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Assuming current algebra and using Bjorken’s methods, it is argued that inclusion of the strong inter-
actions to all orders will almost certainly not remove the nonrenormalizability of the weak interactions.

I. INTRODUCTION

T has long been a tacit hope that the nonrenormal-
izability of the weak interactions! might go away if,
at each order in the weak coupling, the strong interac-
tions are introduced to all orders—that is, strong
“form factors” may damp the singular weak forces.
Such an idea is extremely attractive because, if all the
higher-order weak corrections can be made finite in
this way, one might have justification for neglecting
them as small. Our purpose here is to argue that, if the
(pure) strong interactions are described by current
algebra, this hope is almost certainly unfounded.?

Our order of presentation is as follows. In Sec. IT we
use Bjorken’s® methods to examine the exchange of two
W-mesons between hadrons, to all orders in the strong
interactions. The process is still quadratically divergent.
In general, using a crude power-counting argument, the
exchange of N W-mesons between hadrons (to all orders
in the strong interactions) is divergent like A?¥—2 (A an
invariant cutoff mass); that is, the degree of divergence
of these ladder graphs with all strong form factors is
still just that of a ladder of bare nucleons. This is, in
a sense, not surprising because, after all, the current
algebra needed is true in a theory with free elementary
nucleons. In Sec. III we study the sum of all graphs to
fourth order in the weak coupling, i.e., vertex corrections
and nucleon and W-meson self-energy corrections, in
addition to the box graphs of Sec. II. Here we note that
not all these graphs can be written in terms of currents
with closed W loops, which keeps us from making
universal statements: For some processes, such as
elastic proton-proton scattering, it is clear that the
quadratic divergence cannot cancel. For others, such as
charge-exchange neutron-proton scattering, we cannot
prove that the divergence does not cancel, although

* This work was supported by the U. S. Atomic Energy Com-
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1 Representative references in the history of nonrenormalizable
field theory can be found in M. B. Halpern, Phys. Rev. 140, B1570
(1965); J. Math. Phys. 7, 1226 (1966); Ann. Phys. (N. Y.) 39,
351 (1966). See also, K. Bardakci and B. Schroer, J. Math. Phys.
7, 10, 16 (1966); W. Guttinger and E. Pfaffelhuber, Nuovo
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2 A start in this direction was made by M. B. Halpern and
G. Segre, Phys. Rev. Letters 19, 611 (1967), in which it is noted
that, even with strong corrections, all second-order weak non-
leptonic decays are quadratically divergent in the W theory.
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some simple arguments make a cancellation implaus-
ible. We do not attempt vertex function (etc.) analysis
for higher than fourth order. At the end of this Section,
we mention that the nonrenormalizability persists for
semileptonic processes (e.g., higher-order correction
to 8 decay, etc.), and purely leptonic processes.

II. LADDER GRAPHS WITH ALL
STRONG INTERACTIONS

We begin with the expression for the exchange of two
W-mesons between hadronic systems to all orders in
the strong interactions (see Fig. 1):

M=% (p+g—p'—q)g* f d*% / dix =ik
X e TG u(),5, (0} | p,@)Ar+s (R)Ap™ (k+p—1')
X / dix'e® (g d| T{ 5t («'),7,(0)} [ g,0), (1)

where g is the weak coupling in the W theory, 7, is the
purely hadronic weak-interaction current,?

Ju=cosf FHi24sing F 46 F,=V,—A4,, (2)

6 is Cabibbo’s angle, and Ag#*' (k) is the usual W-meson
propagator. Note that hadronic system a is not neces-
sarily the same as ¢, nor are they necessarily single
hadron states. Assuming the absence of operator
Schwinger terms, a time-ordered product between
hadron states is covariant. This structure includes, of
course, both direct and crossed box graphs whenever
such are compatible with the external quantum
numbers. It is important to realize that Eq. (1) contains
many more graphs than, say, just the box graph for
nucleons with a strong form factor at each vertex. Such a
particular subset of graphs might well be convergent,
but, in such an approximation, the time-ordered
products would not satisfy the correct divergence

* We are assuming the usual theory with only charged W mesons.
In this theory, of course, the A=} rule emerges dynamically
through the current algebra. There exist theories with neutral
W'’s, such as the “schizon” theory of T. D. Lee and C. N. Yang
[Phys. Rev. 119, 1410 (1960)]. Although there are more graphs in
such a theory, all our qualitative conclusions about degree of
divergence remain unchanged. It should also be noted that, if the
Fermi theory can be considered as the infinite-mass limit of the
W theory, our conclusions apply to it as well.
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I'16. 1. Two W-meson
exchange between ha-
drons.

condition, etc.—i.e., the current algebra is not rep-
resented by such a subset of graphs.

The loop in Fig. 1 is really only a function of one
4-vector k, so we can use Bjorken’s methods directly to
isolate the most divergent term. In a frame with k=0,
each of the time-ordered products go, for large ko, as
(ko)1; explicitly for the left-most, we have

—i / d %= c| T{ ju(x),7,7 (0)} | p,0)

1
—-— / ax{p’¢|[7u(x,0),71 (0) ]| p,).  (3)
ko

As a model, we work out Eq. (3) using the recently
proposed gauge-field algebra of currents® in the case of
strangeness conservation. Any other reasonable model®
gives the same degree of divergence with different
coefficients. Doing the commutation, and going to the
covariant form, we obtain

i ] dt b= e T (), 31 O} £,0)

e[ 50— Ok s;(o)]] ), (@)
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where
F,=2 cos™F 3+sin®[ F >+ (1/V3)F ,&]. (5)

With this in hand, we can isolate the most singular
part of Eq. (1), keeping only the k,k, term in the W/
propagators,

g4
Msingular= 5[’: /

d*k
=)
(p’,c]k-fflp,a)(q’,dlk-iflq,b)
(k- p— =12

where M is the W-meson mass, and we have suppressed
the energy-momentum conserving & function. We see
the two-meson exchange is quadratically divergent.
For example, if all the hadrons are identical and

5T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967). . .

6 The only model in which the leading divergence would be
zero is one for which the commutator in Eq. (3) vanished, which
would appear to disagree with experiment.
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spinless, this reduces, with all the hadrons at rest, to

4,2

: gu . .,
Mingutar= -]l/;‘*{Q (2 cos26--sin20)
dk
+3Y sin20 ] rE 0]

where u, Q, and YV are, respectively, the mass, charge,
and hypercharge of the hadron.

Note added in proof. In this discussion we have
tacitly assumed, with Bjorken, that all (IW-hadron scat-
tering) amplitudes satisfy unsubtracted dispersion rela-
tions, whereas Regge theory indicates that some of them
need subtractions. It would be interesting, though
difficult, to explore the consequences of subtractions
and/or Schwinger terms in our arguments. Intuitively,
we expect such to make the divergences worse.

As mentioned in the Introduction, the quadratic
divergence is not surprising really, because, in general,
current algebras are true in free theories: Certainly the
box graphs for bare nucleons are quadratically diver-
gent. For pions, the same is true, remembering that the
time-ordered product now also contains contact graphs
where the W-mesons meet on the pion line.

For multiple W exchange between hadrons, we
content ourselves with a rough power-containing
argument, just as we would for the bare ladder graphs.
Graphs analogous to Fig. 1, but with N mesons
exchanged, involve time-ordered products of N
currents between hadron states. We can exhibit the
large-momentum dependence of such structures in
analogy with the two-current form, e.g.,” by replacing
each ¢z by (iko)9e¢™* and integrating by parts to
generate a power series in (ko)~. In the case of three
currents,

//d4x1d4x2eik1'x‘61k2 '12<B] T{jm (xl)jﬂz (x2)jﬂs (O)} IA>

1
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X<Bl {LL7 (1), 72 (%2) 1, 75 (0) ]
+[ju2(x2);[jm (X1)>j#a (0)]]} IA>7 (8)

and, in general for N currents, we find the time-
ordered product goes down like (%ko)~¥*!. Thus, count-
ing momenta, the exchange of N W-mesons between
hadrons is divergent like A2¥-2, where A is an invariant
cutoff mass. As above, we note that this degree of
divergence is exactly that of, say, a ladder of bare nu-
cleons. Inclusion of the strong interactions doesn’t
seem to help at all.

—_

7 Alternatively, one can write spectral representations following
Bjorken. Essentially, for each 6-function in the time ordering,
there is another energy denominator in the representation.
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III. NUCLEON-NUCLEON SCATTERING
TO FOURTH ORDER

In Sec. II, our discussion was limited to ladder-type
graphs to all orders in both the weak and the strong
interactions. At each order in the weak interactions
there are, however, other graphs, namely vertex and
self-energy corrections, which could conceivably cancel
the ladder-graph divergences. In this Section, we want
to study these other graphs, for definiteness, in the case
of nucleon-nucleon scattering to fourth order. We note
that, in general, the cancellation is not possible.

The processes that need to be considered in addition
to the ladder graphs are shown in Fig. 2. All blobs are
time-ordered products of purely hadronic currents.
Because the usual theory? has only charged W mesons,
we have no 3-W vertices. Moreover, the 4-W vertex that
might contribute to the W renormalization is absent by
normal ordering. Note that we cannot write all the
graphs as currents with closed W-loops, so, at least in
the case of Fig. 2(d), we cannot make a definite state-
ment about divergence.

It is best to consider separate cases. For proton-
proton scattering, none of the graphs of Fig. 2 are
present (by quantum numbers), so the quadratic
divergence of the box graphs persists. In the case of
charge-exchange neutron-proton scattering, on the
other hand, all the graphs of Fig. 2 contribute (along
with the graphs of Fig. 1), so we proceed to discuss
them. Fig. 2(a) is quadratically divergent by our
previous methods. After the vertex renormalization
however, the divergence is only logarithmic and cannot
cancel the box-graph divergence. A similar statement
applies to the W-renormalization graphs of Fig. 2(c).
The graphs of Fig. 2(c) are quadratically divergent with
a coefficient depending on the hadronic states H, but
again, after nucleon renormalization, the divergence is
only logarithmic. The graphs of Fig. 2(d) are not
obviously divergent at all (because our methods only
work for closed W-loops). In perturbation theory, with
say, a nucleon-antinucleon loop, the process would

(a) (b) (c)

F16. 2. Other strong corrections to fourth-order nucleon-nucleon
scattering: H stands for hadronic intermediate states.
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again be logarithmically divergent after renormaliza-
tion. We consider it highly unlikely, although not
inconceivable, that the graphs of Fig. 2(d) can cancel
the divergence of Fig. 1 for #-p scattering; most
probably, the quadratic divergence persists, just as for
p-p scattering.

In conclusion, we have argued that the nonrenormal-
izability of the weak interactions persists for nonleptonic
processes, even with all strong form factors. The argu-
ments clearly go through as well for semileptonic
processes; e.g., in the case of 8 decay, the N-W exchange
process is also A?M2 divergent. In the case of fourth-
order purely leptonic processes our reasoning also
applies, with the observation that there are no strong
form factors in any graphs except Figs. 2(c) and (d).
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APPENDIX

In Sec. III, we have omitted discussion of some proc-
esses which correspond to polynomials in », (energy)
—and which depend in a more explicit way on how the
W meson is coupled into the theory. As in the text, it is
unlikely that these additional divergences will conspire
to cancel the ones already discussed. In fact, they are in
general more divergent than A% As an example, consider
the process in which the nucleons exchange an A,
(neutral axial vector) line with a W*W— intermediate
state. In a quark model, where all hadrons are compos-
ite, such processes are already included in the double
time-ordered product (Fig. 1), but in a generalized
Yang-Mills model such one-meson-exchange graphs can
appear. This particular set is divergent like A* after
renormalization, thus overpowering the divergences
discussed in the text. (Note that current conservation
will not reduce this divergence, because the axial
current is not conserved—not do the corresponding
pion-exchange graphs reduce the divergence.) Another
way of saying this is that, because of current non-
conservation, the divergence of a time-ordered product
of two currents is not just equal to the current vertex.
Even in the case of pg exchange (for which the current
is conserved), it is not likely that the divergence (now
A?) cancels the box-graph divergence,



