
P H YS I CAL REVIEW VOLUME |6Z, NUMBER 5 NOVEM B ER 1967

Electron-Electron Bremsstrahlung from a Quantum Plasma (Z= 1)'
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The nonrelativistic limit of the Born cross section for electron-electron bremsstrahlung is integrated over
a Maxwell-Boltzmann electron distribution. Results for the spectrum are compared with the electron-ion
(Z=1) bremsstrahlung spectrum found in the literature. The long-wavelength limit is obtained and com-
pared with recent classical calculations. Corrections to the spectrum for low temperatures and high fre-
quencies are discussed. It is concluded that at electron temperatures kT,)10 keV, electron-electron brems-
strahlung should be included in calculations of the emission spectrum, especially in the short-
wavelength region.

I. INTRODUCTION
' 'HE importance of electron-ion (e-i) bremsstrah-

lung' in a fully ionized gas, both as an energy-loss
mechanism, ' and as a tool for measuring plasma
parameters (density, temperature), '4 has been recog-
nized for some time. Since electron-electron (e-e)
bremsstrahlung is quadrupole in nature, and e-i
bremsstrahlung is of a dipole nature, it is expected that
e-e is down from e-i by a factor kT,/rrtc' (k is the
Boltzmann constant, T, is the electron temperature,
and owe' is the electron rest energy).

The importance of e-e bremsstrahlung in high-temper-
ature plasmas has been pointed out, in the literature, in

a calculation of the total energy radiated by a quantum
plasma as a function of kT,/srtc'. ' Recently, a classical
calculation of the spectrum due to e-e bremsstrahlung'
estimates that e-e is down from e-i by an approximate
factor of ss(kT,/sic') in the low-frequency region

(ko«kT.).
The purpose of this paper is to calculate e-e brems-

strahlung from a Maxwell-Boltzmann (MB) hydrogenic

plasma, in the Born approximation and in the nonrela-

tivistic limit. In Sec. II, the cross section is discussed and

the validity of the nonrelativistic Born approximation
is pointed out.

In Sec. III, the Born cross section is integrated over a
nonrelativistic equilibrium (MB) electron distribution

and the bremsstrahlung spectrum is obtained. The long-

wavelength limit is taken.
In Sec. IV, the results are presented and a comparison

is made with the dipole e-i spectrum. The ratio of quad-

*Qlork performed under the auspices of the U. S. Atomic
Energy Commission.

1 ~e define bremsstrahlung, in general, to be the radiation
emitted by an electron as it decelerates in the field of other
charged particles.

' R. F. Post, Rev. Mod. Phys. 28, 338 (1956}.
& J. E. Drummond, Plasma Physscs (McGraw-Hill Book

Company, Inc. , New York, 1961),p. 319.
4 D. J. Rose and M. Clark, Jr., I'lasmas and Co~trolled Fusion

(John Wiley tk Sons, Inc. , New York, 1961);G. Bele6, Radiatiow
Processes il Plasmas Uohn Wiley tk Sons, Inc. , New York, 1966}.

s J. Stickforth, Z. Physik 164, 1 (1961); J. Garrison (private
communication).

T. J. Birmingham, J. M. Dawson, and R. M. Kulsrud, Phys.
Flu ds 9, 2014 (1966); T. J. Birmingham, Princeton University
Report No. MATT-386 (1966) (unpublished).

rupole e-e to dipole e-i emission at a particular fre-
quency is found to be (6/542)kT. /rrtc' for long wave-
lengths, increasing to 3-5kT,/rttc' in the short-wave-
length region.

In Sec. V the total energy emitted by bremsstrahlung
is discussed and compared with the results for e-i
emission.

A correction to the Born approximation for low
temperatures and short wavelengths is given in Sec. VI.
After integrating the corrected cross section over the
distribution, it is found that the correction is small when
the temperature is high enough so that e-e bremsstrah-
lung is important.

In Sec. VII, the results of the work are summarized
and applications to "lab plasma" physics and astro-
physics a1e d1scussed.

II. BORN CROSS SECTION

do„(et) = (4/15)nrss L17—3x'/(2 —x)'j(1—x) '"

-»(2—x)'-&(2—*)'x'-»4-

(2—x)'

where

Xin — -+ —1 —, (1)
x

x= Itp/et p (2)

n=e'/i'tc is the fine structure constant, and re e'/rnc'——
is the classical radius of the electron. The factor

VA. I. Akhiezer and V. B. Berestetskii, Quantum Electro-
dynamics (Interscience Publishers, Inc. , WTew York, 1965),
Chap. V.

The Born cross section for e-e bremsstrahlung, in the
nonrelativistic limit, is just the matrix element of the
quadrupole operator between initial and 6nal two-elec-
tron states. Integrating over angles, the cross section
for emitting a photon with frequency between v and
a+do in a collision of two electrons, where et is the total
kinetic energy in the center-of-mass (c.m. ) system, is
given by~
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dh/x= dv/v reflects the familiar infrared divergence. The
final energy of the electrons in the c.m. systeiii, c2,
has been eliminated. by the energy conserving 5 func-
tion, requiring

pi= es+kv

The requirement for the validity of the Born approxi-
mation for the scattering of two electrons is'

the contribution of a single pair of electrons over all
possible pairs of electrons in the gas at density E,
=number of electrons/cm'.

The number of photons emitted per unit time per
unit volume with frequency between v and v+dv will
then be

whel e
e'/Ae i, s«1,

ot, s = (2et, s//i) "'
(4)

P'-'(v kT.) dv= —- (dut)(~Ps)». - '(fit)

I»—»l
&&».""'(us) «(I ui —us I v), (14)

or, equivalently,

&1,2
M(]

C

e /sA t/si))n=e /sAc.

(7)

Therefore, the cross section (1) is valid in the region

p, =-s'm (reduced mass). (6)

If (4) is satisfied, the scattering of the electrons due to
the Coulomb repulsion can be neglected.

Ke have also used the nonrelativistic approximation.
This requires that

] )s/s
».""'(1)=

I
e—I ul'/s»s&e

E,2~t/ikT, i

and do. is the cross section, integrated over angles, for
emitting a photon with frequency v in the collision of
two electrons of momenta p~ and p2. In the Appendix,
we reduce the integral over the two distributions to an
integral over a single Maxwell-Boltzmann distribution
of reduced mass particles. From Eqs. (A21), (A7), and.

(1) we have

n«es/Asi s«1.
%e will Q.nd later that if the temperature of the gas

is high enough so that quadrupole emission becomes an
important correction, kT,&10 keV, and the right-hand
side of (9) is automatically satisfied. We can satisfy the
left-hand side of (9) if kT, &25 keV. Therefore, the
nonrelativistic Born method can be used in the region

and
10 keV&kT, &25 keV. (10)

8 nrps». 'kvd(hv)I(lt)
Pe e(v,kT )d-

15 (s.m) '/'(k T.)"'
'A= kv/kT. , —

J(x)= zy a(x,y),

(16)

(17)

(1Sa)

m. THE MAXWELL-BOLTZMAÃN AVERAGED
CROSS SECTION

Consider a gas with a uniform density of electrons.
If the density is not too high nor the temperature too
low, collective eRects will be unimportant. The criterion
ls

he~(&kT„
where

~,2= (27ru, )'=47r», e'/m (12)

and», is the electron density. If (11) is satisfied, the
"dressing" of the photon due to its interaction with the
plasma as a whole' will have a negligible eRect in the
frequency range which contributes to the total energy
radiated. For most lab plasmas,

he~ =0.01kT„
so that (11) is satisfied. Therefore, we can simply com-
pute the radiation emitted from the plasma by summing

~(~a) =e "/"/r' D7—3S'/(2 —X)'j(1—X)'"

»(2-X)'-7(2-X)'r'-8'
(2—S)'

(1
Xin +

l

——1
I

. (18b)
E$

16 17
t 4) dx

lim «„=do p= n—rp' —+—lnl —
l
—.

5 12 Ex& x
(19)

Using (A21) and (A7),

lim P' '(v,kT,)dv= P' '(0,kT,)du-
Ar ~0

The long-wavelength limit of the quadrupole e-e
spectrum is most easily obtained by going back to the
Born cross section do„given by Eq. (1).We have

s L.L SchiR, Quoaium Meehonies (McGraw-Hill Book Company,
Inc., New York, 1955), 2nd ed., Chap. V.' J. D. Stack and A. M. Sessler, Phys. Fluids 6, 1193 (1963).

(4/s.ns)'/s». s

(kT' )8/2
deist e '&/s" dop. (20)
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B(Q

3

Equation (24) is obtained from (23) by using the
relation'0 "

lim Ep(x) = In(2/x) —y.
x~0

Forming the ratio P'-'(O, kT,)/P'-'(0 kT,), we find
from (21) and (24)

P' '(O,kT.) 6 ikT.i
P -'(O kT.) 5VZEmcsf

(26)

00

Substituting (19) into (20), we obtain

2
) = hv/kTe

Fzo. 1. Ratio of quadrupole to dipole emission.

Dr, T. Birmingham has recently calculated this
1atio exactly, for a Maxwellian distribution, using the
classical methods of Ref. 6. His result is in agreement
with Eq. (26).

Next @re de6ne

32 kT.) '" dz

I"-'(O,kT,)dv= —nrp'iV '
5 ~m) v

P' '(v, kT,) (mc')

P' '(v, kT,) QeT,f
(27)

as the ratio of quadrupole to dipole emission at a par-4kT.'l 17

( kv j 12
' ticular frequency. From (16), (23), and (27),

We have used the relations" tr 1 ) X'I(X)
B(X)=

/

E10V2) e
—"tsEp(P)

(28)

and

dx e lnx= —y= —0.577

dx e 'xlnx= —7+1.

where I(X) is defined by Eq. (18).The numerical evalu-22a

ation of IP ) was carried out on a CDC 6600. In Fig. 1,
we plot B(X) versus X. From (27) and (26),

(22b)
lim B(X)= 6/Sv2, (29)

IV. NUMERICAL RESULTS AND COMPARISON
WITH THE MPOLE SPECTRUM

The dipole e-i spectrum from a hydrogenic Maxwell-
Boltzmann plasma is given by the expression'

P'-'(v, kT,)dv = (16/3) (2/zrmk T,)"'nrp'tV, 'mc'e ""
XEp(-,'X)dv/v, (23)

g
16t' 2

lim P'-'(v, k T,)dv=—P' '(O, k T,)dv =—
~

3 kzrmkI',

dv AT,
Xnrp'V, 'mc' —ln ——0.577 . (24)

Vl hv

10 I. M. Ryshik and I. S. Gradstein, Tables of Series, I'roducts,
and Integrals (Veb Deutscher Verlag Der Wissenschaften, Berlin,
1957)."E.T. Wbittaker and G. N. Watson, A Course of Modern
Analysis (Cambridge University Press, New York, 1958), 4th ed.
p, 373.

"Tables of e*Ifz(z') can be found in Handbook of Matkenzatieat
Functions m'th Formulas, GraPhs, and Mathematical Tables,
edited by M. Abramowitz and J. A. Stegun, National Bureau of
Standards, Applied Mathematics Series, No. 55 (U. S. Govern-
ment Printing Once, Washington, D. C., 1964), p. 417.

where Ep(x) is the modified Bessel function of the
second. kind '~'s It diverges as ln(2/x) for small x
and decreases as e '/x't' for large x. The long-wave-
len th limit of (23) is

5 -'(X) = e-~tsE, (-,'l )/l,
5'-e(X) = XI(X)

(31)

(32)

Ce-i(X kT )= (16/3)(2/zrmkT )'t'nr 'zV 'mc', (33)

C" "'(tV„kT,) = (8/15) (k T,/-zrm) 't znr p'tV, '. (34)

We write the qua, drupole and dipole spectra in units of
C' '(X„kT,) as given in Eq. (33). The dipole spectrum

P t'-'&(v kT,) e ""Ep(-,'b)
=5' '(X) =-

C'-'(tV, kT.)

in agreement with the numerical results for small X.
B(X) is seen to rise from the value given in (29) to 5.5
for X=5. Thus there is a substantial increase in the
ratio of quadrupole to dipole emission as the short-
wavelength portion of the bremsstrahlung spectrum is
reached.

To compare the quadrupole and dipole spectra
directly, let us defj.ne

P'-"-"'(v kT )dv =Ct' '"' '&(N—kT-)-
XSt -"- lP)db. , (3O)

where, from (16) and (23),
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and the quadrupole spectrum is

P' '(v kT.) C' '(zV. kT.)'
Se-e()t)

C'-'(X„kT.) C' '(1V„kT.)
1 kT.

l»()). (36)
1Ov2&mcs/

In terms of 8(X), Eq. (36) can be written

For

P' '(v, kT.) (kT,)
(a() )S -*()).

C'-'(1V, kT,) (mes)

kT, = (10,20) keV,

P' '(v kT.)-

= (0.02,0.04)B(P,)S' '(X) .
Ce-x(zV k2 )

(37)

(38)

(39)

l2

Qi

IO IO
k =her/kTe

IQ

I

3

FIG. 2. Dipole and quadrupole spectra at 20 keV.

In Fig. 2, we plot S'-'()), the dipole spectrum, and
0.048(X) S' '(X), the quadrupole spectrum, normalized
in the same manner, for kT, = 20 keV. Experimentally,
one would measure the sum of these two spectra plus
the quadrupole e-i contribution. '3 %e see from Fig. 2

that the spectra cutoff" in the region 1&X(10.For
the quadrupole e-e spectrum, a rough estimate of the
contribution of the short-wavelength region to the total
energy emitted. shows that greater than 90% of the
energy is emitted in the region X&5, with about 60%
of this energy in the region

0.5&~&5.

For the e-i spectrum, about 50% of the energy is in
the region

where

lY. ,(r) = hvP' '(v,kT.)dv, (42)

r =kT,/mc', (43)

and P' '(v, kT,) is given by Eqs. (A21) and (1). The
integral (42) is easily evaluated by integrating first over
frequency and then over the electron energy, since'

do„(ez) Izv 8aroset

V. TOTAL ENERGY EMITTED

Following the notation of Ref. 5, we de6ne 8', , as
the total energy emitted per unit time per unit volume
due to e-e bremsstrahlung. Then

0.5&&&4. (40b)

WVe find that the e-e contribution will be 4-10%
(8—20%) of the e-i contribution in the frequency range,
0.5() (5, for at emperature kT, =10 (20) keV. The
quadrupole e-i contribution in this region is 2-4%
(2—7%) for kT, =10 (20) keV."The e-e contribution
to the experimentally measured spectrum, in the short-
wavelength region, would be approximately

Pe-e(v) (() 95)Pe-e(v) kT,&=0.95@()) ~
(41)

Pe-r(")51+0 05j P' '(v) mcs/

for 20 keV.
Therefore, the "average" contribution of quadrupole

e-e to the short-wavelength portion of the brems-
strahlung spectrum of a hydrogenic plasma at 20 keV
is 14% and proportional to kT,. Since &50% of the
total energy is emitted in this region, we estimate that
&7% of the total energy in the bremsstrahlung spec-
trum (e-e+e-i) comes from e-e collisions.

"R. L. Gluckstern, M. H. Hull, Jr., and G. Breit, U. S. Atomic
Energy Commission Report No. AECD-4246, LYale LA3, 1953
(unpublished)g; C. Quigg, Lawrence Radiation Laboratory
Report No. UCRL 50227 (1967) (unpublished).

Using (44), we obtain

W, ,(r)~32zrrsszV, s(kT,)'~'/(zrm)'I'

in agreement with Ref. 5.
Using the well-known result'"

32 (2kT,) '~'
W, ;(r) =—

I

— —
I

nrosftr 'mc'
3 &~m/

we obtain

(46)

VI. CORRECTION TO THE BORN APPROXIMA-
TION FOR LOW TEMPERATURES

It is well known that the Born cross section for e-i
bremsstrahlung can be corrected by a simple factor, "
if the incoming electron energy is high enough, in order

"C. F. Wandel, T. Hesselberg Jensen, and O. Kofoed-Hansen,
Nucl. Instr. Methods 4, 246 (1959).

zs W. Heitler, The Quanzunz Theory of RaChatzozz (Oxford
University Press, Nevr York, 1954), 3rd ed. , Chap. V.

W. .(r)/W. ;(r)= (3/v2) .. (47)

If kT,=20 keV, r~0.04, and W, ,(r)/W, ;(r)~8%%u~,
in good agreement with our estimate of Sec. IV.
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consistent with our notation in Secs. II and III. Since

(54)

4-

l222

Q3

the corrected cross section,

do, ' '= f-, .do„(2,).,
where do.,(er) is given by (1), will satisfy the inequality

do, - &do„(e2). (56)

Oo 2
X=-hv

kTe

FIG. 3. Corrected quadrupole to dipole ratio.

This reflects the fact that the Coulomb repulsion will
cause the electrons to spend less time close to each other,
resulting in less bremsstrahlung, especially in the short-
wavelength region. This eQect disappears if the initial
energy e~ is high enough, since

where
fBB——(2)/2)2)(1 e' &2)—/(1 e' 2)—

21
=Ze2/ho, 212——Ze2/Arto,

(48)

(49)

and 2to(n) is the velocity of the incoming (outgoing)
electron. This factor is proportional to the probability
for finding the final electron at the position of the ion.
Since

t.o obtain agreement with exact results. In the exact
calculation, the matrix element of the dipole operator is
taken between wave functions which are solutions of
the Schrodinger equation for an electron in the Coulomb
field of the ion. This simple factor has been derived by
Elwert, " and its validity has been investigated in
subsequent numerical calculations. '~ In Berger's work,
it is found that the Elwert corrected result is within 2%
of the exact result if the energy of the incoming electron
is greater than 100 eV. The simple correction factor,
which we denote by fBB (Born-Elwert), is given by

where

8 rrvo'sV. 'hvd(hv)
E(v,k I'.,2)dv= —— I(e,h),

15 (2rm) 'I'(k T.)"' (58)

I(e,)I.) = exp

XLe p( /&y) —1/A (&,y), (59)

e=(2 /&2){Ry/kT, )'I' (Ry=13.6 eU), (60)

and A(X,y) is given by Eq. (18b).
The corrected ratio of quadrupole (e-e) to dipole

(e-i) emission will be

Using (55), (52), and (A21), we find that the corrected
probability per unit time per unit volume for e-e
bremsstrahlung is

(50)
( 1 ) X2I(e,X)

a(e,z) =]
(10')e-»2Z, (-;) )the corrected cross section

where
51do c=fBEdo Born + d&Born q E' c(v,kT„e) -(kT," =a(.-,)))

Eme2
(62)

I"-'(v kT )so that there will be more bremsstrahlung. This must
be true since the attractive potential causes the 6nal
electron to spend more time in the field of the nucleus.

For the e-e problem, the correction factor analogous
to (48) is simply found by computing the probability of
6nding the two 6nal electrons at the same position, using
the exact solutions of the Schrodinger equations for
scattering in a Coulomb field. ' This factor is

fc-o= (g2/211)(e2rrr 1)/(e2r22 1)

'g2, 2= e /'her, 2,

(52)
where

(53a)

(53b)o2,2= (222,2/~)"',
22 G. Ehrert, ABB. Physik 34, 17g (1939).
'~ P. Kirkpatrick and L. friedmann, Phys, Re y, 67,

(1945); J. M. Berger, iNd 105, 35 (1957)..

The integral I(e,X) was numerically evaluated on a
CDC 6600. The results for B(e,) ) versus X are plotted
in Fig. 3 for values of ~=0.164 and 0.5, corresponding
to temperatures of 10 and 1 keV. By comparing the
results given in Figs. 1 and 3, we see that the correction
due to the "Elwert factor" at 10 keU is &6%%uo for all
frequencies. At 1 keV, the correction becomes as
large as 18%%uo in the short-wavelength region. The cor-
rection becomes larger as the frequency increases, since
the Coulomb repulsion manifests itself most strongly in
close collisions.

At 20 keU, the correction ranges from 3% at X=0.5 to
4% at X=5. Since the region 0.5&)I.&5 contributes
&60% of the total energy emitted, we estimate about
a 2% correction to the total e-e bremsstrahlung. For
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10 keV, the correction should be 3%. In Ref. 5, this
correction is estimated. by classical methods and. found
to be 1.3% for kT, =10 keV. Therefore, the classical
approximation seems to underestimate the Coulomb
repulsion eQ'ect in e-e collisions by a factor 2. On the
other hand, this method seems to work well for the e-i
case, as pointed out in Ref. 5.

To summarize, the results of Sec. IV on the quad-
rupole emission shouM be decreased by 3-4% at
20 keV and 4—6% at 10 k.eV, in the short-wavelength
region 0.5&X&5.

vrr. comer, vsromS

The main result of this work is that e-e bremsstrah-
lung collisions contribute to the short-wavelength emis-
sion spectrum from a hydrogenic plasma when AT, & |0
keV. In particular, the ratio of quadrupole (e-e) to
dipole (e-i) emission is 5—10% for X=0.5—5 at 10 keV
and proportional. to the electron temperature. These
results are good to AT, =25 keV because of the non-
relativistic approximations.

The dipole (e-i) spectrum has 50% of it, s total
energy in the region 0.5&3«4, and the quadrupole
(e-e) has 60% of its total energy in the region
0.5&X&5. Therefore, in the temperature region
kT, =10 (20) keV, one can expect that 4% (8%) of
the total energy emitted by bremsstrahlung (e-e+e-i),
in a hydrogenic plasma, comes from e-e collisions.

Ke also correct the Born cross section for low
temperatures and high frequencies since the wave func-
tion describing the final state will deviate from a plane
wave. It is found that the quadrupole e-e emission is
decreased by 5% (4%) at kT, =10 (20) keV, so that
the correction is small.

It is obvious that a measurement of the emission
spectrum of a plasma can be used to determine the
electron temperature. This method has been used both
in "lab plasma" physics" and in astrophysics. "From
our work, we conclude that in the region 10 keV&AT,
&25 keV, one should add the dipole (e-i) and, the quad-
rupole (e-e) spectra in order to correctly describe the
emission.
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APPE5DIX

First we will transform Eq. (14) into an integral
over the total and relative momenta of the two electrons.

Since do only depends on the relative momentum, the
integral over the total momentum can be done trivially.
We then evaluate the remaining integral in the c.m.
system of the two electrons. We finally obtain P(v, kT,)
&t,'dv as an integral of the cross section (1) over a Max-
well-Boltzmann distribution of reduced-mass particles.

First, we define new variables.

P=pt+Ps~ P=pt Ps&

Now
pi=i(p+p), p =s(P—p). (A2)

(dpi)(dp )=(dp)(dP) ~(p,p )/~(p, p) = l(dp)(dp) (A3)

Since the integration in (14) is over all pi and ps, the
transformed. integral wiH go over all values of y and P.

Using (15),

Reducing the two-particle scattering problem to the
scattering of a reduced particle in an external field, the
total energy can be written'0

where

ipil' Ipsl' l~l' Ipl'-+- = +
2m 2m 2M 2p

(A5)

(A6)

p, = ~m= reduced mass.

Therefore, using (A4), (A5), (A6), and (A7),

iV nrM-B(y )+ ml-B(y )
= (1/2vrmkT, )' e ~&~'"&"~ e—~&~'I—'~"~ . (AS)

iXow

(1/2smkT, )"' (dy) e ~
"~'"~t '=1 (A9)

so that

iV mM-B(p PT mM-B(y ) —iV yM-B(p)iV MM-B(p) (A10)

Using (A3), (A4), (A9), and (A10), (14) can be
written

E.'I" '(v kT.)dv=-
16

l; ~nM-B(p )pr mM"B(p )

= (1/2~mkT, )' e
—

&~ ~ 1~'+~ ~~~'& ~s"'"' (A4)

"K.Boyer, E. M. Little, W. E. Quinn, G. A. Sawyer, and T. F.
Stratton, Phys. Rev. Letters 2, 279 {1959);H. R. Griem, A. C.
Kolb, and W. R. Faust, ibid. 2, 281 (1959).

"See, e.g., L S. Shklovsky, Astrophys. J. Letters 148, No. 1,
Part 2 (1967).We wish to thank Dr. W. H. Grasberger for point-
ing out this reference to us.

X (dp)Ã. ~ '(p) d~(l pl, ~)). (A11)

I See, e.g., H. Goldstein, Classica/ Mechanics (Addison-Wesley
Publishing Corporation, Reading, Massachusetts, 1959), Chap. 3.
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Now we go to the c.oi. system ~here

P=o,

p=2p&

(A12)

(A13)
(dp) =g(d pi) (A18)

Since we want to integrate over a "reduced particle"
distribution, let us transform the integration variable
from p to p1.

Using (A13),

e =
f pi f

'/m,

relative velocity =
f p f /m = 2

f pi f
/m .

Finally,(A14)
PI

(A15)
P' '(v, kT.)dv = ', V,s -(dpr)IV, &M n {pi) — do„, .

p

Tl11s Is c'qulvalcIlt. to a reduced n&ass Pal.'tlclc wltll whci c do is O' Ivciiby Eq (1)
IHomentuID pIy so that

pi 2ts ~ (A20)
e= Ipil'/2t = Iprl'/m

velocity= Iprl/le=21 pil/m

This situation can be represented symbolically as

(A1tI)

P' '(v k T.)dv = (2/~t ) itsfil. s

(kT,)'"

Integrating over angles, we obtain

Pa P1 P1

'7N PP'l P
deist e ""~do.„(er) . (A21)
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A kinetic (transport) theory is presented for the first- and second-order (and, if necessary, higher) statisti-
cal moments of the number densities of the various particles and/or photons that describe the observable
fluctuations in the radiation distribution from an emitting system. This treatment is particularly suitable
for the analysis of Rnite, inhomogeneous systems that may be composed of detectors located outside of a
radiating source. Because we are largely concerned with the utility of kinetic theory as a physical theory,
considerable emphasis is placed upon an appropriate theoretical description of the actual observables of given
experimental situations. The quantum I.iouville equation is used to generate the coupled set of transport
equations, and basic criteria for the applicability of transport and wave theories are discussed. Quantum-
statistical effects are also quite naturally accounted for in cases where they are relevant. It is seen that
fluctuation measuremerits are useful for inferring information relevant to the dynamic interactions within a
given system. Such measurements often enjoy the feature of being passive with respect to the interacting
system of interest. To illustrate the use of this spatially dependent form of kinetic theory on a system emit-
ting optical radiation, we consider an example that interprets a fluctuation measurement on the radiation
emergent from a finite nondispersive blackbody. We conclude by discussing the problems of statistical
coupling between the radiation 6eld and detector atom distributions.

r. DTTRODUCTION

HE primary objective of this work is to present a
transport theory of the multiplet densities of

radiation distributions to facilitate the analysis of
measurements of fluctuations in radiation fields in
which spatial inhomogeneities play a significant role.

*%'ork performed under the auspices of the U. S. Atomic
Energy Commission.

Our main concern will be for the development of the
transport equations which describe the phase-space and
time variation of physically interpretable singlet and
doublet densities for the radiation system. A secondary
objective is to apply these equations (as well as others
needed for the description of detected particle densities)
to an analysis of selected examples of Quctuation
measurements on finite systems in which a consider-
ation of spatially dependent eRects is pertinent to a


