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We construct a simple example of a hig¹isospin system and verify (in "ftrst approximation"; that is,
we drop all contributions to the unitarity relations except those from the nearest two-body channels, assume
that the number of such channels is small, and approximate crossed singularities by poles) that it satis6es the
requirements suggested by an 5-matrix theory of strong interactions. The forces producing each particle aet
through isospin crossing matrix elements of reasonable size, and no crossing matrix element is so large that
the force into a direct channel will cause pathologies such as negative-energy bound states or (in Regge
theory) trajectories violating the Froissart limit. Strictly speaking, the stability of our example is not com-
pletely established, since we do not carry out a complete dynamical calculation (with some speci6c choice
of spins and cuto8 functions), but only study the sizes of the relevant isospin crossing matrix elements. It is
also shown that a mechanism suggested by the "strong-coupling" model is not suitable for producing high-
isospin particles, at least in the low-energy region, because if the model were treated in other than static
approximation it would develop negative-energy bound states in the annihilation channel.

I, INTRODUC'jl. 'ION

HERE are three curious facts about the abstract
space symmetry obeyed by the strong interac-

tions: (a) It is low dimensional, at least at low energies
(e.g. , there are no isospin-10 pions), (b) it is of low

rank (there are only three linearly conserved commuting
quantities: hypercharge, baryon number, and Is), and

(c) it is not a simple group. It is a direct product of

SU(2), baryon number, and hypercharge symmetries;
and it is a special kind of direct product at that, namely,
one obtained by breaking a higher symmetry.

Chew and Frautschi' have suggested that the above
facts do not have to be put into a dynamical calculation
but may be part of the output, provided that the
dynamical assumptions exclude arbitrary couplings and

masses. They have advanced this suggestion within the
framework of analytic S-matrix theory, but even if one

believes that fields are more fundamental than the

5 matrix, one may yet consider strong-interaction
symmetries as derived rather than basic; the self-

consisteney requirements of 8-matrix theory may be

taken as subsidiary constraints which ensure the unique-

ness of the 6eld-theoretic solution.

In their original paper, Chew and Frautschi put

forth no detailed program for testing their idea, nor

did they estimate to what accuracy S-matrix elements

would have to be calculated before it became obvious

that the wrong choice of symmetry was leading to a
violation of a,n 5-matrix axiom. The present paper and

its successor (paper II) propose such a detailed program,

one which can be evaluated given only prcsent-day,

rather inaccurate dynamics. Two speci6c arguments

*%'ork performed under the auspices of the U. S. Atomic

Energy Commission.
f Part of this work was done while the author was a Q. S. Air

I orce once of ScientifIc Research Fellow at CERN, Geneva,
Switzerland.

& G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 395
(1961).

are considered, one to prove that scattering systems
involving high-isospin multiplets are unstable, and a
second (in paper II) to prove that scattering systems
involving low-dimensional representations of high-rank.
simple Lie groups are unstable.

Both arguments are fallacious (though it must be
aKrI1Md that ln each case some wolk ls required 1Q

order to establish this fact). Indeed at the end of
paper II the opinion will be ventured that these two
are the only arguments that can be evaluated at the
present time, so that investigation of the symmetries
considered herein should be dropped until further ad-
vances in the dynamics are made. Needless to say, some
w'ill disagree with this conclusion and consider it too
strong. %e would be the first to hope that they
are correct. Other people will say, "we knew it all
alollg.

In an 5-matrix theory the symmetry enters the
dynamics entirely thl ough thc crossing IIlatI'lx elements
C(ice,lc,) appearing in the crossing relations

whe~e & (pa) and A (p.) are the scattering amplitudes
ln dlI'cct aQd closscd channels, aQd p dcnotcs some set
of parameters for labeling the irreducible representa-
tions of the symmetry; le= I for SU(2). For simpli—city,
we have suppressed the I,orentz crossing matrix factor
in Eq. (1.1).' To test a symmetry experimentally, one
needs only the C&ebsch-Gordan coe@clents, which g»c
branching ratios, allowed vertices, and multiplet dimcn-
sionalities. For a "theoretical test, "however, one needs

~ "And now we know why we knew we knew it all along. "
For helicity crossing matrices: I.J. Muzinich, J. Math. Phys.

5, 1481 (1964};T. L. Trueman and G. C. %'ick, Ann. Phys.
(N. Y.} 26, 322 (1964}.For crossing of representations of the
homogeneous Lorentz group: A. 0. Sarut, I. J. Muzinich, and
D. N. Williams Phys. Rev. 130, 442 (1963); Steven Weinberg,
end. 133, 1318 1964); 134, 882 (1964).
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rather the C(isa, is,), quantities determined entirely by
group theory. ' 5

As 11MntloIlcd pl cvlously, thc discussion procccds
entire1y within the framework of present-day 5-matrix
theory. Ke make use of the usual "nearest singularity"
dynamics (neglecting all but nearby two-body channels,
keeping only the nearest crossed singularities). ' In
addition, we shall limit ourselves to systems containing
only a small number of high-isospin or high-rank
multiplets, in order to avoid a multichannel problem of
intractable size. Our dynamica1 assumptions are more
restrictive than the usua1 nearest-singularity one, there-
fore, and to describe them we shall use the phrase
"erst approximation, "rather than "nearest-singularity
approximation. "All our results are a test of the boot-
strap hypothesis "to a first approximation only, "

We now sketch the first argument (for high lsosplns).
It is well known for isospin symmetry (and it has been
proved by Cappsr for a general compact Lie group)
that the elements of C(isa, is,) are proportional to the
elements of an orthogonal matrix 0(isa, is.);

E;=dlIQcnslon of p;.

In order to obtain a 6rst rough estimate of the magni-
tude of C(isa, is,), one might replace 0(isa,p,) by the rms
average over all elements of 0(isa, is,); in virtue of
orthonormality this rms average would be m '~', if

0(isa, is,) is an rNXns matrix. (That is, ns is the number
of direct or crossed channels; m=maxIa —minIa+1
=maxI, —minI, +1 for isospin. )

(1.3)

lim C(Ia,I,)((1
j~oo

(1 4)

for enough elements C(Ia,I.) that a high-isospin system
is impossible. In other words, if Eq. (1.3) is close to
the truth, then the force due to J.', exchange is being
distributed rather equaQy over the large number of
direct channels available, and in no one channel wou1d
there be enough concentration of force to produce a
resonance or bound state.

' C(pd, y,) is equal to a product of four or more Clebsch-Gordan
coeKcients, summed over all the magnetic quantum numbers.
For a detailed discussion, at least for the isospin case, see Ref. 5.

~ Donald E. Neville, Phys. Rev. 160, 1375 (1967).
e G. F. Chew, S Mafrig Theory of St-rong Ineeracteons (W. A.

Benjamin, Inc., New York, 1962). F. Zachariasen, Paci6c Inter-
national Summer School in Physics, Honolulu, Hawaii, 1965
(unpublished) .

r Richard H. Capps, in Proceedings of the Twelfth Annrsa/ Inter-
national Conference on High-Energy Physics, Dgbng, 1064 (Atom-
izdat, Moscow, 1965).

When the external isospins are large, typically there
will be a large number of direct and crossed channels
and ns will be a large number. U Eq. (1.3) is a good
estimate, then perhaps

The fallacy here is simply that for a few eleInents
estimate (1.3) is not good; sizeable fluctuations away
from the rms average do occur. In Sec. III we give a
systematic procedure for locating such elements, and
in Sec. IV we construct a simple example of a high-
isospin system bootstrapped with their aid..s

Of course, one might try to refute the above argument
on dynamical rather than group-theoretical grounds,
arguing that for some reason Eq. (1.4) is not a suKcient
condition for instability. There are many ways to attack
the above argument. Our bc1ief about the dynamica1
objections we have seen, however, is that all wouM
have been rather easy to refute provided that criterion
(1.4) had been fglly satisfied, i.e., provided. that enough
elements had been vueishAzgly small, not just order 0.1
or so. For examp1e, if one were to try to compensate
for small elements «0, 1 by assuming small masses or
large couplings, then one would have merely replaced
the original problem with a tougher problem: Given that
the system requires extreme masses and couphngs to
produce resonances, then how are the extreme masses
and coup1ings themselves to be produced' In order to
save space, at thc I'lsk of bclng sketchy on some points,
we have chosen to examine the chain of reasoning only
at the one link where it seems weakest.

It will perhaps be instructive to mention brieRy one
other link which we might have chosen to examine.
Suppose one were to argue that high-isospin systems
may contain a 1arge number of multip1ets; hence that
one of the 6rst-approximation restrictions listed above
is unreasonable. If in particular there were resonances
in a large number (&order ns'") of crossed amplitudes
A (I,), then the sum in Eq. (1.1) might come out to be
order unity, even though each term in the sum werc
only order m '". Such a result wou1d imply strong
correlations between the magnitudes and signs of the
various A(I,), because the sum (1.1) would have to
come out of order unity in a large number (~order
rm'i') of the direct channels in order that the large
number of crossed multiplets be produced in the erst
place. It is conceivable that a system possessing such
a high degree of correlation could be constructed; for
a suggestive result in this connection, see the discussion
of the static model given later in this Introduction,
particu1arly Ref. 12. Therefore, even had wc been able
to establish the argument suggested by Eq. (1.4), we

might have found it impossible or very difficult to
extend the result to systems containing a large number
of multip1ets.

The discussion of Sec. III shou1d be useful to those
who work frequently with isospin-crossing matrix ele-
ments. Even when the scattered isospins are small, the
construction described at the beginning of that. section

SAt an earlier time we were convinced that Eq. (1.4) was
correct and that we had a valid proof for it LDonald E. Nevilie,
Phys. Rev. Letters 1B, 1N (1964lg; the connterexample of Sec.
IU forces us to abandon this position.
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is quite useful for obtaining order-of-magnitude esti-
mates of C(Iq,I.).

This is the first of a two-part paper. The second part
will discuss high-rank. scattering as well as the restric-
tions imposed upon symmetries when the scattering
amplitude is assumed to be analytic in the complex J
plane.

N, /Ng&0(1), N,/N, &0(1) (2 1)

is not satis6ed. Then (weak form) either the group-
theoretic factor associated with I. exchange will be
quite small [falling off as (N, /Nq)"2 or (N,/N, )ii'
typically], or the group-theoretic factors associated
w'ith I, exchange in a related scattering process,
I;I;—+ I I,will be very large (diverging as (N,/N;)'"
X[1+(N;/N, )'"j 'i'}.I is the other external particle
at the I;—+ I.vertex; e.g. , if in the original process I,
is in crossed channel I~I3~ I,~ I2I4 and Ej violates
the criterion Ni/N, «0(1), then I;=I,, I =I3, and the
related process having the divergence is I~I~ —+ I3I3.

9 G. Wentzel, Helv. Phys. Acta 13, 269 (1940); 14, 633 (1941).
For the strong-coupling model expressed in bootstrap language,
see E. S. Abers, L. A. P. Bald,zs, and Y. Hara, Phys. Rev. 136,
31382 (1964). For the strong-coupling model discussed in group-
theoretical language, see T. Cook, C. G. Goebel, and B. Sakita,
Phys. Rev. Letters 15, 35 (1965).

II. INTERACTIONS BETWEEN LOW- AND HIGH-
DIMENSIONAL MULTIPLETS: THE

STRONG-COUPLING MODEL

This section derives a condition governing the inter-
actions between isospins varying widely in dimension-

ality [Eq. (2.1) below], and, in the course of the deri-
vation, discusses the shortcomings of the "strong-
coupling" model as a method for producing high
isospins. ' The usual strong-coupling model involves
production of high-dimensional baryons by scat-
tering of a low-dimensional meson, typically a pion
with I=1, and hence is subject, to (and in fact
violates) condition (2.1). Later on in the section,
another argument against the stability of high-isospin
systems, one not, based on Eq. (1.4), will be described
and refuted.

The present section should be useful in understanding
some of the remarks made at the end of Sec. IV;
otherwise, Sec. II is not needed for later sections. In
particular, in the example constructed at the beginning
of Sec. IV, all multiplets are of about the same dimen-
sionality; hence that example satisfies condition (2.1)
and is free of the difficulties discussed below in con-
nection with the strong-coupling model.

The condition will be stated in a strong and a weak
form. Suppose it is desired to produce a multiplet of
dimensionality Ed by scattering multiplets of dimen-

sionality N; (i = 1, , 4) and exchanging a multiplet
of dimensionality S.. Suppose further that one of the
inequalities

In its weak form, the criterion is only a mathematical
statement that whenever inequalities (2.1) are not
satisfied, certain crossing matrix elements are very
large or very small. In order to obtain a stronger form
with dynamical content, one must assume that relevant
coupling constants g(I,I ~ I,) and masses m;, re. are
of normal strong-interaction magnitude; otherwise the
non-group-theoretic factor in the I, exchange term may
be large or small enough to make up for a small or large
group-theoretic factor. If the couplings and masses are
normal, then the strong form of the criterion follows:
It is possible to produce low-dimensional isospins by
scattering and exchanging higher-dimensional isospins,
but difFicult or dangerous to do the reverse (produce
high-dimensional ones by scattering and/or exchanging
low-dimensional ones as in the strong-coupling model).

The criterion in its strong form is clearly a qualitative
guide, not a quantitative statement: The imprecise
"0(1)"in inequalities (2.1) cannot be replaced by a
more precise limit unless one knows quite a bit about
the masses and couplings of the system. The strong-
coupling model happens to violate the second of in-
equalities (2.1) rather severely, so that presumably a
precise value of the "0(1)"need not be determined for
this case.

We now give a proof (a proof of the weak form,
strictly speaking; and a proof of the strong form should
the dynamics allow).

The first inequality in Eq. (2.1) was established by
Capps: An upper bound

~
C(d, c)

~

& (N./N~)'" follows
immediately from Eq. (1.2), and in turn the necessity
for N,/N~&0(1) follows immediately from this upper
bound. ~

To establish the second inequality, let us suppose
first it is violated, i.e., that the system contains a
coupling g(IiI2~ I,) with Ni/N, &&0(1). We then
calculate the crossing matrix elements C(d, c) for I,
exchange in the crossed channel of IiIi ~ Ij'2 scatter-
ing, for the case Id=0. It is appropriate to label the
direct channel the 3 channel. For I,«min[IP', I ']2
there is an approximate formula due to Racah and
Edmonds" .

( 1)' C(I„I.) =C(I„—I.)=N. (N,N,)- i I,( o 0). (2.2)

I. is in either the s (IiIa~ IiI~) or I (IiI, —& I,I,)
channel. I'&(cosg) is the ordinary Legendre polynomial
of order Iz and argument

cosg= [I.(I.+1)—I,(I,+1)—I,(I,+1)j
X[4Ii(Ii+1)I,(I,+1)]—' '. (2.3)

The I'z factor is of order unity, at least for I,—O. The
N (N N ) '" factor, however, is & order

N.[Ni(N. + 1Vi)] 'n = '(N./N, )'i~[1+ (N,/N, )]»'-
' A. R. Edmonds, Angzflar Momentum zn Quantum Mechanics

(Princeton University Press, Princeton, New Jersey, 1960},
2nd ecL
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hence diverges as (IV,/IVI)'" for large enough (IV,/XI).
In thc UsURl stRtlc IQodcl this dlvcI'gcIicc ls particularly
serious, since Il= i. With a divergence such as this, it
ls di%cult to scc how one CRQ Rvold gcttlQg R ghost.
Even with crossing matrix elements of order unity, one
often has trouble avoiding ghosts in the annihilation
channel.

Usually this divergence goes unnoticed because the
stloQg-coupllQg model neglects baryoIi I'ccoll, h.cncc ls
not suitable for studying the 1 channel. (Further, the
divergence will not occur if the baryon masses m, in-
crease rapidly enough with isospin, so that the criterion
is applicable only in its weak form. In the context of
the present paper we cannot invoke high mass as a way
out, because we are interested only in producing lmv-

mass high isosplIis —our 6I'st approximation dyDRmics
may well not work in the high-energy region anyway,
and we choose to say nothing about that region. )
Clearly this divergence would persist even if the theory
were made fully relativistic. "

It is entirely possible that the s- and e-channel
exchanges, though separately divergent, might add to
give a finite result in some of the direct channels. If
this happens in a channel with orbital angular mo-
mentum I.], it, shouM be possible to switch to Ig+i
and get a Qmte force, since the e-channel contribution
changes sign with I,

At. tllls polllt wc llave cstabllsllcd botll clltellR {2.1),
bUt sccm to hRvc RI'lived Rt RD RppRI'cnt paradox: High"
isosplll systcIns will plodllcc low lsospllls cRslly Lor, Ri;

lCRst CVery high-Isospln Coupllllg g(IIIs~ Ig) call be
IQRdc to cxcrt stI OQg fol ccs into low lsosplQ chanQcls j
to prove this, invoke Eq. (2.2) again, but this time with
all three of El, E2, Rnd X, large, El=f2—So, and
I,=o; then C(I„I.)=O(1)j; but if low isospins are
coupled to high ones, divergences will result in I,

channels; therefore, will not all high-isospin systems
become unstable because of their by-product low iso-
spinsP The answer is "no" (even if it be granted that
lllgll lsospllls pl odllcc low lsospllls cRslly) becallsc 'tllosc

couplings which produce the divergences are of the form
g {IIIII,~ III'), whereas the couplings produced by scat-
tering high isospins are of the form g{IIIIII'-+Il).
t We 11SC II fol' lllgll Rnd L fol loW Isosplll. In Olll'

"Or if one altered the group-theory structure. It is possible to
construct a stlong-collpllng model ln which tlM I= j. pion ls re-
placed by a pion having arbitrary isospin, in particular, by one
having a very large isospin I &)1 /cook ei oi., Rei. 9; as well as
V. Singh, Phys. Rev. 144, 1275 (1966); S. K. Bose, ~bid. 145,
1247 (1966)g. Also it is possible to adjust the minimum isospin
in the chain of baryon resonances to any desired value, in particu-
lar to min Ig—I . Such a Inodel appears to suffer from the same
disease as the ordinary one, since there is no upper limit to I~,
and eventually the divergence in Eq. (2.2) will go as the ratio
gV ~//ar. )l/2.

This model is of interest from another point of view, however.
It is an instance of a high-isospin system with a very large number
of multlplets (p~ /

1 fs being the dlmenslonallty of a typical
crossing matrix in the system, m~2I ).Of especial interest is the
large amount of correlation between the crossed exchanges; in
fact eeey crossed (e) channel contains a baryon resonance, yet
the force comes out attractive in all direct (s) channels.

notation for couplings we place to the left of the arrow
the particle which is internal and to the right the particle
which is external. Thus g{IHII, + I—II')I is the residue
Rt thc III pole 1Q IIIII,~ I~II scRt tcI'ing, whllc
g(IIIIII' —+ /I, )' is the residue at the II, pole in
IIII~ ~IIIIH Scattering. ]Tile coupllllgsg {IIIIr,~III )
and g {IIIIII'~ Il,) differ, not only by an analytic con-
tlnuatlon ln thc four-momcnta of IJI RQd IJ„., but also
by a group-theory factor which makes g(IIIII, -+ III')
much too weak to cause any divergence':

g(IIIII, ~ III')
= ( &)' +—" ' '(&i/&~')'"g(I-I»'~ I~) (2 4)

In the strong-coupling model, one assumes that the
coupllllg 011 tllc left ls stl'ollg, Rnd ollc gets R divergence;
in a high-isospin system which happens to produce some
by-product low isospins, one knows that the coupling
on the right is strong; hence the coupling on the left
is not, and there is no divergence. Formula (2.4) is of
interest if only for the seeming paradox which it implies:
A coupling can be bootstrapped, yet be superweak.

VVc do Qot want to emphasize thc parRdoxlcRl Rspccts
of Eq. (2.4) unduly: The imphcations of the formula
Rrc peI'hRps paradoxical) bUt its cxlstcncc ccltRlIily ls
not, and might perhaps have been anticipated. A
coupliQg ls only R kind of RmplltUdc, fol onc particle
in and two out instead of two particles in and two out;
consequently, onc should expect a group-theory factor
to Rppcar whcD R coupllQg ls cl osscd~ just Rs
numbers C(I4,I,) appear when a scattering amplitude
is crossed. Indeed, Eq. {1.2) holds for a scattering
diagram w'1th Rny Dumber of legs) ln particular for R

vertex function with three legs. Hence, if one sets
O(mls, p,)=&1 in Eq. {1.2) (there is only one direct or
crossed channel) and substitutes g's for A 's in Eq. {1.1),
olle gets tllc vel'tcx-closslllg fol'Illllla (2.4) lllllllcdlRtcly
except for the sign.

Conceivably, the vertex crossing could work both
ways, of course: It couM. greatly eehuece a coupling
Rs well Rs sUppI'css lt. There ls R UIlltarlty argument
against enhancement of a coupling to a bound state,
however, while an enhanced resonance coupling will
Qot. be so dynamically cGective as its large size might
indicate. I.et us denote the enhanced coupling
by g =g(IIIIII'-+ II); we suppose the coupling
g =g {IIIII'-+III) has been produced in IIIII' scatter-
ing, then vertex-crossed to give a superlarge coupling:
g=O(i), g=O(ItIII/cVI)I"))1. U Il, is a bound state„
unitarity could be violated because a large value of thc
coupling constant implies a large value for the inagni-
tude of the asymptotic wave function; and in simple
models a bound on the former follows immediate]y from
the unitarity bound on the latter. Geshkenbein and
Ioffc'2 derive such bounds utilizing model-independent

"B.V. Geshkenbein and. B. L. Ice, Zh. Eksperim. i Teor,
Pie. 44, 1211 (1963); 47, 1832 (1964) LEnglish transls. : Soviet
Phys.—JETP 17, 820 (1963);20, 1235 (1965)j.
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assumptions. If II, is a resonance rather than a bound
state, then in the limit g ~~ there is no in6nite force;
rather, the pole in the complex plane corresponding to
the resonance recedes an infinite distance from the real
axis. For II., either a bound state or a resonance, there
is also a self-consistency problem: It is not enough to
produce the large coupling Asdiret, sty, in II,I~g scattering
foHowed by vertex crossing; the coupling must also
come out large when produced directly, in IIIIII' scatter-
ing. Experience with simple models indicates that
superlarge couplings are dificult to produce directly.

The discussion just given may, of course, also be used
to justify some of the coupling-constant assumptions
required in moving from the weak to the strong form
of criterion (2.1). Vertex-crossing considerations also
lend further support to the second of inequalities (2.1),
I1',/IV, 0(1) As thi. s criterion is increasingly violated,
i.e., as the external multiplets get smaller, IV;/IV, —+ 0,
vertex crossing suggests that the coupling of I; to I,
should fall off as (IV;/X, )'", in order that crossing
I;~ I, should not lead to a superlarge coupling plus a
problem with self-consistency or unitarity.

In summary, there is no contradiction in some low-

to-high couplings t those of the form g(I~IrI' —& Ir,)]
being strong. Even though strongly coupled, a low-

isospin Il. is ineffective in producing high isospins; it is
ineffective both as an exchanged multiplet t because of
the (E,/¹)'"factor in Eq. (1.2)j and as an external
multiplet [because of the pVr/1V11')'" factor in Eq.
(2.4)j.A strong coupling of the form g(I~II, + III') is-
dangerous, rather than ineffective, since it can produce
divergences in the t channels as at Eqs. (2.2) ff. ; or it
can be crossed to a superlarge coupling as at Eq. (2.4).
Finally, vertex crossing eBects are more likely to sup-
press a low-to-high coupling to ((0(1), rather than
enhance it to ))0(1).

All the conclusions of the previous few paragraphs
(except those regarding t-channel divergences) follow
from the existence of the (X /X )'" factors in Eqs. (1.2)
and (2.4). Since the same ratios recur in the crossing
relations for higher groups, the same conclusions follow

for interactions between low- and high-dimensional

representations of the higher groups. Dn addition, there
is strong evidence that the analogs of Eqs. (2.2) and

(2.3) exist for the higher symmetries, hence, that the
t-channel conclusions also follow: Quite generally,

~ C(p1——singlet, p,) ~

=Ã, (E1%2) '".') Indeed, Capps'
first applied the (IV./¹)&0(1) criterion not to SU(2),
but rather to SU(3), pointing out that the (E,/¹)"2
fRctol" 111 Eq. (1.2) llllllblts tllc formation of 27-piet

resonances. Presumably the weakness of low-dimen-

sional representations would be apparent for singlets

in SU(3), were it not for symmetry-breaking effects.

Thus in the exact SU(3) limit the ar meson would be

pure SU(3) singlet, and the forces due to co scattering

or exchange would be damped by group-theory factors

typically of order ~'I'. The observed ~, however, is a

singlet only in the SU(2) sense; from the SU(3) point
of view co is part singlet and part octuplet; and the
octuplet part is not damped.

The discussion of vertex-crossing matters given above
is, of course, quite relevant to the stated purpose of this
paper: It is essential to give a complete discussion of
the interactions between low and high isospins, lest the
mistaken impression arise that low isospins make a high-
isospin system unstable. %e wish now to discuss very

briefly a topic which may well be irrelevant to our own

purpose or to anyone else' s. Since a high-isospin system
cannot be ruled out theoretically at the present time,
we investigate the possibility of such a system coexisting
alongside the familiar low-isospin one.

Firstly, the familiar isospins cannot be produced as
byproducts in the scattering of some as yet undetected
set of high isospins: Low isospins produced in such a
manner are always coupled meekly to one another; they
are coupled strongly only to their "parent" high iso-

spins. The reason for this may be seen by considering the
following simple model. We suppose isospin Ir, =O(1)
is coupled strongly to its parent IIr))0(1) via coupling
g(I~III ~ Il,)=0(1); then because of IJr exchange in

the off-diagonal process II,II,~ IIIIH, perhaps II,II. is
coupled to some additional low-isospin II,' as we11:

IIJI.-+ Ir, '-+ IBID. An upper bound on the crossing
matrix element for I~ exchange in II,II,—& IIII~ scatter-
ing foHows from Eq. (1.2):

~
C(II„Ilr)

~

& (IV ~q/IV I)'~'.
Since the crossed coupling squared is g(I~Ir, —+I~)'
rather than g(IIIII' —+ Il)2, the exchange diagram con-
tains a factor of (lV1/IV~) from vertex crossing, Eq.
(2.4); hence the net ~force~ producing g(IIJr, -+II.)'
is &(IVr/IVI')'~'g(I~I~ +I )'I((1. Sim—ilarly, for any
other mechanism one might think of to produce a
coupllllg Of tllC typC g(II,II, ~ Ir, ): TllC 111CcllRlllsill

always involves external low isospins coupled to internal
high isospins, and hence the crossed exchanges are
always damped by vertex crossing factors of order
(IV&/+11)'~' from Eq. (2.4). Therefore, if the observed
low isospins were produced by high ones, the observed
isospins wouM be weakly coupled to one another, which

ls absurd.
The observed low isospins cannot play an "active"

role either, if we are to avoid the divergences described
at Eqs. (2.2)—(2.3) ff. The conclusion, then, is that the
couplings between the observed system and any high-

isospin system would have to be very weak; e.g. , (from
an analysis of vertex and crossing matrix factors similar
to that given in the previous paragraph) the amplitude
fol IIJr, ~ IliIII, Ii((IH (1.C., RssoclRted plodllctloll
of very high isospins) would have to be of order
& (&r/&s &'"

IG, I,OCATIgfG ELEMENTS OF ORDER U5ITY

In this section we outline a simple procedure for

locating elements 0(Id,I,) of order unity, 0(I~,I,) being

the orthogonal matrix introduced in Eq. (1.2). At least
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The direct and crossed channels are

I Ip ~ Ig —+ I~I), (3.2a)

I I,—+I, ~IpI). (3.2b)

The phase given in Eq. (3.1) needs modiflcation occa-
sionally, and detailed rules for doing this [in fact a
complete derivation of (3.1)]are (is) given elsewhere. '
It suKces for present purposes simply to note that the
curly bracket in Eq. (3.1) is a neat shorthand for a
lengthy sum over four SU(2) Clebsch-Gordan (CG)
coefFicients:

{ }= P (m. ,
—m, ~m. )(—mp, minim. )

(all m's)

X &m mp Imp) &m,m& Imp), (3.3)

where three center dots indicate some known, but ir-
relevant factors such as E, '", and the CG coeKcients
are abbreviated (I m Ipmp~Ipmp)= (m, me~me), etc.
The first two coefBcients are those which occur in the
crossed amplitude (some of the m's have a minus sign
because m values reverse sign on crossing); and the
last two coefficients are needed to project out into the
desired direct channel.

The next step is to utilize a construction due to
Wigner and shown in Fig. 1."The curly bracket, like
all quantum-mechanical amplitudes, has a classical
limit for large values of its arguments. In particular,
if five angular momentum or isospin vectors I IpI~IqIq
are added as shown in Fig. 1, then the only length
which can vary (once the flve lengths ( I ~, , [ Ip~

are fixed) is the one shown dashed; and
~
(N,Np)'"{ }~

'
= ~0(Ip,I.) ' gives the probability that this length
shall be

~
I, . [Note that each face of the tetrahedron

in Fig. 1 corresponds to one of the CG coefficients in
Eq. (3.3).] Classically, this probability equals the
fraction dP/v. , where dP is the change in P, the angle
between faces I IpI~ and I„I~I~, as the dashed length
changes from (I.) to ~I,~+1. signer computes this
fraction from the geometry and gets, for the classical
limit of the 6-J symbol,

~0(Ip,I,) ~

= (NpN )i~2(24v P')-i&2 (3 4)

where V is the volume of the tetrahedron. From formula
(3.4) it is clear that the largest elements are to be folnd
where the tetrahedron degenerates into a figlre of tower

' F. J. Dyson, Phys. Rev. 100, 344 (1955).' E. P. signer, Group Theory (Academic Press IIIc., New York,
1959).

some of these elements will have (N,/Np)'t2) 1, and
hence will give rise to elements C(Ip,I.) of order )
unity. The first step is to note that 0(Ip,I.) for two-

body scattering is proportional to a 6-I symbol (or
symmetrized Racah coeflicient)":

I Ip Ig
0(Ip I,) = (—1)r'+'+rP r~(N N )'~' . (3.1)

Ig I~ I,

Vlo. 1. Wigner's tetrahedron.

dimension, either area or line. [In fact, formula (3.4)
blows up at V —+ 0. The blowup is not real, of course;
it results from the approximations made in treating the
geometry. ] Another interesting result is that wherever
the tetrahedron cannot be formed, the 6 Jsym-bol ciassicatty
is sero. For instance, if one continues to lengthen

~
I,

~

beyond the point P=n (where Fig. 1 has collapsed to
an area) the figure ruptures, and classically, 0(Ip,I.)=0.
Quantum-mechanically, the probability for such

~
I,

~

wiH. not be zero; but it will decrease exponentially as
~I,

~

is lengthened beyond the point of rupture, like a
wave function tunneling through a potential barrier.
Even when the external isospins are small, so that the
situation is highly nonclassical, Wigner's tetrahedron is
still a fairly reliable guide, and elements in c1assically
forbidden regions are found to be down by factors
typically of order 1/e.

Intuitively, one might guess that 0(Ip,I,) is larger at
straight-line degeneracies than at area degeneracies,
and we shall study the former erst. We label the external
scattered multiplets I„,Ip, I~, and I& as in Eqs. (3.2a)
and (3.2b) and Fig. 1.In order for that figure to become
(or approximate) a straight line, one of the follow-
ing constraints must be satisfied (or approximately
satisfied):

Either

or

I +Ip Ip I7+Ii,——
I +IV=I,=Ip+Ip,

I —IY—~I,—Ip —Ig

(1.1.)

(u.r.) (3.5)

(U.l.) .

If 0(Ip,I,) is pictured as a square array in the (Ip,I,)
plane, then elements 0(Ip,I,) satisfying (3.5) lie at the
corners of this array; the abbreviations (1.1., etc.) indi-
cate at which corner of 0(Ip,I,) (lower left, upper right,
etc.) the constraint is satisfled. Racah has derived a
6nite sum for the 6-J bracket, a sum which is usually
very lengthy but reduces to a single term at corners
(in fact at edges)" ":
I Ip Ig

=II~ Z(—1)"(+1)t
Ig Iy Ic n &

X{[r—I(p)] t[It (g)—.]!}-'. (3.6)

In this formula there is one index p for each face of
the tetrahedron in Fig. 1. If p=1 denotes the face
(I IpId), then

I(1)=I +Ip+Ip, —
~(1)—={(I-+Ip Ip)! (I Ip+Ip) ( —I—.+Ip+I~.)t/—

[I(1)+1]~}'i'. (3.&)
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Fin. 2. Classically allowed regions (shown shaded) of C(d,c) for
{a)t-to-s and (b) I-to-s crossing of the elastic process IiI2 ~I,~
I1I2. The 6gures are drawn for the case I2/I1 ——2. As Ig/I1 ~ 1,
the points A and B approach the points A' and B'. The boundary
curves for Figs. 2(a) and 2(b) were computed by setting V=O
in Eqs. (3.10) and (3.1.1), respectively.

Similarly for p=2, 3, 4. There is one index q for each
quadrilateral which can be formed from Fig. 1 by
deleting two nonintersecting edges, i.e., (I IsIsI~),
(I IqIsI.), and (IpIsI~I.). If q=1 indexes (I IpIsI„),
then

X(1)=I +Ip+Is+I2, (3.8)

and similarly for q=2, 3. The sum is over maxI(p)
&r&minX(q); and at edges it is always maxI(p)
=minX(q). The final step in investigating points of
straight-line degeneracy is therefore to verify, via
Racah's sum, that at a given point of straight-line
degeneracy C(Iz,I,) is indeed of order unity.

This 6nal check is necessary because a degeneracy
(3.5) is only a necessary, not a sufFicient, condition for

0(Is,I,) to be of order unity [and of course we are
interested in C(d, c) rather than 0(d,c), so that the
factor (E,/Ãs)'" must be examinedj. Usually, however,
the degeneracy points where 0(Iq,I,) is indeed of order

unity are easily distinguished from those where it
merely attains a relative maximum, because at the
former points the classically allowed region is narrow
in both the column and row directions. Figure 2, for
instance, gives the classically allowed regions for e-to-s
and t-to-s crossing of an elastic scattering process
IiI2~ I,~ IiI2, IiI2~ I„~IiI2, and IiIi~ I, +Isjs, —

drawn for the special case Is/Ii ——2. The boundary
curves are solutions of the equation V=0, where

(12V)'=Ig'I '(I '+I '+I 2+Iss lss I ')——
+I 2I s'(Its+I 2+Iss+I '—I '—Iss)

+I' 2I 2(I/+I 2+I 2+I22 I 2 I 2)

IgsI 'I ' IQI 2I—22 I 'I 'I—' I 2IpsI22 (—39)—
in the general case, and

(12U)'= I 2(IP [2(Iis+I ')—I '—IPg
—(Iis I22)2) (3 1O)—

for t~ s crossing of an elastic scattering reaction, i.e, ,
I.=I,=Ii, Is=Is= Is, (Ig,I,)—= (I„Ii);and—
(12V)'~ [2(I22+Is')—(I '+I ')j

X[I.2I '—(Iis I22)2] (3.11)—
for s ~I crossing of an elastic scattering reaction, i.e.,

I~=Is=Ii, Is=I~= I2—, and (Is,I,)= (I„I„).Both left-
hand corners in. I'ig. 2(a) are points of straight-line
degeneracy; nevertheless, one would not expect

~
0 (Is Ic) (

= 1 because the entire left edge is classically
allowed and the sum of all

~
edge elements~2 must add

up to unity by orthonormality. In Fig. 2(b), on the
other hand, the two skew corner points are the only
allowed points in their respective rows and columns;
hence, one expects (and indeed finds) 0(I„I ) =order
unity at or near the skew corners.

At degeneracy points away from edges one must
compute 0(Is,I,) by other methods because Racah's
sum becomes too lengthy. It is possible to obtain
0(Is,I.) at such points by first deriving a three-term
recurrence relation for the 6-J bracket from the
Biedenharn-Elliott identity, then solving this recurrence
relation approximately. "By this method one Ands that
elements 0(d,c), located at degeneracy points not too
near corners, are of order m '"((order unity. This
result is in agreement with one's intuition that at area
degeneracies 0(d,c) is smaller than at straight-line de-
generacies. Since the noncorner degeneracies do turn
out to be so small, we shall not digress here to write up
the recurrence relation and describe its solutions in
detail. " In any case, even if one is given only the
order-unity elements already found (at corners), it
appears possible to produce a high-isospin system (see
Sec. IV).

IV. HIGH-ISOSPDT SCATTERING'6:
A SPECIFIC EXAMPLE

Even though we now have found some elements of
order unity, in Sec. III, it is not yet clear that we have
found enough such elements. Perhaps in every high-

isospin system there is always at least one isospin which
is needed to produce other isospins, yet cannot itself
be produced because none of the crossed exchanges
assigned to produce it have an order-unity element

through which to act. In order to clear up this and

» L. C. Biedenharn, J. Math. Phys. 31, 287 (1953)
& J. P.

Elliott, Proc. Roy. Soc. (London) A218, 345 (1953). There are
many txo-term recurrence relations derived from the identity and
quoted in the literature; see, for example, Ref. 10, p. 98. Such
relations are somewhat inconvenient for studying the crossing
matrix, however, since invariably they connect two 6-J symbols
belonging to entirely different crossing matrices.

"However, a few notes on the method of solution may not be
amiss, because the writeup will likely be a long time appearing.
We let f= f(Is) denote the 6-J bracket of Eq. (3.1) and suppose
that f obeys a three-term recurrence relation A+8 (I~+1)
+Aof(I&)+A f(I&—1)=0, with all arguments except I& kept
axed. Any three-term relation can be rew~. itten as a second-order
difference equation B25( )f+B18( )f+Bof=0, with g( ) =—f(I~+1)—f(I ) ' 8(')f=—f(I +1)—2f(I )+f(I —1) Difference equations
suggest differential equations, and classical limits suggest WKBJ
solutions. WKBJ solutions suggest the ansatz f=R expiS for f,
with E and S expandable as a power series in a small parameter
(here the parameter, or parameters, are the 1/I; rather than h).
The WKBJ solution goes through as in the usual quantum-
mechanical case, except that differencing replaces differentiating;
and, at degeneracy points, one obtains the digererIce equation
for the Bessel function, rather than the differential equation.
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related uncertainties, we consider a simple example
of a high-isospin system satisfying the following
requirements:

(a) (A minimal version of the self-consistency re-
quirement): Every particle used as a crossed or external
particle in one reaction is produced in the direct channel
of that reaction or of another reaction of the system.

(b) If Ig is produced by exchange of I„ then the
relevant crossing factor C(I&,I,)must be of order unity. '~

)of course, possibly this requirement is too strict; that
is, possibly an element ~C(I@,I,)~ =0.01, say, could
produce a resonance in channel I~ if the couplings of
I,were huge. It is of interest, however, to see how strict
the requirements can be made and stiB be satis6ed.
This is especially true with regard to the present re-
quirement, since in Sec. II we had occasion to argue
against the existence of superlarge couplings. ]

(c) If channels Iq, I, are resonant and channel
Iq'NIq is not, then

~
C(Iq,I,) ~

) i C(I ',I.) ~.

(d) No crossed forces diverge: C(Iq,I,)&0(1) for all
Iq and all resonant I,.

Example: Consider three high-isospin particles 1, 2,
and 3 with isospins I~I+3, I~))1, and Iq ——kI~. They are
assumed to have distinct antiparticles I~/I~ and non-
isospin quantum numbers such that (at least) the follow-

ing vertices are allowed and strong:

g(IgI2 —+ Ig), g(IgI2 —& Ig) . (4.1)

There is no lack of reactions for satisfying require-
ment (a). ln fact, the couplings (4.1) imply that each
of the I;must appear in at least the following channels:

Iz'. IyI2, IGNIS,

~xIx, IiI3, (4 2)

Is. IgI2.

So as to stay within the framework of "first-approxi-
mation" dynamics, we shall assume the I; have such
mass ratios that they are stable, or at least. the I; have
such long lifetimes that the dynamically important
many-body states containing only stable particles are
well approximated by the two-body channels (4.2).

In order to check requirements (b)—(d), one must
have explicit expressions for the relevant crossing matrix
elements. If g(I;I;—+ I~) is a coupling (4.1) or one such
as g(I+&~I;) obtained from (4.1) by crossing two
lines, then because we have deliberately chosen IJ,=kI&

fI;~I;[=I„it follows that
(4.3)

i.e., the crossing matrix elements for Ip or I; exchange
lie at the edges and corners of C(Iq,I,), where the
order-unity elements are located, according to Sec. II.

"There may be vertex crossing factors multiplying C(I&,I,),
from Eq. (1.4), if the crossed coupling was produced originally
in a reaction with I, external. Ke ignore such factors in this
section since all the isospins of our example have about the same
dlmenslonallty.

Thus to check that the forces upon I; are strong enough
to produce I; Lrequirement (b)], one must study corner
elements. Similarly, to check for the absence of multi-
plets other than I~, I2, and I3 and to rule out divergences
)requirement (c) and (d)] one must study the edge
elements C(I~,I,=minI, ) and C(I~,I,=maxI, ).Check-
ing requirements (b)-(d) for our example or any other
example constructed from corner forces is therefore a
straightforward matter of substituting into the Racah
sum, Eq. (3.6).

Since the check is so straightforward, we shall not
describe all of it in detail. However, it is useful to
describe one part of the check, say, that of the I~ boot-
strap, to give an idea of the order of magnitude of the
crossing matrix elements involved. From Eq. (4.2) the
T matrix for this bootstrap is 2&2 in channel space,
the two channels being I~I2 and I+3. Let us consider
the diagonal elements first. From couplings (4.1), the
only crossed force in these elements is I3 exchange in
the e channel of I~I2 + I~I2. (—As is conventionally
done, we label Ij=Ig the s channel and. the crossed
annihilation and elastic scattering channels the t and
u channels, respectively. ) For s-to-N crossing of
an elastic scattering amplitude, the maxima of
~C(Iq, extI, )~ lie in the skew corners of C(Iq,I,).
(extI, =extremum of I,=maxI, or minI, .) For the
I~I2~IQ~ amplitude, C(I~,I3)=PS/X2=$, so that
requirement (b) is satisfied; and the falloff on moving
away from this element up the edge is C(I,+1,Is)/
C(I„I3)=Eq/X2= ~, so that requirements (c) and (d)
are satis6ed.

Since there is no crossed force in the other diagonal
amplitude IsI~~ Ij3, Iq will not be 'linked strongly
to channel I2I3 )contrary to requirement (b) and Eq.
(3.1)] unless forces in the off-diagonal elements
IqIq~I+3 are strong in channel I~=I~. In the oB-
diagonal elements the only crossed forces are from I&
exchange. We get

~
C(Iq, I~)

~
=Xq/E~=-', , hence condi-

tion(b) is indeed satisfied. The falloff away from this ele-
mentis [C(I,+1,I~) )/)C(I»Iq) [

= (E~X3/E2')'~'=
This last falloff satisfies requirement (c), although just
barely; the somewhat more rapid falloff of the diagonal
element (by a factor of S&/E2=-', ) may perhaps make
up for this gentle oG-diagonal behavior.

Of course, maybe this diagonal fallo6 is not sufficient,
and maybe some multiplets in addition to I&, I2, and
Is will be excited. In general, the crossing matrix ele-
ments for I~, I2, and I3 exchange in this example never
diverge, although they are usually order unity for
channels with I~kI& (k=0, 1, 2, 3, 4, or 5). If any of
these additional multiples of I~ were excited, perhaps
their reaction back upon the original multiplets would
destroy the self-consistency of the system. Unfortu-
nately, our present techniques are not powerful enough
for us to say anything meaningful about this possi-
bility; the problem rapidly gets out of hand as th
number of multiplets in the system increases.
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Another possible source of difhculty might be a
blowup in the antiparticle-particle channels with If~0,
since every coupling exerts a force on these channels
[e.g. , g(IiI2~ I3) exerts force on Ii 0 via I3 exchange
in IiIi~I2I2 scattering]; and the relevant crossing
matrix elements are order unity; see Eq. (2.2). If these
I& 0 resunances all lie on Regge trajectories, then
Eq. (2.2) suggests the highest lying of these will have
I&=0, as in the observed case. Therefore, if we want
divergences we should look at this channel first. We
find that even the forces into I&=0 in our example are
not obviously so strong as to drive the singlet trajectory
over the Froissart limit. "The largest element of the
form C(I,=O, I,) is C(O,I,) =2V2, for I3 exchange in
IiIi ~ Idl scattering; in the other crossed channel of
the same reaction, I~ exchange acts through an element
C(O,Ii) = ~V2. (Of course, there may be vertex crossing
factors multiplying these numbers. These factors will be
of order unity, not such as to produce obvious diver-
gences. ) Note that for comparison purposes, the

~

elements~ for p exchange in the s and N channels of
ver scattering are both +1.

It should be stressed that our example was designed
to produce the relatively small forces on the I&=0
channel just described. Thus we have been careful to
keep the ratio (maxI;/minI; ) of order unity in order
to avoid the type of t-channel divergence discussed in
connection with the strong-coupling model at Eq. (2.2).
In addition, we have chosen non-self-conjugate multi-
plets I;/I;: Had we allowed I~=I2, for instance, then
I3 could be exchanged in both crossed channels of
IiIi ~ 12I2 scattering, and the net force on I,=0 would
be doubled. It is possible to design a system so that
the forces into the I&=0 channels are small, but the
constraints on such a system are stringent.

So long as the high-isospin system contains only a
small number of multiplets, at least one of the dynami-
cally important crossing matrix elements must satisfy
(0(d,c) )

—1 as well as
( C(d, c)

~

—1. The only way to
obtain the contrary result, [0(d,c) [ «1 but

~
C(d, c)

~

—1,
would be to arrange matters so that (1V,/Xp)'"»1;
but if all the dynamically important crossing matrix
elements in the system satisfy EQ)Ez, then there is no
force to produce the largest isospin in the system, unless
we assume the existence of an infinite number of
multiplets of everincreasing isospin. [The specific ex-

ample given in this section is rather special in that ug
dynamically important elements satisfy ~0(d, c)

~

—1.]
Moreover, there must be at least one element which

satisfies not only
~
0(d,c)

~
=1, but also m&&1, where m

is the dimensionality of 0(d,c) as in Eq. (1.3). Though
we did not mention the fact in Sec. III, there is a trivial
way to construct elements satisfying j 0 (d, c)

~

—1, a way
which does not require any study of Wigner's tetra-
hedron. One can choose the external isospins such that
m=1, whence obviously ~0(d,c)

~

—1. For example, one

' M. Froissart, Phys. Rev, 123, 1053 (1961).

can choose an external isospin to be 0; this is an
obvious way to get m—2, but it is also dangerous, as
we have seen in connection with the strong-coupling
model in Sec. II. The safe way is to choose all the
external isospins large but make the process highly in-
elastic. For instance, in our example the inelastic process
I~I~~I~I3, I~——kIi has m=2 even though I~——I2))2.
Inelastic reactions of this type always have one external
or exchanged multiplet larger than the multiplet pro-
duced, however; hence, as in the 37,))Ãq example dis-
cussed in the previous paragraph, one cannot rely
exclusively on m—2 elements unless the system contains
an infinite number of multiplets. If one wishes to avoid
infinite regress, there is no shortcut: One must invoke
signer's tetrahedron and locate an element satisfying
both

~
0(d, c)

~
=1 and m&&1.

When the direct and/or crossed cha, nnel is elastic,
elements satisfying ~0(d,c)

~

—1, rw&&1 are hard to find,
even though requirements (3.5) are always satisfied at
at least two corners. One cannot take I~ or I.=It,
(annihilation channel), because resonances in the t
channel do not exert strong forces on the high isospins
in the s and e channels )recall the discussion in con-
nection with Fig. 2(a)g; and conversely, the forces into
the t channel from s and N channels are strong only near
I,=O Lsee Eq. (2.2)7. One must take (Iq,I.)= (I„I )
or (I„,I,). LEven for these cases the corner elements
are not of order unity unless one is away from equal-
isospin scattering I =Ip=I =I~. In s-to-u crossing of
I Ip ~ I Ip, the largest elements, those in the skew
corners of Fig. 2(b), are ~0(d,c) ~=~N' —E'~ "/
max(S, Xp).]Whence the predominance of s-to-N boot-
straps and inelastic processes in our example.

Finally, it is no accident that the falloffs C(Id+1, I,)/
C(Iq,I,) in our example are large. The fastest rates of
falloff Pand incidentally, the largest values of

~0(Iq,I,) ~) are obtained when a constraint (3.5) is

satisfied exactly. If (3.5) is not satisfied exactly, the
maxima of ~0(Id,I,) ~

do not lie in the corner, but at
two points displaced slightly from the corner, one point
lying on each of the edges meeting at the corner. The fall-
oGs from these points must be gentler if the maxima are
smaller, in order that the sum rule Pq „,

~
0 (Id,I.) ~

' = 1
be preserved. The system should therefore tend to have
a smaller number of multiplets, the more closely the
corner constraints (4.3) are satisfied.

If a given high-isospin system contains at most two
high isospins Ii, I2»1, and Ii/I2=r, then no rnatter
what the value of r Lsubject to r=0(1), of course]
not enough of the relevant elements C(Ii,Ii), C(I2,Ii),
etc. , will lie in corners for the system to be self-consistent.

Therefore, a high-isospin system must contain at least
three high isospins. Our example was essentially the

simplest that could be constructed, therefore. Despite
its simphcity, the example is quite representative of the

properties of high-isospin systems containing a rela-

tively small number of multiplets.


