather simple and in-
volves only the knowledge of the relevant crossing

matrices. Under certain simplifying assumptions results
are obtained also for spin-Rip and spin-nonQip ampli-
tudes which generalize the work of earlier authors.
The nonfhp results are in agreement with the Johnson-
Treiman relations in the forward direction as was
shown in previous work.
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A phenomenological analysis is made of the pion photoproduction data in the energy range 535 &L&"~&850
MeV. The analysis is based on the pion-nucleon phase-shift analyses using a generalized isobar model. The
Watson theorem for the elastic pion-nucleon partial waves is imposed. g photoproduction data in the same
energy range is also analyzed using an eRective range expansion of the IC matrix. The nucleon-isobar electro-
magnetic couplings are determined.

I. INTRODUCTION

' 'N this paper we study the photoproduction of
~ - pions from protons in the region 535&ED&850
MeV where E~ is the photon laboratory energy. Anal-
ysis of pion photoproduction in the lower-energy re-
gion from threshold has been extensive' and has been
theoretically approachable in terms of dispersion rela-
tions following Chew, Goldberger, Low, and Nambu2
for two basic reasons. First, this region is dominated by
the nucleon isobar Es~s*(1238), J~=as+. Second, this
region (or at least the lower end of it) is elastic, and so
elastic unitarity and the Watson theorem apply. This
means that the yS amplitude is related to the zS ampli-
tude and that the dispersion integra1s can be reasonably
evaluated.

* Based in part on a thesis submitted to the University of
Sussex in 1966, in fulfillment of the requirements for the degree of
Doctor of Philosophy.

f Present address: Glasgow University, Glasgow, Scotland.' A. Donnachie and G. Shaw, Ann. Phys. 37, 333 (1966). This
paper has a fairly complete list of references.

~ G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345, (1957}.

The center-of-mass (c.m.) energy W of the photo-
produced pion-nucleon system in the second resonance
region is in the range 1375—1575 MeV, which contains
three 1V* resonances. These are the Et~s*(1525) J~= ss

(dr~ wave in the pion-nucleon system), the Et/s (1570)
J = —', (the Ãri resonance, stt wave in the pion-nucleon
system), and the cVr~s*(1400) J = —,'+ (ptt wave in the
pion-nucleon system). ' Furthermore, all three reso-
nances are appreciably inelastic and so we cannot expect
to be able to mak. e the same type of theoretical analysis
as in the lower-energy region. The details of the photo-
production of these resonances are of importance in con-
siderations of symmetry theories. Besides this resonance
question it has also become evident recently that a
knowledge of the multipole amplitudes for photoproduc-
tion in this energy region is necessary for the more exact
evaluation of some current commutator sum rules.

We have made a phenomenological analysis of the
photoproduction processes

y+ p —+ w'+ p, y+ p —+ w++ rs

3 A. H. Rosenfeld et a/. , Rev. Mod. Phys. 39, 1 (1967).


