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Symmetries in First-Approximation S-Matrix Theory.
II. High-Rank Scattering*
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A study is presented of scattering invariant under any of the groups G= 0(rs), S„(n), or SU(n), rs»1, the
scattered multiplets transforming as products of at most two n-quarks plus m-antiquarks. The low-energy
dynamics is studied in "first approximation, " and in addition it is assumed that, total cross sections ot,& at
high energies are determined by Regge poles and/or cuts, and that the Regge parameters upon which cr&

depends are determined mainly by the low-energy dynamics. It is then shown that as e —+ ~, o&,& usually
remains positive, as unitarity requires. This conclusion is not obvious; it requires detailed calculation to
establish and is the main result of the paper. Unitarity is initially in doubt for these systems because in the
limit n ~ ~ the crossing matrix elements governing the contributions from the vacuum and other singlet
trajectories go to zero; and it is the singlet contributions which keep total cross sections positive for the
observed case of small n,. It is found that 0&,& remains positive only because the low-energy dynamics re-
quires nonsinglet trajectories to be produced in pairs, such that each negative contribution to 0.& from one
trajectory is almost exactly canceled by a corresponding positive contribution to 0 t & from its twin trajectory.
Occasionally this cancellation does not occur: If one of the initial multiplets is a representation of G which
is not equivalent to its complex-conjugate representation, then in at least one of the direct channels, even
after paired contributions are taken into account, crt ~ goes slightly negative, of &=0(e ~) &0. This number
is small enough that if the electromagnetic vertex for G transforms as a singlet rather than as one of the
generators of G, then the contribution to o.t ~ from photon exchange will drive ot t, positive again. It is then
assumed that at least one of the initial particles has spin. It is shown that so long as the leading nonsinglet
trajectories obey ep„=+1 (e= signature, p„=intrinsic parity), it is not possible to change the sign of crt & by
Ripping the helicity of one of the incoming particles from X to —X. A generalization (to arbitrary spin) of the
Wagner-Sharp rules for "line reversal" is also derived: In elastic scattering, if one scattered particle is re-
placed by its antiparticle, then the contribution to rt & from a given exchanged multiplet changes by a
factor of p, I,=charge-conjugation parity of the exchanged multiplet. A fairly complete discussion is given
of the dependence of o.t,t on the C, P properties of the exchanged multiplets.

I. INTRODUCTION

' "
N this paper we continue to investigate the stability

~ - of high-rank and high-dimensional symmetries
within the framework of first-approximation 5-matrix
dynamics. We turn from high-isospin scattering (the
subject of paper I)' to scattering of multiplets trans-
forming as the lowest-dimensional representations of
one of the high-rank simple Lie groups G=S„(n), .

0(rs), or SU(rs), N))1.
Crossing matrix elements C(tsa, ts,) for such scattering

can be calculated readily enough by well-known tensor
techniques. '

(tee, tc, label the irreducible representations
occurring in the direct and crossed channels. ) It is by
now clear that there are many elements of order unity
left in the limit m —+ ~.' ' This is just to say that an
investigation in the style of Pt. I, but with high rank

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

'Donald E. Neville, preceding paper, Phys. Rcv. 163, 1582
(1967), hereafter referred to as I.

'R. E. Behrends, J. Dreitlein, C. I'ronsdal, and B. W. Lee;
Rev. Mod. Phys. 34, 1 (1962); M. Hamermesh, Group Theory
(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1962), Chap. 10.' Donald E. Neville, Phys. Rev. 132 844 (1963); Phys. Rev.
Letters 13, 118 {196tL).' R. E. Cutkosky, J. Kalckar, and P. Tarjanne, in Proceedings
of the 106Z Annual International Conference on High-Energy
N'uclear Physics at CERE, edited by J. Prentki (CERN, Geneva,
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replacing high isospin, has already been carried out,
with similar negative results.

Paper II therefore considers an entirely different
argument based on the assumption that high-energy
(s or se), small-momentum-transfer (t) behavior of
scattering amplitudes is determined by Regge poles
and/or cuts. Hence one has for total cross sections

hm o,.v (tee
——ts.)

S-+00

= lim (4sr/ks' ") ImA (tee, t = 0)

= lim(err!ks'") Im P C(tee, ts„)A (ts;; t = 0) (1.1a)

=p C(trots«)p's ""' ',

alld
inn «.~(t a= t -) =2 C(t e,t ~')O'I"'"' 'e') (1.1b)

in the simplest case of negligible Regge cuts. We have
used the optical theorem; 0-&,& is the cross section for
p&@2~ everything, while ImA is the imaginary part
of the elastic scattering amplitude terse, -+ p, rts, . p;, e, ,
and cr, (t) are the residue, signature, and trajectory of a
Regge pole in the crossed t channel pt. When the requi-
site C(tsa, ts„) are calculated and inserted into the left-
hand side of Eqs. (1.1) along with reasonable estimates
of the parameters P; and cr;(0), then for some choices
of ts, ass, and tea the sum over i goes negative (hence
o«&(0), in violation of unitarity.
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The sums go negative because the large contributions
from crossed singlet trajectories keep total cross sections
positive in the observed case, broken SU(f1=3), while

going to a high-rank group amounts to "turning off"
this singlet contributio. That is, the singlet contribu-
tion p, =E (E for el}I) contains a number which de-
creases steadily as the rank of G increases;

C(~.,W=E)=+(&I& ) '"
E,.=dimension of p„ (1 2)

Furthermore, the numbers C(pd, p, /E), though often
small also, are on the average much larger than C (p0,E)
because of the factor (X,/Xd)I(' in formula (1.3);

C(}10,II, WE)/C(p0, E)=E,I"=order r. (1.4)

The bars mean rms averages over 0(pq, E) and

0(II~,II,WE). r, the rank of G (number of simultaneously
diagonalizable generators), is n 1 for—SU{I), and
-,'fI or -,'(e—1), whichever is integer, for S~(II) and 0(m).
In the limit r, e —+ ~, therefore, the singlet contribution
is negligible and the remaining terms oscillate in sign.

Our reasoning in the previous paragraph follows that
of Foldy and Peierls. ' These authors, who were con-
sidering isospin, proved that, whenever one crossed
t-channel exchange dominates, it must have I&——0, or
total cross sections will go negative.

Of course, it must be verified that the various P;,
n, (0) do not fall off in some way so as to make up for
the falloff in C(p0,E). If it is assumed that those param-
eters are determined largely by the low-energy dy-
namics, then it is plausible that there will be no falloff
in the P;, n, (0) (at least not by factors of r), because:
{a) el}cry multiplet in the low-energy region can exert
a force on the annihilation channel; e.g., if p, , is coupled
to p,p, q, then it can exert force on p& via p, exchange in~ II gp, 0 scaftellllg (the annihilation channel is
unique in this respect); and (b) direct calculation shows
that the elements C(}tl„p,) through which these forces
are exerted, i.e., the elements given the forces into

6 Richard H. Capps, iII Proceedings of the Twelfth Annual
International Conference on High-Energy Physics, Dubna, 1964
(AtoDIizdat, Moscow, 1965).' Leslie L. Foldy and RoIIald I'. Peierls, Phys. Rev. 130, 1585
(19(}3).

where the direct and cross channels are p&p2 ~ p~ —+ p, 1@2

and p, jp~ —+ p&
—+ jm~p2. Note that the singlet contribu-

tion CRn be posltlvc foI' cvcI'y cholcc of pg lf thc lcslduc
of the leading singlet trajectory is positive, since the
sign in Eq. (1.2) is positive for all }Iq. The nonsinglet
columns C(y~,p, &E), on the other hand, must oscillate
in sign in order to satisfy the orthogonality constraints
imphed by a, very useful and powerful formula derived
by CRpps j

C(I .,f .)= (&.P")'"0{I~,I .)
X 0(}10,p,) orthogonal. (13)

t channels, do not fall off with r, but remain of order
unity.

One must evaluate the sum (1.1) at a value of s just
large enough that the background integra1 no longer
contributes, and not, strictly speaking at s= ~. Other-
wise the singlet contribution will presumably dominate
no matter what the value of C{IIq,E), since the C(p„p,)
which control low-energy dynamics in G suggest that
a singlet will again have the largest e(0), just as in
SU(3).

From what has been said thus far, especially from
Eqs. (1.2)—(1.4), there is no reason to suspect any
dcpcndcncc on the scRttcI'cd multip1cts pq and p,2,
i.e., the argument might mell be universal, applying to
all high-rank scattering processes. On the contrary,
for all but certain of the SU(N) scattering processes
studied, the dynamics forces the nonsinglet Regge
trajectories to appear in pairs in the crossed t channel,
such that every negative contribution to sum (1.1)
from one member of a pair is almost exactly canceled
by a positive contribution from the other member. The
two members of a pair have almost identical residue
and trajectory functions but opposite signatures, so
that

P gu&I(0}~P pa&I(0} .

In this paper the notation A —8means A/8= 1+0(f-i).
Similarly, there is close agreement between the crossing
matrix elements C(p0,p, I) and C(}((q,p, ,2) occurring in
Eq. (1.1) t cf. Eqs. (1.6a)-(1.6c) below for a detailed
example) so that the cancellations result. The dy-
namical mechanism which produces the symmetry
(1.5) is described in detail in Sec. II.

%c have not checked every possible G-symmetric
scattering process for pair cancellation, but only those
processes involving multiplets of dimensionality E&
order r'. In terms of tensors or quarks, the multiplets
studied transform as tensors with &2 subscripts plus
superscripts, or equivalently, as products of & 2 quarks
plus antiquarks. One could describe this paper as a
study of tensors of low rank ((2), but groups of high
rank (r~ Q0). 0(N) and S~(e) have three such low-

rank representations each (the Il-dimensional repre-
sentation plus two rank-two representations transform-
ing as tensors T;, T„=+7,;, and T;;= T;~). SU(II)—
has thc same three) plUs thrcc morc dlstlnct, ) ln equiva-
lent representations obtained from the 6rst three by
complex conjugation (usually written with upper in-
dices as 2 ' = 2 ) pills file adlolllf. Iepl'esell'tafloll
7';&'. The number of processes studied, though not large,
is presumably large enough for gauging the range of
applicabiHty of the argument under discussion.

Basically, the cancellation, when it occurs, always
occurs because of syinmetry (1.5); but the detailed.
manner in which the cancellation occurs varies from
process to process. For all the 0(rc) and S~(II) scattering
processes investigated, as well as for the SU(N) scatter-
ing process with pj ——p2=adjoint representation, the
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twins have different G quantum numbers (Iau/u~s),
and in about & of the direct s channels the crossing
matrix elements satisfy

C(ud, u„)= C—(u&,u, s) (1.6a)

TasrE I. Columns of C(ps g~) for exchange of a singlet (f) or
the adjoint representation (3h, F or-D-coupled); the reaction is

3S+y ~ ps ~ 3S+p, with crossed channel 3S+35~ p~ ~tr+p.
p, =15 or 21. G=SV(n), n»1. All rank &2 representstions of
SU(N) are labeled by their dimensionalities for I=6. )a) =1,
iy[ =2, xy(0.

Therefore, the two contributions (1.5) nearly cancel,
giving a resultant one power of r smaller than expected,
and of the same order as the singlet contribution. In
another 3 of the direct s channels the two contributions
do not cancel,

C(tjs,ull)=C(tjs, uts) &O, (1.6b)

pg= 15
21

(Rank 4)
(Rank 4)

2'/'n '
21/2n 2

21/2n —2

2'/'n '

35')

2-1/2

2—1/2

2 '/'n 'x
23'/2n 'y

2-1/2
2-1/2

2 '/'n 'x
2—1/2n —ly

/co —&i y (1 8)

then there will be no negative cross sections in the I
channel either. g&0 is the interchange parity of the
Clcbsch-Gordan coefEcient at the p, ~; —+ p2p, 2 vertex.

(psmslusms I
tt„m„.)= rtco(trsmspsrnsI la„m„). (1.9)

There seems to be no dynamical argument which could
exclude correlation (1.8); indeed, if the external particles
trs and ps are spinless and identical, Eq. (1.8) is the only
possibility allowed by Bose statistics.

[We give a brief derivation of Eq. (1.7). The s
channel is p~p2~ p~p2, the u channel is p~p2~ p~p~,
and p,2 is equivalent to p2 for the processes presently
under consideration. Hence the same multiplets p~
occur in both the s and the I channels. Crossing matrices
C(s,t) and C(u, t) are, however, not identical because
C(s, t) interchanges the second and third multiplets
in the t channel urpt ~ psus whereas C(u, t) interchanges
p2~ p2, thee interchanges the second and third multi-
plets. The additional interchange p2+-+ p2 gives rise
to the factor of &co difference in Eq. (1.7).'j

There may be an additional factor of (—1) difference in Eq
(1.7), if the "antiparticle rule" factor for multiplet ps is (—1).

but there is nothing to prevent the resultant from being
positive always, if the residues P„are positive. In the
remaining s of the direct s channels the C(us, u, s)
Quctuate far below the rms value predicted by Eq.
(1.4), and are in consequence too small to exceed the
singlet contribution:

IC( ~t r)I/C(t s~)
—=

I C(u~ t ~s) I/C(us, E)=0(1). (1.6c)

In the u channels pq ——p„, the contribution from one
twin changes sign because of the e factor in Eq. (1.1b);
but the crossing matrix factors also change sign,

C(u, ui )= rtcoC(u. =u,ut'); rico= +1, (1.7)

that is, we obtain the crossing matrix elements for the
u channel by relabeling tlt, —& tr„(the same irreducible
representations occur in s and I channels, for the proc-
esses we are at present considering) and multiplying by
a factor of gco which is +1 or —1 depending upon
p, &,. Twins have opposite qqo. Therefore, if the Lorentz
and G quantum numbers are correlated, such that

TALK II.
(Same as Table I, except @=6.)

yg =6
(Rank 3}
(Rank 3)

n '/'
n—8/2

n 3/2

(n/2)'"—(2n)-1/2
(2n) '/'

35'
(n/2)'"
(2n)='"
(2n)

—1/2

For a discussion of the antiparticle rule see Ref. 11. The dis-
cussion there is for SV(2), but an analogous rule applied to self-
conjugate representations in G. The antiparticle rule factor for
all the low-dimensional multiplets we shall be dealing with is
always (+t).

The calculations needed to verify Eqs. (1.6a)—(1.6c)
were carried out by means of an approximation pro-
cedure described in the Appendix. This procedure gives
the leading term in an expansion of C(ue, u,) in powers
ofr '.

Similar miraculous cancellations occur for the SU(N)
scattering processes such that both p& and p2&adjoint
representation. For these processes p&~=p, &2, so that
contributions from both twins are multiplied by one
and the same coefficient C(luq, u,). Hence the twins
cancel in the I channel because of e&j

———
&&2. In the s

channel, either C(uz, la, ) is always positive, as in Eq.
(1.6b); or, when negative, it is too small, as in Eq.
(1.6c).

No pair cancellation occurs for the SU(n) scattering
processes such that @2&p&

——adjoint representation,
p2 not a singlet. p, 2 is then inequivalent to its complex
conjugate p2. For these processes the multiplets occur-
ring in the I and s channels~&transform as the complex
conjugates of one another (Iu =p, ), both twins have
the same interchange parity q«at the pt, ,—+ p&p4

vertex, and ~C(u„= p„u, ;)=C(u„u&,). Hence, twins
cancel in either the s or the I channel, but not in both.

Tables I and. II list the C(us, u, ) for the SU(e) proc-
cesses not affected by pair cancellation. It is convenient
to label the SU(u) representations by their dimension-
alities for e=6: T;;=7;, becomes the 21, T;;=—T;;
the 15, T the BS, and T; the 6. [The corresponding
SU(3) dimensionalities are 6, 3, 8, and B. SU(3)
dimensionalities are not suitable as labels because for
I=3 T; is equivalent to T@=—T;;.j The tables were
calculated using Eq. (1.2) or the method of the Ap-
pendix, except that elements depending on x and y
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were calculated using constraints (1.3). Twins occurring
in the t channels of the processes covered by Tables
I and II both transform as 35, yet do not have identical
SU(n) quantum numbers because one twin is always
E-coupled, the other always D-coupled to the external
35 35 pair. LFor SU(e) as for SU(3), 35 occurs twice
in 35X35; F-type (D-type), coupling is odd (even)
under the interchange 35+-+ 35.$ Table I is missing a
fourth column, referring to the exchange of a rank-four
multiplet p&. In passing over this multiplet we have
anticipated the lemma of Sec. II, which implies that
rank &2 channels will not contain any Regge poles.
Note that for the processes covered by Table I, it is
not even necessary to switch from s to I channel in
order to obtain a negative 0~,&. Xo matter what the
signs of the P„, they are bound to add to a negative
result in at least one of the four direct channels.

Note that a system will not be free from pair cancella-
tion unless it contains both a multiplet pgp aed a
multiplet transforming as the adjoint representation.
However, this second requirement seems to be satisfied
automatically since an SU(e) system containing only
rank &2p&p multiplets, and perhaps some singlets,
does not appear to be self-consistent. See the discussion
of low-energy dynamics in Sec. II, especially the corol-
lary to the lemma.

Unfortunately, it seems quite possible to construct
a low-dimensional SU(e) system which contains only
multiplets transforming as the adjoint representation
or as singlets. ' Some SU(m) systems are free from pair
cancellation, but de6nitely not all. Presumably the
SU(3) octuplet model, if generalized to SU(m), would
exhibit pair cancellation, whereas a generalized Sakata
model would not.

Even though the processes covered by Tables I and II
are not affected by pair cancellation, it could happen
that total cross sections for these processes would re-
main positive because of contributions to g-t,,~ from
exchange of weakly interacting particles, e.g., a con-
tribution from photon exchange. If the residues P„of
the leading nonsinglet trajectories are positive and the
35' twin has negative signature, then from Tables
I and II the direct channels where Ot,&&0 all have very
small cross sections 0~,~ ——order e '=order r '. In such
a situation contributions ordinarily dismissed as
"weaker" could swamp the "strong" contribution and
drive o-& ~ positive again. Section III shows that if the
y~ pp vertices transform as singlets with respect to
rotations in G, then photon exchange contributes the
same amount to each direct channel as does the vacuum
tra, jectory, but does not fall off with r the way the
vacuum trajectory does. LAt first glance, the contribu-
tion to sum (1.1) from y exchange appears to be infinite,

since the Coulomb amplitude calculated from a potential
ct: 1/R blows up in the forward direction. It is physically

more realistic, however, to assume a shielded Coulomb
potential ~ exp( —nR)/R, in which case the y contribu-

tion becomes finite and perfectly well behaved every-
where. ) The y —& pp vertex must transform as one of
the generators of G or electromagnetism will drive total
cross sections positive. These statements are discussed
in full detail in Sec. III. Here we shall merely note that,
a priori, the electromagnetic interaction could trans-
form either as a generator or as a singlet; and present
knowledge of both electromagnetism and the strong
interaction is not complete enough to rule out the latter
possibility.

Section IV investigates the dependence of 0-~,~ on the
helicities 'A~ and X~ of the incident multiplets p~ and p~.
The Lorentz quantum numbers of the leading exchanged
trajectories must obey certain constraints Lcf. Eq.
(4.26)j or it will be possible to change the sign of at, t, by
varying the X; or changing a p; to p;. These constraints
do not seem severe enough to rule out spinning particles
in a G-symmetric universe.

II. MECHANISM OF PAIR FORMATION

X,/kg& 1, .7,/At g& 1. (2.1)

X =dimension of p„and 1&i&4.
The multiplets we are presently studying have di-

'A. Pignotti, Phys. Rev. 134, B630 (1964). The Pignotti
trajectory lies too high in the J plane to produce physical 0+
mesons; but some meson resonances observed in the &1 BeV
mass region 6t nicely the 2+ assignment appropriate to its erst
Regge recurrence. t See Arthur H. Rosenfeld et al. , University of
California Radiation Laboratory Report No. UCRL 8030,
1965 (unpublished). g

'0 Richard C. Arnold, Phys. Rev. Letters 14, 657 (1965).

It may help some readers to follow the discussion of
the present section if it is noted that pairing of trajec-
tories occurs even for the observed symmetry SU(n=3).
Pignotti has pointed out that the exchange of the vector
octuplet trajectory V= (p,IC*,E*,~) in low-energy
pseudoscalar-meson scattering produces not only V
but also a twin trajectory having the same Lorentz
quantum numbers and approximately the same n(t)
and P but opposite signature and inverse D/F ratio.
Arnold" has proposed a syinmetry in which all SU(3)
meson multiplets are signature-doubled in this fashion.
The twins we shall be discussing are likewise signature
doublets with, in general, diferent G quantum numbers
(e.g. , inverse D/F ratios); however, in G, for I large
enough, the Lorentz quantum numbers of the multiplet
are irrelevant as far as twin formation is concerned:
Every low-dimensional nonsinglet representation of G
has a twin, baryon multiplets included.

Ke begin our analysis of low-energy dynamics in G

by proving the following lemma.
Jemma: Let pg occur in the direct channel of some

scattering process p~p2 —+ pq~ ps@4 and let p, be a
crossed exchange. Then a necessary condition that the
element C(pq, p, ) giving the force on pq due to p, ex-
change be & order unity is
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mensions X=order r~, where k = rank of multiplet
& 2. Hence for them, Eq. (2.1) becomes

k,/kd& 1, k,/ks) 1. (2.2)

For example, singlets are always dynamically negligible
(k; or k, =0), while the only multiplets effective in
producing rank-two multiplets are other rank-two
multiplets (kg= 2).

A version of this lemma was proved for isospin
scattering in Sec. II of I, and the proof given there
generalizes immediately to G-invariant scattering.
As in I, it is assumed that self-consistency imposes
upper bounds upon coupling constants. The bound
required for our present application to low-dimensional
scattering, is very mild: It sufFices to assume that there
is no dynamical mechanism which could cause a
coupling constant to diverge as order r'/~ or faster as
the rank of the group increases. The requirement
(1V,/Xd)) 1 of Eq. (2.1) follows immediately from the
presence of the (X,/S&)'(' factor in Capps's formula

(1.3); while if any of the external multiplets i(; satisfies

S;/&VS«1, then the strong coupling g(p;i(, —+ pd) can
be vertex-crossed to give a divergent coupling

I g(Pdi~~r') I
=(&~/&~)'"Ia( 'i ~~i ~) I&&1 in viola-

tion of the assumption of bounded couplings. I For a

discussion of vertex crossing see Eqs. (I2.4)ff. ; or the
introduction to Ref. 11.]

Corollary: Every SU(e)-synunetric system containing
only rank & 2 multiplets must have at least one multi-
plet transforming as the adjoint representation. Proof:
In a G-symmetric system with only rank & 1 multiplets
there is no two-body reaction which could produce the
rank-one multiplets, since rank-one —rank-one scatter-
ing produces only rank-even multiplets, while rank-one
singlet scattering is unsuitable for producing rank-one
multiplets because of the lemma. Therefore, the system
must contain at least one rank-two multiplet p, , and
from the lemma it must be produced in some rank-two-
rank-two scattering process. If p is not an adjoint
representation, then a straightforward enumeration of
rank-two —rank-two scattering processes with p in the
direct channel reveals that the adjoint representation
is always one of the scattered multiplets. Q.E.D.

We need one more piece of background information.
LReaders familiar with the concent of "signature" may
glance at Eq. (2.4) for the notation, then pass on to the
next paragraph. ] In a Regge calculation it is necessary
to continue into the complex J plane not one, but two
amplitudes per J value. As input to a non-Regge calcu-
lation one uses the discontinuity of the following func-
tion (calculated for spinless external particles):

Fc

1 C(51,52)I A (i(.s)]r, C(51,S3)LA (i(s3)]i.
P((s) ds — " dSs'+ — (lS;

7r- Sg' —Sg 53'—53

C(S1,S2)I A (i(os)]L, C(51,53)I A (i(s,)]i.
P, (s)(ls (2~q, ')-' ds'

= (2 q ') 'P ds'Q, (s'){C(51,52)LA(i(,)] +(—1)'C(51,53)LA(i(,)] ). (2.3)

LA]r, =left-hand discontinuity of A. The discontinuity
of Eq. (2.3) cannot be used for a Regge calculation,
because the factor (—1)' is not analytic in l. Instead,
one constructs two potentials and calculates two ampli-
tudes by substituting in turn

I'~"=—Z {C(51,52)LA(~ )]
S2, S3

&C(S1,53)LA ((((ss)]r) (2.4)

for the curly brackets in Eq. (2.3). The amplitudes
A+(51) are physical at alternating values of l. The
form of Eqs. (2.3) and (2.4) is unchanged when the
external particles have spin; the V+ and A (i(,) merely
acquire helicity subscripts, while P( and Q( are replaced
by functions which are essentially Jacobi and associated
Jacobi polynomials. 's The factor &1=e in Eq. (2.2)
"Donald E. Neville, Phys. Rev. 160, 1375 (1967).
"M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and

F. Zachariasen, Phys. Rev. 133, B145 (1964); I'. Calogero, J. M,
Charap, and E. J. Squires; Ann. Phys. (¹Y.) 25, 325 (1964).

is the "signature" of the amplitude, or of any trajectory
which contributes to the amplitude.

Since the proof that representation p of G must have
a twin is essentially the same for every p and G, we
shall go through the proof only for G=SU(m), i(= ad-
joint representation. Note that the only nonsinglet rank
&2 representation which can occur in the annihilation
channels of an SU(m) process is the adjoint representa-
tion, so that anyway p, = adjoint is the only representa-
tion of SU(r() which is of interest in the present con-
text. As at Tables I and II, we label the rank &2
representations of SU(m) by their SU(6) dimension-
alities: 6, 15, 21, and 35 correspond to tensors T;,
T;;= —T;;, T;;=+T,;, and T;&, respectively, with 'of
course, 6~ T', etc.

We next ask what scattering processes could produce
a 35. From the lemma, we can neglect 66 channels
even though they can link to a 35, because the 6 is
rank-one while 35 is rank-two. However, there are
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V+(~s= 35)—:V-(u'= 35) (2.6R)

for processes with both the initial and the final channels
in list (2.5a);

V, (&,=35n) =-V, (~,=35,) (2.6b)

plenty of other channels, since 35 occurs

once in 15315, 21321, 1521, 21315, (2.5a)

twice in 35(Q35=35r+BSD+. (2.5b)

The 35335=35r and 3535=35n vertices have
pcii= —1 and +1, respectively. We now prove

15 21

It.

C (51,53):— i) imp/2'".

The 51, S2, and 53 channels are defined by

P1/2g ~ Pg1 ~ P3P4)

g193 ~ PS2 ~ P2P4)

P1P4 ~ Ij,gg ~ PPP 3)

pj,p2 ——15 or 21; p, ~,p4
——35,

i),=+1 (—1) for p, =21 (15).

(2 8)

(2.9)

(2.10)

35')

C(51,52)=
35@

' —I
i)ii)g/2'" (2 7)

for processes with the initial or final channel, but not
both, in (2.5a); and

Vp(I s =33nD)== V~ (pd =3&rr),
(2.6c)

V+(w= 33Dr):—V+ (vs =35rii)

for the process 3535 —+ 35 35. The notation in Eqs.
(2.6b) and (2.6c), BSiir, for instance, means that the
intermediate 35 is D-coupled to the initial 3535 pair
and F-coupled to the final 35 35 pair. Evidently, Eqs.
(2.6a)—(2.6c) imply just what is wanted: If the potential
is such as to produce a 35 resonance with signature e,
it will also produce a BS with signature —e, and all
D/F ratios inverted. Proof of (2.6a): From the lemma,
we need consider only crossed rank &2 channels, since
35 is rank two. As in Eq. (2.4), we label the crossed
channels 52 and S3, such that U+(d)+V (d) ~52-
channel exchanges and V+(d) —V (d) ~ 53-channel
exchanges. For a process with the initial and Anal
channels in (2.5a), there is one rank-two and one rank-
four representation in channel 52, while channel S3
contains only rank-four representations. From the
lemma, the rank-four channels can not be resonant,
because we have input only rank &2 representations.
Hence [A(psi)]r, is negligible in Eq. (2.4), and Eq.
(2.6a) follows. (We have glossed over a fine point:
Actually, [A(ps&)]r, must be not only negligible, but
negligible of order r ', since from Capps's formula (1.3)
the C(S1,53) multiplying [A (ps,)] is order r. The forces
into the 53 channel are order r ', from Capps's formula
again with X,=order r' and Xq ——order r . Hence
A (ps&) =order r ', while its discontinuity=ImA = ~A ~'

will be of order r ', as required. ) Proof of (2.6b):Again,
from the lemma and the discussion just preceding, we
need consider only the contributions to V+ from crossed
rank-two channels. There are two such in each of S2 and
53, so that V+ will contain crossing matrix elements
from the following 2)&2 sub-blocks of C(S1,S2) and
C(51,53) (these sub-blocks were calculated by the
method of the Appendix):

[There are two more matrices, identical to (2.1) and
(2.8), for processes with the BS 35 pair in the initial
state of the direct channel. ] No matter which of the
channels pq2, and @8' are resonant, the desired result,
Eq. (2.6b), follows immediately, merely from the
pattern of signs in Eqs. (2.7), (2.8), and (2.4). Proof
of Eq. (2.6c): Similarly, the desired result follows im-

mediately from the pattern of signs in the sub-blocks
of C(51,52) and C(51,53) such that ysi, us2, ass are
rank two. With the channels as in Eq. (2.9), and

pq
——p&

——p3
——p4

——35, the relevant sub-blocks are

3 Sag) 35@p
3Sg)g) ]. ].

2C(51,S2)—
35pg)

(2.11)
—1

2C(S1,53)— (2.12)

Flements left blank. in matrices (2.11) and (2.12) are
identically zero.

One can continue in the same fashion, through the
rest of the low-dimensional representations of SU(n),
0(m), and Sp(e). The results desired always follow
either from the lemma alone, or from the lemma plus
analysis of the pattern of signs in relevant sub-blocks
of C(d,c).

Incidentally, we have also proved in passing another
statement made in the Introduction: There are plenty
of order-unity elements C(d, c) mediating the forces
into the annihilation channel (labeled 51 above).
Note that twins are not expected to cancel one another
at low energies, the way they do at high energies. At
low energy the amplitude for exchange of p, is very
signature-dependent. This means (fortunately) that
the forces producing the nonsinglet annihilation channel
multiplets should remain finite even after the presence
of twin forces is taken into account; it also means
(unfortunately) that twin formation will not destroy
the stability of the low-energy region.
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Ill. COULOMB EFFECTS

This section amplihes the few remarks made about
the electromagnetic interaction in the Introduction.

The contribution to o~,~(pq) from photon exchange
can exceed the contribution from exchange of a strongly
interacting particle if the p,;p; —+7 vertex transforms
as a singlet. The strength of the y pole in the ] channel
of pyp2 ~ p~p2 is measured by the quantity

ates'(mt, tnt)5(ms, ms), (y= singlet) (3.1)

where m; and m; index the particles in multiplets p,;
and p;."Equation (3.1) simply says that for y= singlet
the charge e, is the same for each particle in multiplet
p;. For exchange of a strongly interacting singlet, the
e; in Eq. (3.1) are replaced by coupling constants g; of
strong-interaction magnitude, while the 5(m;, m~) are
replaced by G Clebsch-Gordan (CG) coefficients for
p,q p;= singlet:

gtgsb(mt, rlt)il)'t "Il(ms, ms)Xs-'". (3.2)

It is the factors of E; '" which cause the force from
exchange of a strongly interacting singlet to "turn off"
as r —+ ~ [cf. Eq. (1.2)]; the expression for y singlet
exchange, Eq. {3.1), does not have these factors, hence
stays order unity (or more precisely, order 137 ') in
the limit r —+ ~ . Indeed, the group-theory factor
multiplying the y exchange amplitude for y=singlet
is Eq. (1.2) times (X&1Vs) '~', i.e., unity. The contribu-
tion from nonsinglet Regge pole p&, on the other hand,
goes as C(lip, p,)& order (X,/Eq)'~s, and can vary from
order unity, for S~ small, to order r—'"//order 137 '
for Xg large.

If the y —+p;p; vertex transforms as one of the
generators of G, then on the average y exchange is
always order 137 ' weaker than nonsinglet Regge-pole
exchange) even. when the latter is order r '~2 or r '.
The electromagnetic (EM) vertex for y —+ pp; trans-
forming as a generator M of 6 is

e'{p,mt lM &'& l lutter)(psrns lM &'&
l p,m, ); (3.3)

3f "& is the E;E; dimensional representation of
generator M. We suppose M('& is diagonal, and nor-
malized that all its matrix elements are integers. M&'&

is proportional to a CG coeScient for p;ap;=adjoint
representation, so that Eq. (3.3) can be rewritten

es(pt&vst print l p.sltw)[trM &"s]'"(psmspsms
l lr,elm)

&&,'trM &'&']r", (3.4)

if M is the mth generator of G. In the form (3.4), y

"As pointed out in Sec. II of Ref. 11, sometimes it is necessary
to distinguish between states )y~m) and states ~p,m): The former
have the simple properties under crossing and are rotated by
matrices D~eG if ( p,m) is rotated by D; the latter have the correct
phases for use with Clebsch-Gordan coeKcients and di6er only
by a unitary transformation from the former. To be absolutely
correct in notation, one should replace the labels p;, m; in Kqs.
(3.1)-(3.5) by labels p~*, m;, then carry out a unitary transforma-
tion to ~;, tn; states just before Eq. (3.6).

exchange is easier to compare to p, & exchange, which is

gt'gs'E (~&~re t~tl& ~~) ( s~s) s~sll ~~) (3.5)

gt'gs'C(fjs, lI ~). (3.7)

The same holds for every t@fg value because of 6 ln-
variance. Equation (3.4) becomes an expression which
varies with m~ because there is no sum over m in Kq.
(3.4). We average over rws in order to estimate a typical
value for this expression; i.e., we operate upon it with

(3.8)

The averaging (3.8) yields a CG sum which is inde-
pendent of m, for the same reason that C(lrq, p') is
independent of mq. Hence we can average over m as
well as over ms, and Eq. (3.4) becomes

e'[trM&'&s trM&s&s]t "[C(ps p, =p s )/7 s ] (.3 9)

The result of applying operator (3.8) to Eq. (3.7) is
just Eq. (3.7) again. Hence, on the average, y and p,
exchange differ by a factor

(e'/gt'gs') [trM"' trM &s&']'"

&&&" '[C(~~,l.s )/C(i ~ ~~)]. (3 1o)

The on1.y processes for which Coulomb sects are of
interest are those SU(ts) processes not affected by pair
cancellation; for such processes p&

——p,d; and the last
bracket is +1 (it is usually +1, but can be —1 if
p, , is D-coupled while Iu,s; is F-coupled). Further, unless
the particles in multiplets p, ~ and p, 2 are highly charged,

[trM &'&s trM &s&s]'"=order (Etilis)'"
&order rs. (3.11)

Since X„s;—'= order r ', ratio (3.10) is of order {s/gt'gs')
independent of ps. Q.E.D.

Dashen and Frautschi'4 "have shown that the trans-
formation. properties of the electromagnetic and other

'4Roger F. Dashen and Stephen C. Frautschi, Phys. Rev.
143, 1171 (1966); 145, 1287 (1966).

15 These equations have the same group-theoretical structure
as Dashen and Frautschi's equations for computation of 6rst-
order mass splittings, and this structure is such as to favor mass
splittings (or weak currents) transforming as the lowest-dimen-
sional representations of G. /See Donald E. Neville, Nuovo
Cimento 45A, 995 (1966).g Therefore, even if the entity being
exchanged does not couple to a conserved current, it is neverthe-
less likely to couple to hadrons via a vertex transforming as a
rank-two multiplet or singlet. The discussion given in the present
section for the electromagnetic current would then apply to non-
conserved current as well.

We now switch from charge space to states of de6nite

pq, mq by multiplying Eqs. (3.4) and (3.5) by appro-
priate CG coefficients

(1&ltttlP2'+el vms)(fIt~lll eris
l fs~s), (3 6)

and summing over m~m~m2m2 but not mg. Equation
(3.5) becomes simply
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weaker currents are constrained by the unitarity equa-
tions which such currents must obey. Thus even though
the weaker interactions are not bootstrapped, it is
plausible (if not provable in first approximation) that
the weaker currents might be constrained to transfer
purely as generators and not at all as singlets.

The difhculties with electromagnetism described in
this section are significant for two reasons. Firstly, the
hope of 5-matrix theory is to solve the strong-inter-
action part of the elementary-particle problem without
having to solve the entire problem, weak, electromag-
netic, and strong; yet in the present instance we have
not been able to do this. Secondly, the present calcula-
tion is very crude; anyone who has considered the
matter expects that at some stage in the 5-matrix
program the effects due to the weaker interactions
will have to be included; but it is unexpected to And

such e6ects coming in already at the first-approxima-
tion stage.

A =A p.,x,xg,),
p= p(Xghph3X4) .

(4 1)

X; is the helicity of scattered multiplet p;. In the optical
theorem the non-spin-Rip amplitude must be used:

(4 2)

We define a quantity B(u&) as the result of applying
a helicity crossing matrix H =H (X&X2X&X4,

' X&'&2 ~3 ~4 ~~)

to the amplitude 3 (p,) for u, exchange:

IV. DEPENDENCE OF Ot,.g ON SPIN

Let us assume that the external scattered particles
have spin indices which are not averaged over in com-

puting ot,q, so that ot, t, P, and ImA depend on helicity
arguments:

&t,.t (ua) = &~at (ud,
' ~&~a),

a.„„(u,() ~ ImA (pg, X&Xzhvhz) = Q C(d, t~) 1mB (u„; X&X2Xrl a) =2 C(4&~)»»L&~ (u~; I
~r'~2'~~'~~') 3

«, &i

~ QC(d, t;) Im(II(~i &3 (ym g4 kd& '&—) g' *(~—8,) (—1)""+e;d&;,„,t, ~ (gt) j), (4.3)

(4.4)

The last line of Eq. (4.3) is the expression given by Muzinich" for the contribution from exchange of one Regge

pole, except that we have dropped some irrelevant functions of t only. The residue p(Xq'X2'Xq'X4') has been factorized

into coupling constants $q, y, $q, &„, using unitarity. The d~ are rotation matrices, and at infinity,

Im lim d~. .. ~&, (~—g,)(—1)~" or Im lim d)„...g, , (8,)= real constX (s or u)" I»~ expL —~~n+-', 't~(&;.' —&s')];

Im lim dq. „q, ~(~—
8&) (—1)"~' or Im lim dx,„.,x,. (8,) = real co»st X (u or s) Im exp)-', i~(X;„'—Xq')]. (4.5)

This section considers three questions about, the be-

havior of the ImB(u„.):
(a) What happens to ImB(p&;) when particles y2

and p4 are replaced by their antiparticles; i.e., what

happens under "line reversal, " as Wagner and Sharp"
term this replacement;

(b) what happens when one of the helicity argu-

ments, say, ) &
——X3, is left fixed but the other argument,

X2 ——X4, is allowed to vary; and
(b') La less ambitious version of question (b)]

what happens when the sign of ) 2 ——X4 is changed'

For the purposes of this paper we are interested only
in the case that p, &,

. is a Regge trajectory. Every equa-
tion derived in this section, however, is valid also for
a non-Regge exchange, provided that the equation does
not involve a factor of e somewhere.

As to question (a), if only crossing symmetry is
assumed, then

lim ImB(u„. XgX,XgX,) = lim

XI»W(p. ; Xg—X2Xg—Xg)6) (t=O). (46)
"I.J, Muzinit. h, J. Math. Phys. 5, 1481 {1964).
"W. G. Wagner and David H. Sharp, Phys. Rev. 128, 2899

{1962).

The amplitudes .D and 8 are crossed to the p~p~~
pqu2(s) and urp2~ urp2(u) elastic scattering channels,

respectively; e is the signature of Regge trajectory p, .
If charge-conjugation invariance is assumed, relation

(4.6) is true without the helicity-Rip;

B(p„' X r'A2XHXg) =B(p„' Xr4XSX4)g,), . (4 7)

gCG= &='/eh
y

(4.8)

where gco=+1 is the interchange parity at the p, , —&

p2uq vertex, as in Eq. (1.9).
LThroughout this section we shall treat only the

simple case in which C(s,c) and C(u, c) differ only by

~1; the discussion for the general case is the same,

Here q,i, is the charge-conjugation parity of exchanged

trajectory p, .
Equations (4.6) and (4.7) suffice if we are working

in charge space; otherwise, we must consider also the

change in the factor C(s,c) ~ C(u, c). As in the Intro-
duction, Eqs. (1.7)—(1.9), when the scattered multiplet

is equivalent to its complex conjugate, C(s,c) and C(u, c)
are simply related; either C(s,c)=goo C(u=s, c) or

C(s,c)=qcoC(u=s, c). In such cases it is not possible

to change the sign of o-&„t if the leading trajectories
satisfy the constraint
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'Ai'Xy (4'1)Ag'X2 (&2)Ao'Xo

&& (~o)di4 i4"(«) (—1)" (4 9)

S; is the intrinsic spin of p,;. In the physical region of
the direct or crossed channels, the io;=io;(s, t) are real
angles. In the special case of forward elastic scattering
(t=0, external masses mi ——mo, mo ——m4), &o;=-',m-. The
following choice of phase agrees with the Trueman-
Wick choice up to unobservable factors of (—1)'".

q(t —& s) = (Xo'—Xo')+ (X4'—&o')+ (&4'—&2 ),
it (t + I)= P.4'——Xo')+ (X4'—&o')+ (&o'—4') (4.10)

The first set of parentheses in each case is the difference
of the helicities of the particles which are crossed (tio
and p, 3 are crossed on going from t to s; p, 4 and p, a on
going from t to I). The second set of parentheses is
the difference of the helicities of the particles which are
"particle 2" in the crossed t channel (i.e., coupling order
is significant; the amplitudes for p~p3 ~ p2p4 and

p gp3 —+ p,4p2 differ in phase, and we have chosen the
first of these as the amplitude for the crossed channel
reaction. ) The third set of parentheses is the difference
of the helicities of the particles which are "particle 2"
in the direct channel. Equation (4.10) implies

it(t N)=it(t s)+(X '—X '). (4.11)

Hence, except for a factor (—1)"o' "", P(t~s) and
EE(t~e) are identical. This phase factor may be
removed by applying the identity

d),.g'(io) (—1)"'—'= dg'. , g(n- —oo), (4.12)

to both d"(n/2) and d'4(n/2). Equation (4.6) then
follows.

Equation (4.7) is proved by invoking T= U, 'TU„
U, is the unitary charge conjugation transformation
which reverses charge labels but does nothing to spin

"T.L. Trueman and G. C. Kick, Ann Phys. (N. Y.) 26, 322
(&964).

except that C(s,c) and C(g, c) are completely unrelated,
it is necessary to calculate the latter from scratch, and
contributions to o.&,& from p, & may change in magnitude
as well as in sign when s ~ I.]

Conceivably, both members of a trajectory pair could
satisfy Eq. (4.8) simultaneously, since twins have
opposite rt, h as well as opposite o. [Proof: if one trajec-
tory gives rise to resonance in a particle-antiparticle
channel with orbital angular momentum I, total spin
S, then it,i, = (—1)~+s. The twin trajectory can produce
resonances only at L+1, hence has opposite it,h.]

To prove Eq. (4.6), one simply calculates H, first
for t ~ s, then for t —+ I crossing, using the recipes
for H derived by Trueman andWick' or by Muzinich";
one then compares results. According to these authors,
II is of the form

and momentum, hence does nothing to helicity:

(pmotm4, ~~lo~4ITIt~m~;~~)=(" IU
=n"( mopm4, Sm~o~4ITIp~m~; JM} (413)

pm, ) and
I ppii, } are the antiparticles to Item, } and

p,m, ), ti=tio=ti4. " Since tip are particle-antiparticle,
their charge-conjugation parties cancel each other;
it,& is the charge parity of ti, . I p,m, ) and Iti&m&} belong
to the same multiplet [or if they do not, as for 10
and 10 mesons in SU(3), then linear combinations

I10m)&I10m} should be used in the kets of Eq.
(4.13)].From G invariance, the T-matrix elements in
Eq. (4.13) are proportional to CG coefficients, so that
the last line of Eq. (4.13) can be rewritten

(timopm4 I tiki}
/eh

(tim4pmo I pimi}

X(t m4pm, ; JmX,Z,
I TIt,m„m}. (4.14)

The initial T-matrix element, 6rst line, Eq. (4.13) is
used in computing B(ti,), while the 6nal T-matrix
element, Eq. (4.14) is used in computing B(tI,,). Hence
all that remains to be shown i's that the CG ratio in

Eq. (4.14) is +1 independent of the m;. It is certainly
independent of the m; because the Wigner-Eckart
theorem for 6 may be used to write the initial and final
T-matrix elements as the same tensor times perhaps
different reduced matrix elements, with all the m;
dependence contained in the tensor.

The ratio is certainly +1 whenever there exists a
set of m;, m, =m, o, such that (tim2opm40Ipprito)80,
Ipimio)= Itiim~o), and moo ——m4o (i.e., whenever tii con-
tains a self-conjugate particle m~0 which can couple
to a particle-antiparticle pair mM, m4o). In every case
we know of such m, o exist (or can be constructed from
linear combinations of the m~). Consequently, we have
stated our result as at Eq. (4.7). If the ratio should
turn out to be a constant &1 in a given case, then this
constant would multiply the right-hand side of Eq. (4.7).

Wagner and Sharp" derive symmetry (4.7) for the
special cases s, &~, and our result agrees with theirs.
The agreement is not obvious for the s;=—,'case since
these authors use a Dirac y-matrix formalism and
express their result as +e times the sign change of
each Dirac covariant under charge conjugation. In
order to establish the agreement, it is necessary to
evaluate each Dirac covariant in the t-channel center-
of-mass frame, determine thereby the values of 1. and
S allowed at the vertex, and then relate q,h to e via
7fgh= ( 1) + o= (—1) for bosons, J=L or L~I
depending on the parity. Formula (4.4) is much easier
to remember than is the formula given by Wagner and
Sharp.

As for question (b) [how does ImB(p„hi&oui&&)

"Again (compare Ref. 13) to be absolutely correct in the nota-
tion, the labels p;, m, ; should be replaced by p;*, m;.
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&=8~) (4.18)

just as charge-conjugation invariance implies constraint
(4.8).

Evidently Eqs. (4.16) and (4.17) also require

g,h=ll„, i.e., CI' parity=+1, or p. will not contribute
to o~,t. This selection rule following from CI' invariance
is doubtless familiar to many readers. The pion is a
good example: It has g,i,= —q„=I, and the non-spin-

Qip amplitude from pion exchange vanishes in the
forward direction. Hence, given CI' conservation, con-
straints (4.8) and (4.18) are not entirely independent.

Equations (4.16) and (4.17) are proved using the
constraints

(4.19)

=5 1, , 1, n4( —1), (4.20)

(4.21)

imposed by I' and C conservation, respectively. Equa-
tions (4.20) and (4.21) are true in particle-antiparticle
channels only. Equation (4.21) is presumably a known

symmetry, although it is not listed by Jacob and Wick. ."

"M. Jacob and G. C. Kick, Ann. Phys. (N. V.) 7, 404 (1959).

vary with X11, we suspect it is far too general to be
answered in any model-independent way. The X2 de-
pendence of B(p.) cornea from the factor

4 1 "(~/2)dl 1 "(—1)'""""'"&, 1," (4.15)

Because of the constraint X2= X4, there are only (2S2+1)
linear combinations (4.15) of the $1,.14. which contribute
to total cross sections. Yet there are (2S,+1)' inde-
pendent $1, 14. [or roughly (251+1)'/4 independent

Pz,.&4.. if parity and charge-conjugation invariance are
taken into accountj. Hence there should be no difli-
culty~rin finding a set of &1,.1,. such that every linear
combination (4.15) will have the same sign.

Evidently, from the preceding discussion there is no
point to relaxing any of the C, P, T constraints, since
negative cross sections would then be harder, not easier,
to obtain. If we invoke either C or I' we can determine
the behavior of B(14,) when X1~ Xs [question (6')j.
Invoking C:

A (4 „X,X,~P.,)=A (~„X,—ZP. ,—X,) (—1)~~„,
{&=0). {4.16)

Invoking I':
a(~, ; X,},},X,)=A(~„X,—X,},—Z,)(—1)~~„

(&=o). (4.17)

q„ is the intrinsic parity of p, . J is any spin value at
which the amplitude of signature e reduces to the
physical amplitude in the t channel. For boson trajec-
'tollcs) 1't llappclls that ( 1) 4 j hellce pallty coll
servation implies a constraint

Probably the easiest way to derive it is to write

~Zm, '~4') =P (S,X,'S4 ~,'~S~,')(JOS~,'~ J~,')

(—1)~'+~~~'(J 1m 1j14441
~
j44r44)

= (jl—rnljz —
4444~ j4—r04)

= (j44r44jlrl41
~
j4m4),

so that one gets

(4.24)

The action of U, on $1, ll4 = (JMII4,
~
T~ JM4'X4'), Eq.

(4.21), then follows.
In summary, the highest-lying trajectories must

obey either q.l, „4——1(i—nwhich case they do not con-
tribute to 0-4.4) or else

n.h=~~= 4= (—1)'=neo (4.26)

It is noteworthy that these constraints do not depend
explicitly on the spins of the external multiplets; how-

ever, if the external particles are spinless and identical,
then the constraints are automatically satisfied because
of Bose statistics.

In view of our belief that low-energy dynamics in
SU(3) Rnd G will bc 111llcll thc salllc, lt, ls wol'thwllllc

pointing out that both leading nonsinglet trajectories
in SU(3) satisfy constraints (4.26). The vector octuplet
trajectory has q„=~= —j., and the Pignotti octuplet
tlajcctoly 11RS rl~= 4=+1.

Since we have already seen one miracle, pair cancella-
tion, it is perhaps not untoward to speculate that a,

second miracle will take place and force all g,h
——7t„

trajectories to obey Eq. (4.26). In other words, perhaps
there is a general dyna, mical principle which would rule
out leading trajectories with axial-vector resonances.

V. CONCLUSION

(Please note also the concluding paragraph to each of
Secs. III and IV.)

We conclude not only that two particular arguments
are invalid (one against high-isospin scattering in I;
and one against high-rank low-dimensional scattering
in II); but also that there exist mo f44rtIler arguments
which can be evaluated at present. Ke reason to the
latter conclusion as follows. The systems studied appear
stable in both the low-energy region (cf. I; and the
erst two paragraphs of II) and the high-energy region
near the forward direction (cf. II). [The high-isospin

X ilSJM)[(2L+1)/(27+1)1'", (4.22)

and then use the known action of charge conjugation on
~ISm);

U,
~
IS~a)= ( 1)~+—s~I.SJX). (4.23)

Repeated use of the following SU(2) CG symmetries
replaces the factor (—1)~+s by a factor of (—1)~ and
interchanges P ~'+-+ X4'.
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systems of I cannot be proven unstable by the Regge
argument of II because the specific example discussed
in Sec. IV of I has no high-isospin resonance in any 3

channel; hence the hig¹isospin analog of Eq. (H1.4),
is not satis6ed by that example. ] These two energy
regions constitute the full range of applicability of
present-day erst-approximation dynamics; there are
mo other energy regions left to examine H.ence there are
no other arguments left to be evaluated.

The state of dynamical ignorance just described could,
of course, change overnight.

The present treatment is far less complete group-
theoretically than dynamically. If we have covered
every energy region, we certainly have not covered
every symmetry. In particular, some knowledge of sym-
metries which are both of high rank and high dimen-
sional would be useful for putting the present results in
perspective. Is it possible to establish the stability of
a G-symmetric system, no matter how high-dimensional
the multiplets it may contains Or are the systems thus
far studied merely a tiny minority, the stable limits,
as group rank or multiplet rank ~ 1, of a much larger
class of systems all of which are unstable' The present
results at one and at the same time stand by them-
selves, yet are, so to speak, only the outer edges, or the
frame, to a picture which has not yet been completely
drawn.

It is possible to write recurrence relations which
determine SU(2) crossing matrix elements C(Id,I,).
Presumably recurrence relations can be written for a
higher symmetry C(pd, p, ,) as well. It is not clear at
present whether such equations will be tractable; but
doubtless they will be so in enough special cases that
the rest of this picture can be sketched in."

The argument of II works for low-dimensional
systems only under special circumstances (presence of
non-self-conjugate representations, weaker currents
transforming as generators); but for higher-dimensional
systems the argument may very well not work at all.
Either the electromagnetic vertex for these systems
transforms as a singlet, in which case photon exchange
will keep total cross sections positive as in Sec. III,
or the electromagnetic vertex transforms as a generator,
in which case many states will be so highly charged that
it becomes meaningless to talk about G invariance any
longer. LCompare the increasing irrelevance of SU(2)
invariance for nuclear dynamics as atomic number
increases. ] Therefore, the stability of high-dimensional
systems should be tested against the ideas of I, rather
than those of II. In particular, the discussion given for
isospin in Sec. II of I should also be valid for high
dimensional scattering in G, with an appropriate change
in notation I;~ p . In order for the low-dimensional

'1 For the higher groups, as for isospin, it is possible to construct
highly correlated "strong-coupling" models analogous to those
discussed in Sec. II of paper I, especially Ref. 11 of I. Therefore,
for the higher groups, as for isospin, it v ill not be obvious hoer to
remove the 6rst-approximation restriction to systems having a
small number of multiplets.

region to be stable, there must exist an element
C(Iq,I,)= (N,(Nq)' '0(Iq, I,) such that 0(Iq,I,) is of
order unity even though 0 is a large matrix.
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APPENDIX:

CROSSING MATRIX CALCULATION'S

In order to illustrate an approximation technique
useful in the limit r —+ 00, in this Appendix, we derive
en.ough elements C(d, c) to verify pair cancelation for
scattering of any four rank-two self-conjugate (p and

p equivalent) representations of G. The various channels
are coupled in the orders

p&JM, 2 ~ IM~ ~ p, 3p4,

P&P3~ Pt ~ P2P4)

pyp4 ~ p~ ~ p3IJ2.

The following derivation is sketchy; it will. be assumed
the reader is already somewhat familiar with the tensor
technique for calculating crossing matrices. Ordinarily
calculations using this technique are lengthy because
tensors must be made traceless. To begin with, it is
necessary to calculate a complicated set of trace-re-
moving terms to add on to each tensor; and then their
presence in turn complicates all further manipulations
with the tensor, such as the calculation of its normaliza-
tion constant. In the limit r ~ ~, however, the trace-
removing terms (abbreviated TRT in the formulas
below) fall off as r ' and can be neglected. Therefore
the discussion which follows is lengthy only because it
is necessary to explain all the symbols and conventions.
The actual mathematics involved is a matter of some
six lines of straightforward manipulation.

The states in multiplets p~, , p4 transform under
G like the components of tensors A, ', 8,'', C *, and D *.
The asterisks denote complex conjugation, necessary
because ps and p, 4 are 6nal states in the s channel. We
adopt this channel as the direct channel. Strictly
speaking, the one-upper-, one-lower-index notation is
necessary only for SU(e). Tensors for the two rank-
two representations of Sp(e) and 0(e) can. be written
with two lowered indices, T,,=&T;;, because for
these groups upper and lower indices are equivalent.
However, since we want the same notations and deriva-
tion to apply to aH three groups, we will not use the
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T;; forms. For 0(II) we simply write the second index
as an upper index (T"=T—&=&'T'') while for Sp(N)
we raise the second index using the Nge skevr sym-
metric form g&~= —g~& preserved by the group
(T,i=.gi T,~)

Kc now calculate the group-theory factor I'& vrhich

appears in the amplitude for exchange of p&.
~

Only amplitudes Pf, such that LM~ =rank two Rrc of
interest since only these will contain Regge trajectories;
n=1, 2, 3, . ~ indexes the irreducible representations
p, & occurring ln the t channel; the rank-two I'~~ are of
the form

Ni.-IPi.= g (A;&'C,'+II(.A,'C;i)
~jIm

X (B;"D '+pi '8 'D,")*+(TRT), (A2)

l.e.
~

Rll hRvc onc index on cRch 3 contI'Rctcd with onc
index on a C; and similarly for 8 and D. q& and g&

'

are the interchange parities geo of the particles in the
initial and final states of the t channel. %C have intro-
duced the notation

O'U(N) SP(N) j,
T =—WT, I* LO(n)j

A3)

to emphasize that under symmetrization and contrac-
tion Rn uppcl lndcx on Rn RsterlsjMd tensor' ls cqulvRlcnt
to a lower index on an unasterisked one, and vice versa.
For 0(N), the & sign applies according as TI,&= &TI,'.
For a given G the norinalization constants E~ ' are
independent of o, up to terms of order unity:

I=2m )SU(e)],
Ni I=4II LO (II),Sp(N) ).

C(li,pi ) Is calculated floIII Pg by expaIldiIlg Pi
in direct channel amplitudes P, and, then reading off

cocKclcnts )
Pi.=Z C(..p,.i.)P.p.

8p

Equation (A2) must therefore be rearranged from
ACBD (t-channel) order to ABCD (s-channel) order:

N, 'P„=(A; B„')(C-g'D ')'+q, .g, '(A BI, (C,'D;"')*

+g, (A;"B ')(CjD„)"
+pi '(A 'A") (C.'D ")* (~6)

The TRT have been dropped. The first two terms are
amphtudes for rank-two transitions ln the direct channel

(because of the contraction between A and B, and C
and D); the last two are amplitudes for rank-four transi-

tions. The erst two terms can be broken up into irrc-

"The P~ should be called projection operators or amplitudes,
according as the tensors A ' - - -, 8 * are taken to transform as
annihilation operators for states or as states. The latter con-
vention is adopted here; either convention gives the same 6nal
answer for CI,'d, c). The I'g used in Ref. 3 should also be called
amplitudes,

duciblc amplitudes by expanding each set of parentheses
in tensors having de6nite parity under interchange;
e.g., for the 6rst set of parentheses,

A;&B„'= (A -',B,&'+A;&B„') , (A——'B;& A' —;&B ')
—=-,'LT+(AB) —T (AB)j.

The last two terms of (AS) are reduced by breaking up
each set of parentheses into tcnsors of delnitc parity
under interchange of upper or lower indices; e.g.,

AkB i , I(A.RB i+A, iB I A kB i A iB k)

+i (odd, even)+-„'(odd, odd)+4 (even, even)

', [Tp~—(-AB)+Tso (AB)
+T,o(AB)+T,~(AB)j (As).

The first set of parentheses, first line of Eq. (AS) is

(even, odd), i.e., even under interchange of i and. k,
and odd under interchange of j and m. %hen Eqs.
(A7) and (A8) are inserted in (A6) cross terms like

Tps(AB) Tiip(CD)* vanish because anitisymmetric in-

dices cannot be contracted with symmetric ones; the
remaining terms are

N, IP„=,'(1+ri, Il, ')$T+(AB) T~(CD)*
+T (AB)T (CD)*j+~I( 1+IIi g&

'—)
xt T+(AB)T (cD)*+T (»)T,(cD) 3
+'(n~.+ni--') LT~'(AB) T~'(CD)*

Tpo (AB)T—pP (CD)")+4 (ri„rig', ')—
XP'p (AB)Tp'(CD)* T.P(AB)T—.P(CD) j. P9)

The rank-two representations of 6 which occur in the
crossed channel also occur in the direct channel; thus

the amplitudes in the first two brackets of (A9) are
form-identical to the amplitudes N& IPi of Eq. (A2).
Hcncc wc sct

T+(AB)T+(CD)~=P,pN, p ', P=1,

and similarly for P= 2, 3, 4. Using N, p
'—N, p

' as well

as Eq. (AS), we get

C(psppgia)=x(+1+'Via'9&a ) &

(p, p,iraink two) .

The last two sets of brackets of Fq. (A9) contain

amplitudes Xgp ~g p) p g p
= rank four) +8p being

normalization constant of order unity. Hence

C(y, ,p, li, )=~(g( +ri, ')N, N, p ',
(p,.p rank four, p~ rank two).

%henever (q& &g&,')AO, elements (A11) are of order

r 'because E& E,p 'is of order e '=order r '.
Formulas (A9)—(A11) simplify considerably for

G=Sp(N) or 0 (s), because T~(AB) ls alwRys orthogonal

to T~(CD), whether the s channel is inelastic or not.
Hence there are only two rank. -two multiplcts in each

channel (n,P=1, 2); the second bracket in Eq. (A9)
always vanishes; q, =g,„'=+1(—1) according as ex=1
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(2); Eq. (A10) is always +st; and Eq. (A11) simplifies
to either +-,'X& S,p ', or a number of order r-'.

For SU(rt) t'necessarily elastic; SU(n) has only one
rank-two self-conjugate multiplet; tt t= tts= tts= tt4= 35]
the discussion is similar except that there are four rank-
two amplitudes in each channel (n, P=1, 4); they
are the generalizations to SU(rt) of the D +D,—F~
F, D~ F, and F —+ D transitions of SU(3). The sign

(respectively st& ') is +1 or —1 according a,s the

initial (final) state in the crossed t channel is D or-

F-coupled.
Equations (A11) and (A10) lead to crossing matrix

elements of type (1.6a) and (1.6b), respectively, when

the rtco are such that the parentheses in Eqs. (A10)
and (A11) do not vanish; when the parentheses vanish,
Eqs. (A10) and (A11) yield crossing matrix elements

of type (1.6c). Elements of type (1.6c) depend on the
TRT neglected at Eq. (A2).
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Regge-Pole Analysis of pn ~ np and pp ~ nn Scattering*
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'1 he differential cross sections for the reactions pn ~ np and Pp ~ nn have been investigated. It is found
that besides the p and R{A2) trajectories, the x and 8 trajectories must be included. A variety of schemes
suggested by four-dimensional symmetry have been investigated. The existence of various daughter tra-
jectories does not suKce to explain the data, though the data can be fitted with a parity doublet, of which

the pion may or may not be a member. In the former case some structure must be introduced into the pion
residue function.

DTTRODUCTION

E have investigated the di6erential cross sections
~ ~

~

~

for the two charge-exchange processes (I)
Prt —+nP, and (II) pP~rttt within the framework of
Regge-pole phenomenology. ' In the absence of cuts
these reactions are presumed controlled by the exchange
of I= 1, B=O, I'=0 trajectories. The main features of
the data which must be explained are (a) the excep-
tionally sharp peak in the differential cross section of
process I with a width of about 0.01 GeV', (b) the
fact that this sharp peak persists to very low energies
and the width is almost energy independent, (c) the
large difference in the magnitudes of the cross sections
for processes I and II at the same value of energy and
momentum transfer (for

~
t~)0.02 GeV'), and (d) the

energy dependence of pp —+rtn data. Feature (c) can
be explained only by the existence of both positive and
negative 6-parity trajectories which interfere with
opposite signs in the two processes.

It has been known for some time that the data cannot
be satisfactorily explained with only p and E(As)
trajectories. Even if rapidly varying residue functions
are chosen so that the sharp peak of process I is fitted

*Work supported in part by the U. S. Atomic Energy
Commission.

t National Science Foundation Predoctoral Fellow.' G. Manning, A. G. Parham, J. D. Jafar, H. B.van der Raay,
D. H. Reading, D. G. Ryan, B. D. Jones, J. Malos, and N. H.
Lipman, Nuovo Cimento 41, 167 {1966);P. Astbury, G. Brautti,
G. Finocchiaro, A. Michelini, D. Websdale, C. H. West, E.Polgar,
W. Beusch, W. E. Fischer, B.Gobbi, and M. Pepin, Phys. Letters
23, 160 {1966);J. L. Friedes, H. Palevsky, R. L. Stearns, and
R. J. Sutter, Phys. Rev. I,etters 15, 38 (1965).

(and this can be done), the difference of magnitude of
the two cross sections I and II cannot be explained,
since the p and R trajectories are roughly equal over
the region of interest, and having opposite signature,
yield little interference. Moreover, small residues for
p and R amplitudes are suggested by the total cross-
section diA'erences' (a „o a„-a—nd -o» o„„.) —which
(while possessing large experimental errors) are con-
sistent with zero in the high-energy region under
consideration. Since only t-channel sense-sense triplet
amplitudes which do not vanish at t=0 can contribute
to s-channel total cross sections, in this analysis only
the p and R contribute to these differences. It is there-
fore to be expected that lower-lying I=1 trajectories
which have not been considered in the usual analysis of
data up to the present time will play a prominent role
here.

Qualitatively one might expect the pion trajectory
to be an important factor in determining the sharp peak
of the prt —+ rtp cross section, because of the proximity
of the pion pole to the forward direction. Extrapolation
of the pion residue to the known pion-nucleon coupling
constant indicates in fact that the pion contribution
must be large near the forward direction (whether or
not the pion amplitude vanishes at t=0), and thus
should be included in the analysis. Until recently, it
was assumed that the amplitude to which the pion
contributes must vanish at 1=0, and thus it was diK-
cult to see how the pion could give rise to a sharp peak.
The recent developments in the understanding of

s W, 6stbrsith et al. , Phys, Rev. 138, 3913 (1965),


