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An exact analytic expression is derived for the Kramers-Heisenberg matrix element describing the elastic
scattering of photons by a hydrogen atom in the dipole approximation. The method followed consists in
writing the matrix element in terms of the Coulomb-field Green’s function in momentum space and using
for this an integral representation originally derived by Schwinger. Various integrations then yield the
matrix element in terms of a hypergeometric function of the Gauss type oF; with parameters and variable
depending on the photon energy. Different limiting cases are considered. Finally, a very accurate numerical
computation of the result is reported. The procedure used in the computation was to sum the series expan-
sions of the hypergeometric functions occurring in the different equivalent conveniently chosen forms of
the matrix element. The results presented cover all values of the photon energy.

I. MATRIX ELEMENT

OW-ENERGY elastic scattering of photons by

atoms is dominated by Rayleigh scattering from

bound atomic electrons. The differential cross section
for this process is given by!

do=r¢? | 9 |2 dQ, (1)

where ro=e?/m,? and 9 is the Kramers—Heisenberg
matrix element® equal in the case of a single atomic
electron and the dipole approximation to

M=s-s’
e[ (8 Plon(s:P)ng | (8:P)oa(s'-P)no
- ‘:'[En—(Eo+w+ie)T Eu— (Eo—0) ] 2

Here w denotes the energy of the elastically scattered
photon, s and s’ are its initial and final polarizations,
P is the momentum operator, E, are the energy eigen-
values of the hydrogen atom and E, is the energy of
the ground state. The infinitesimal positive quantity e
prevents the occurrence of a singularity when w> | Ey |.

In spite of its considerable age, there have been few
attempts to evaluate the Kramers-Heisenberg matrix
element, even in the simplest case of a hydrogen atom.
Thus for values w<X | E, |, Podolsky and later Dalgarno
and Kingston* have calculated the first terms of the
expansion of N in powers of w. Mittleman and Wolf,?
following a method of Schwartz, have given an evalua-
tion of M for values of w up to the first resonance
w<%|E,|. More recently, Constantinescu and the

''W. Heitler, The Quantum Theory of Radiation (Oxford Uni-
versity Press, New York, 1954), p. 192.
222 WeZuse the natural system of units, such that A=c¢=1; then
eZ=alZ.

3H. A. Kramers and W. Heisenberg, Z. Physik 31, 681 (1925).

4 B. Podolsky, Proc. Natl. Acad. Sci. (U.S.) 4, 253 (1928);
A. Dalgarno and A. E. Kingston, Proc. Roy. Soc. (London)
A259, 424 (1960). These calculations actually refer to the re-
fractive index of hydrogen #, the quantity 917/w? being propor-
tional to #2—1.

5M. H. Mittleman and F. A. Wolf, Phys. Rev. 128, 2686

(1962).
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author® have evaluated the matrix element for all
values of w by an approximate method.

In the present work we shall first derive an exact
analytic formula for the Kramers-Heisenberg matrix
element by means of expressing it in terms of the
Green’s function for the Coulomb field. This has
received considerable attention lately. Integral repre-
sentations have been given for it and even its closed
form expression has been found by Hostler and Pratt.”
We shall write the matrix element (2) in terms of the
Fourier transform of the Green’s function and use for
this an integral representation originally derived by
Schwinger.8-?

The general Green’s function (defined in the complex
Q plane cut along the positive real axis) can be written
in the form of the eigenfunction expansion

G(ry, 11;Q) = S [un (o) un*(11) /(En—D) ] (3)
Therefore (2) is equivalent to®
M=s-8'— Z [sd/sli () +s:5i T () ], (4)
L
where
H,'j(ﬂ) =1 // uo*(rz)Pg,G(rz, I, Q)
X Pyjitg(r1) drydrs, (5)
and @y, Q are given by
W =Eytwtie=— | Ey | +wtie,
92=Eo"w= - ! Eq) l -—w. (6)

§D. H. Constantinescu and M. Gavrila, Revue Roumaine
Phys. 12, 121 (1967).

7L. Hostler and R. H. Pratt, Phys. Rev. Letters 10, 469 (1963);
L. Hostler, J. Math. Phys. 5, 591 (1964).

8 J. Schwinger, J. Math. Phys. 5, 1606 (1964).

? Essentially the same result has been obtained also by S.
Okubo and D. Feldman, Phys. Rev. 117, 292 (1960) ; L. Hostler,
J. Math. Phys. 5, 1235 (1964), and V. G. Gorshkov, Zh. Eksperim.
iTeor. Fiz. 47, 352 (1964) [English transl.: Soviet. Phys.—JETP
20, 234 (1963) 7.

10 Depending on the method of derivation one may consider
either (2) as the primary result and (4) its consequence, or vice
versa.
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Because of the rotational invariance of the ground
state eigenfunction #,(r) and of the Green’s function
G, it may be shown that II;(Q) is proportional to the
unit tensor and hence

M= (s-s")M, (7
where
M=1—P(Q) —P(L), (8)
with

P(@) = 6m) [ Glrn 150 Pan(r) T
. I:Pruo(fl)] dr1 drs. (9)

Taking the Fourier transforms of the functions in-
volved, P(2) becomes

P(Q)=(3m)™* /f (P2 p1) o™ (p2) G (P2, P1; ) 200(p1)

X dpidp;, (10)

mKk 16T
G(pe, P ) = 5o

Here A=aZm and

k=iN/(2mQ)V2,  Im(2mQ)¥2>0.  (13)

The integration contour in (12) begins at p=1 (where
one should take p~*=1), runs along the real axis to a
point closely on the right of p=0, encircles the origin
in the counter-clockwise sense and runs back to p=1
on the real axis. The integral representation (12) then
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containing the Green’s function in momentum space
G(pe, p1; 9).

The calculation of the Kramers-Heisenberg matrix
element is thus reduced to the evaluation of P(Q),
which will be carried out in Sec. II.

The differential cross section for unpolarized incident
photons and arbitrary polarization of the scattered
photon, yielded by Eqs. (1) and (2), has the well
known form

do=r25(14 cos?) | M |2 dQ, (11)

where 0 is the scattering angle.
II. CALCULATION OF P(Q)
The Schwinger integral representation for the

Coulomb—-Green’s function in momentum space may
be written as!

©oH
-/; p,xdip {L(1=p%) /pIL(p2—p1) > — (pi*—2mQ) (ps*—2m) (1—p)*/8mQp] 2} dp. (12)

describes the Green’s function in the whole complex
() plane cut along the positive real axis.

The ground-state energy eigenfunction of the hydro-
gen atom in momentum space is

ug(p) = (8N°/m) V2 (p*+N2) 2. (14)

Inserting (12) and (14) into (10) and interchanging
the order of integrations, one finds :

N _ gy ieirrx (4) . j_ 1_p2
P = KR & 2 Sinm{/; P dp { p Q} e, (1)
where
B [(pz—p1)*—pi*—p*]
O T T p = im0 (16)

The integrand of Eq. (16) depends only on the variables g1, ps, pr2= | pr—p: |. Therefore one can use the inte-

gration formula'?

/ / F(p1, b2, pro) dp1 @p2=8x? / / / F(p1, po, pro) prpepre dpr dps dpro. (17)
Denoting
a=(1—p)*/4p, (18)
X2=—2mQ, (19)
one gets
(pr?—pi2—ps*) prpapre
—8r2X4 )
Q=8rX /f f (P2 T B+ (pE-E X7) (pi+ X7) P (prpaye 1 e P (20)

1 See Eq. (3’) of Ref. 8. Our Green’s function Eq. (3) has the opposite sign of the one of Schwinger.
12 See, for example, P. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill Book Company, Inc., New York,1953),

Part II, p. 1737,
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This may be expressed as
1 04 6] 1 oy
2 2 2 2) - — — X2 x? 2_2)\2X2 —_— 21
0=srtr {5 2 —arkCpaxt-a) 1 3 —[aGevp-mexd 20
where I and J are the parameter-dependent integrals
Pipepre
I, ;X2=f// dpr dps dprs, 22
O 15 X5) (p22+1?) [ X ta(p+X3) (p22+X2) 1 (p24+N2) et ?m =
D1pepra
T\ ;X2=/ff dpr dps dps. 23
O 35) (p2+1?) [ X2pr* o (p+X7) (p22+X2) P (9N P0p G (23)
Here ) and p vary in the neighborhood of aZm, whereas With the above notation we have
X2 of Eq. (19) may be a complex number.
We begin with the evaluation of I(\, u; X?). In Eq. F(po; X2) = f b [ P *4In P ]dPI
(22), the integral over the variable pi PN P1+7f— prtmy
(30)

(| 1=p2 | Spro<prt+0)
can be immediately carried out. The result is

1 +oo
/ (s 2+ ) T (B X7) dpy, (24)

~8xe
with
xn o [P
s X = /_m (P22
i C O i) (44X

X2(pr—p2)*+a(pf+X?) (p2+X?)

The symmetry of the integrand of I with respect to the
variables p; and p. has allowed us to extend the inte-
gration intervals from 0<p;, $<o to —oo<py,
p2< .

The expressions

E,=X2(prkp0)2H-a(p2+X2) (p2+X7), (26)
occurring in Eq. (25) may be written as
Ei=(X*+aX?+taps?) (pr—my) (p1—7_),
E_=(X*+aX’+apy) (prtmy) (prtr), (27)
where
_ — e X?HiaBX (p2+X?) (28)
T T X aX tapy
and
B=L(1+a)/a]”=(1+p)/(1—p). (29)

We will suppose provisionally that X2 is real positive.
This is always true for @ of Eq. (18) when p varies
along the integration contour of (12). Then whatever
P2 real, the root m; is always in the upper complex
half-plane (#1), whereas 7_ is always in the lower half-
plane (#1).

This may be evaluated by means of the residue theorem.
Indeed, the critical points of the first logarithm lie in
the upper half-plane (#1), so that one can close the
contour of integration by an arc at infinity in the lower
half-plane. The opposite can be done in the case of the
second logarithm. One finds

F(pa; X2) =2 In(iN—1) /(iNy) .
Introducing (31) into (24), one gets

(31)

_ _ﬂ-z_/'{"oo PZ
axe)_o (pR)
MX2H-aX2+ap?) +aBX (pt+X2) —ipX?

X In M X24-aX2+aps?) +aBX (p2+X2) +ip X2
(32)
The expressions
Fo=MX4aX*ap?) +aBX (p2+X2) +ipp X2, (33)
occurring in Eq. (32) may be written
F_=a(\BX) (p2—p4) (p2—p-),
Fy=a(\BX) (patps) (petp-), (34)
with
P+ =1':3X)
p—=—iX (X+BN) /(A +BX). (35)

The root p, is in the upper complex half-plane (#1),
whereas p_ is in the lower one.
Hence the integral 7 of Eq. (32) can be written

successively
(Yo P [ P—p+ Pz—p—]
= — In In a
4X2 [.m PR+l pato + potpy #1
o dutpy
=oxi In DR (36)

The integration has been performed similarly to the
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one in Eq. (30). Taking into account Egs. (35), we
get the result
2
IO\ p; X2) = I (A +BX) (u+BX) .
2X% MHBX (Ap) +X2

We have derived Eq. (37) supposing that X2>0.
We will now indicate how it can be shown that the
result is true for any X? in the complex (X?) plane
cut along the negative real axis [i.e., by Eq. (19), for
any Q in the (Q) plane cut along the positive real axis].

We first notice that the integrand of f(p.; X?2) given
by Eq. (25) is an analytic function of X2, except for a
line of critical points yielded by the equations E,.=0
[see Eq. (26)]. It is easy to see that because 1, p; are
real and &> 0, this line of critical points coincides with
the real negative axis of the (X?) plane. Next, we
remark that the integral f(ps, X?) is convergent for
every complex X2. Moreover, it can be shown that
whatever the value of ps, f(p2; X?) is also uniformly
convergent in a circular (arbitrarily big) domain
| X2|<R which does not contain a strip of finite
(arbitrarily small) width situated along the real
negative axis of the (X?) plane.

The integral f(p.; X?) is thus an analytic function
of X?in the cut (X?) plane, whatever the real value of
p2. The same is true also for the integrand of 7 (A, u; X?)
in Eq. (24). I(\, p; X?) is convergent for any complex
X?, because one can show that for | po | >, f(p2; X2)
is always of order 1/p.. Besides, I(), p; X2?) is also
uniformly convergent in any finite domain of the cut
(X?) plane. Consequently, it is an analytic function of
X? in the cut plane.

Now the right-hand side of Eq. (37) is itself an
analytic function of X?2. Therefore the equality (38)
we established for X2>0 holds by analytic continua-
tion everywhere in the cut (X?) plane. This proves our
statement.

By continuity, one sees that for complex X? in Eq.
(37) one must understand by X the square root of X?
for which

37

Re X>0. (38)

Also, the principal value of the logarithm of Eq. (37)
should be taken.

Let us now pass to the evaluation of J(\, p; X?) of
Eq. (23). Performing the integration over the variable
P12, it can be written as [see Egs. (26) and (27)7]:

. . +co pz
e W e o

g(Pﬂ; X2) dPZ,

(39)
where
7

+eo
g(pe; X¥) = f_m P2

+(r—m) 1= (pr+my) 1]} dpy,  (40)

and 7 are given by Eq. (28). We have again extended
the integration variables for p1, p2 to — o0 <py, pa<<oo.

{L(prtm) = (pr—my) 7]
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Supposing that X?>0, for any real p. we get
§(pe; X?) =2mi[ (IA—m_) 7 — (iA+my) 1],
or, taking into account Eqs. (34) and (35),
2 2 2
X {L(p2—ps) 2= (patp-)~"]
+L(petps) = (p2—p-) 1}

(41)

(42)
Then

J = —in?/4a?BX3 (X2 2NBX +82X?) (X2—p2)
X { (X2+-aX?—ap?) [ (iptpy) 71— (Gp—p-) 1]
=X L(EX+p) ™ = (i X —p) 1]}
After some elementary calculations this becomes
B w?
 da?B(148) X2
X A+X) " (p+X) 7 Dp+BX (A u) +X2T1 (44)
Equation (44) has been derived by supposing that
X?2>0. Proceeding as in the case of I(\, u; X?) of
Eq. (37), it may be shown that the result is true for
any X? in the complex (X?) plane cut along the real
negative axis.
We next need the quantities appearing in the expres-
sion for Q in Eq. (21). We will give only their final

forms obtained by noting that on account of Egs. (13),
(19), and (38), we have

(43)

T\ u; X%

k=\/X, (45)
and that @ and 3 are given by Egs. (18) and (29). Thus
A p
(amﬂ)x=u T X141’ (46)
w° p(1—0p)
_—— , 47
s = Xo (10t () (1—59) 4
(0_{) _ 4 Pk =6+ (1407
MNaww X407 (1—p)(1—8p)2
(48)

0% 8mrlp?
(a_xSL)H T X (140" (1) (1=kp)?
X[ (1 —«)2024 (14k)2(142c—242) p+ (1+x)¢]. (49)
In the above, we have set
E=[(1—x)/(1+x) T (50)
Introducing Eqgs. (46)-(49) into Eq. (21), one finds
32t k¢ pPL(1—k)2p—3(1+x)?]
TN (0 - (-t
Carrying now Q into Eq. (15), we obtain

(S1)

&5 eiﬂ:

PO =128 s 7 sinmn

©+)
[l P (1) dp. (52)
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P(Q) can be expressed in terms of the Gauss hyper-
geometric function oF;. Indeed there exists the following
integral representation’:

il'(c) e~
T'(a)T(c—a)2sinma

(0+)
X [
1

provided that Rec> Rea. This allows us to rewrite
P(Q) in the final form

P(Q) =128[x5/ (14x)8(2—k) ] 2F1(2—

2F1(ay b: c E) ==

p*H(1—p) o (1—£p) 2 dp, (53)

K, 4: 3_"; S);

(54)
with £ given by Eq. (50).

Using well-known properties of the hypergeometric
function we will give some equivalent forms to our
result in Eq. (54), which will be needed in Sec. III.
Firstly, one can write!41

P(Q)=[2e/(14«)2(2—k) ] F1(1, —1—k,3—k; £).
(SS)
Thens
P(Q) =3[«/(2—K)J2F[1,4,3—x; £/(§—1)].  (56)

Finally, one can express P(Q2) by means of a series
expansion in (1—£). To this end we use the formula
for the analytic continuation of a hypergeomertic
series of variable £ to a series of variable (1—§). It
should be noted that in our case the oF; function ap-
pearing in (55) has an integer difference between the
third parameter and the sum of the first two. Using
the adequate formula of analytic continuation for this
case," one finds

P(@) = 2 K2(1+5(x1-};r 7:;+11x3)
+5 Gt =)+ -9
- B e
X [¢<p+1) - (;1:; + m+11_x et p-{—i—x)]'

(57)

Here m is an integer which may be taken equal to 0
or 1. In writing (57) we have taken into account Eq.

13 See for example: A. Erdélyi, W. Magnus, F. Oberhettinger,
and F. Tricomi, Higher Transcendental Functions (McGraw-Hill
Book Company, Inc., New York, 1953), Vol. I, p. 114; Eq. (3)
and p. 60. This work will be referred to in the following as HTF.

Y HTF, p. 105, Eq. (2).

16 This result has been originally derived by the author using
in Eq. (9) the Coulomb-Green’s function in closed form found
by Hostler and Pratt (Ref. 7).

8 HTF, p. 105, Eq. (3).

u HTF p. 110, Eq (12) See also p. 16, Eq. (10).
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(50) and

&\ (2=«
34 , 2 (1—g)rmie,
=0 P!
The arguments of the powers involved are fixed by
|arg(1—§) | <=, |argt|<m. (58)

III. DISCUSSION OF ANALYTIC RESULT

Now that P(Q) is determined, Eq. (8) yields the
matrix element M by specializing the values of Q. In
this section we shall consider the expression of M in
different limiting cases and make a comparison with
previous results. The photon energy will be measured
subsequently in Z2X Rydberg units setting

k=[w/(N/2m)]=(w/Z*Ry). (59)
We shall designate by subscripts 1 and 2 the values
of « and ¢ corresponding by Egs. (13) and (50) to
Q, Q2 of Egs. (6).

There are two distinct cases to be discussed: 0<k<1
and 1<k< ».

If the photon energy is below the photoelectric threshold
(0<k<1), « is positive real and
x=1/(1—k)¥2, 0<tu<1. (60)

As regards «,, it is positive real for all values of %
(0<k<®) and

ISK1<°°)

ke=1/(1-4Fk)12, 12 k>0, 0<£<1. (61)
For 0<%.<1 we have
12> 3V2, 0<£,<0.029437. (62)

The values of x; and &, being real, M itself is real.

Formula (2) discloses the existence of singularities
of the matrix element for k=1—(1/#%), =2, 3,
These singularities are nonphysical, a consequence of
the neglect in the theory of the finite width of the energy
levels. When M is expressed as in Eq. (8) they are
contained in P(Q4), which, on account of (55), has
simple poles at k=2 and k=3, 4--+ (that is, 3—ix =
0, —1, —2, --+). Between two consecutive poles, for
increasing values of x;, P(Q) increases from —o to
~+ o, whereas M decreases from 4o to — o passing
through zero [P({:) varies slowly in the interval].

We shall now consider the expansion of M in powers
of k. At the same time this will yield a procedure for
determining the negative order sum rules for the
hydrogen atom.

Starting from Eq. (9) for P(2) and making use of
(3), (6), and (60), it is not difficult to see that we can
write the expansion

P(@) =} i S(—p)k?,

containing the negative order sum rules for the hydro-
gen atom
f n0

[1 (Eo/Eo) I

(63)

S(—p)= (64)
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Here fn is the oscillator strength of the transition
0—n. By introducing the result (56) for P(Q) into
(63) and taking into account (60), it follows that

[2(1 k)11 oFy(1, 4, 3— (1—F) 1%
—[1—(1—E) " R/a(1—E) )= 35 S(—p)k». (65)
=0

Expanding the left-hand side of this equality into
powers of %, one obtains the expression of the sum rules
to any negative order. It is apparent that the series
(65) converges for k< 2.

Dalgarno and co-workers*!® have given general
methods for the calculation of sum rules and have
derived the values of S(—p) up to p=6. We have
checked these values by the procedure outlined above
and have calculated further®®

S(= 1) = ]
oo mum
S 9= S
-l
Similarly, one can write for P(Q) the expansion
P@) =13, S(=p) (=1, (67)

which has the same coefficients as (63) and is con-
vergent for £<1. Combining (63) and (67) according
to (8) and taking into account that .S(0) =1, one gets

M=—3 S(—2p) k. (68)

M vanishes like &2 for £—0.

The case 0<%k < £ has been considered also by Mittle-
man and Wolf.5 They write the matrix element as in
our Eq. (8) and derive an alternative exact expression
for P(Q), following a method of Schwartz. In order to
establish the connection between their result and ours,
we remark that for 0<k<4$, & and «p satisfy the in-
equalities Re(3—k)> Re(2—«)>0. This allows us
to use in both cases a standard integral representation
for the hypergeometric function occurring in Eq.
(54),2 so that

P

(14x)®

1
P(Q) =128 [ p=5(1—Ep)= dp.
0

18 A. Dalgarno, Rev. Mod. Phys. 35, 522 (1963).
18 This calculation was carried out by Mrs. V. Florescu.
20 HTF, p. 59, Eq. (10).
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Changing the integration variable according to

_ 14+« t—«
1—k 4«
P(Q) transforms into the expression given by Mittle-

man and Wolf:
B it 1""1/K>" ~1—t2/x2(1+t/x>“
P(m_16<x2—1)2(1+1/x RCETT VI

If the photon energy is above the photoeleciric threshold
(1<k< ), K is positive imaginary and

=1/ (k—1)12, o> |k | >0, [&] =1. (69)

For increasing values of %, & moves on the unit circle
centered at the origin of the £ plane, in the counter-
clockwise sense, starting from é=1fork=1 (| k; | —>),
passing through £=—1 for k=2 (x1=17) and returning
to £=1 for k= (| x1 | —0). The situation is presented
in Fig. 1.

As already mentioned, &2 is given by (61); above
the threshold we have

V22> >0,

The imaginary value of ¥k makes P(%;), and there-
fore also M, complex. This is connected to the fact
that when £>1, absorption of the photon may take
place by photoeffect.

We now show that the imaginary part of M can be
expressed in terms of elementary functions. Indeed,
noting that

P

0.029437< < 1.

*
K" = —Ki,

E1*=1/£1,
one has
ImP () = { P () —[P(Q) J*}/2i
B 51_2[21‘71(1, —1—k1, 3—x1; &)
(1+#1)2(2—x1)
. 2F1(1, —14x1, 34k 1/51)]
(=mta | 0
The square bracket in Eq. (70) may be transformed

il

\

B | k=4-2/2)
of

¢, al A N
(k=2) o (k=13 k=00)

-4
D

(k=4+2/2)

F16. 1. Position of variable & given by Egs. (50) and (69) in
complex £ plane for different values of k.
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using the formula of analytic continuation of a hyper-
geometric series of variable £ to a series of variable
1/¢£.2 Hence,

6dr exp(—=7 | k)
Q) =— —
ImP( 1) 3 \1—K12>:4l 1——6Xp(—-2’n’ | K1 ])
I—Kl)z]n
- , (11
x [ (1+K1 ()
with
1—K1 2
— . 72
“E { (1+xl) } < (72)
Defining
n=1/(k—1)"1P= —ix, (73)
one has, on account of (72),
1_ 2
arg {— (1+:) } = —7-+4 arctany L.
Therefore, because P (Qy) is real,
ImM = — ImP (%)
6 —4 t 1
. 7 exp[ —4q arctany (1/9) ] (14

(1+)®  1— exp(—2m)

This agrees with the result yielded by the optical
theorem.$

We shall determine next the value of M at the
threshold 2=1. This corresponds to x;—icc so that
we are interested in the expansion of P(£;) in powers
of 1/k1. Because & varies in the neighborhood of 1,
expression (57) should be used with m=0.

For the term in the second line of Eq. (57) we note
that on account of (58) we have

fa=[(1—w)/(1+K) I
= exp[ —4 | «1 | arctany (1/] #1 )]
=e*4+0(1/x?),
and that the asympiotic expansion of Y (—«;) reads?
V(=) =In| | —in/2+0(1/k).

The series contained in the third line of Eq. (57)
can itself be expanded in powers of 1/ki, yielding to
lowest order

> =r(=0)+0(ki7), (75)
p=0
where
1
In order to calculate T(o) we remark that?
14p—
vptn =c+ [ o2 ()

2HTF, p. 107, Eq. (34) and p. 105, Eq. (14).
2 HTF, p. 47, Eq. (7).
% HTF, p 16, Eq. (13).
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where C is the Euler constant. Introducing (77) into
the series expansion of 7(z) and interchanging the
sum and the integral, one finds

7(2) —e’( C-I—/ (ﬂZt——:Ll dt)

—e (e+ 5550

k=1

(78)

This may be expressed in terms of the exponential
integral Ei(z);

Ei(z) = /me——jdu=—C— Inz— i — (79)

. U = k(kY)
where the principal value of the logarithm is to be
taken. Thus

7(2) =eInz+Ei(z) . (80)

Consequently,*
7(—4) = Ind+ ReFy(—4) ] (81)

Summing up the contributions to P(;) one gets
the result

P(Q) =1{224+64[c* ReLy(—4) ]} +iStmet

+0(x™), (82)

containing the first term of the asymplotic expansion
of P(%) in 1/k.?® The imaginary part of Eq. (82)
agrees with the one obtained from Eq. (74). Using
the tabulated value e* ReE;(—4)=—e¢*Fi(4)=
—0.3595520, the real part of P(2;) at the threshold is

ReP () = —0.3371095. (83)

The value of P(Q) at the threshold (ke=21V2,
Q2= —X\2/m) can be readily obtained from (55). One
finds

P(—\2/m) =0.259629. (84)

Combining (83) and (84), we find the threshold value
of

ReM =1.077480. (85)

For the imaginary part of M one finds from (82)
or (74)
ImM = —1.227526. (86)

We consider finally the expression of M for large
values of k. This corresponds to | x1|, x2—0, so that
one must expand P(Q) in powers of . As £ varies in
the neighborhood of 1, Eq. (57) for P(Q) should again
be used, this time with m=1.

The expansion of the term in the first line of Eq.
(57) is immediate. In the case of the term in the second

24 7(z) is uniform; for <0 one has
Inz+ Ei1(z) =In | 2 |[+ReE;(z) =In | 2 |—Ei( |z |).
% The next term can be shown to be
(1/x:2) (§{122+320[¢* Re E1 (—4) 1} +im (320/9) )40 (x:79).
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line we remark that the logarithm may be written
In(1—£) = In[4«/(14«)?]
= In| | +(Ind+ie) —2(x—4e2) +-0(s3),

where, because of (58), ¢=m/2 for k=« and ¢ =0 for
k=rxy. Moreover, the expansion of y(1—«) reads?

Y(1—k) =—C—{(2) k=5 (3) +0 (),

where { is the Riemann function. Finally, the expansion
of the series of Eq. (57) in powers of « is

o]

Y. =—[(1+C) +(5-+8C) k+(17428C) #+4+0(13) ]

=0

Summing up the contributions to P(Q), one obtains
P(Q) =3[ —3x*+16654 (—23+32 Ind4+32ip) S
— (16-+32¢(2) )6+ (101 —32 Ind —32¢ (3) —32ip)sd
+328(1—=«®) In [« [JHO(&* In |« |). (87)

When combined with Egs. (69) and (61), the pre-
ceding result gives the expansions in powers of 1/ for
P(%) and P(s). The resulting expression for M is

161 32141
M=t 3 =3 n

3 ks
16 [7-+4¢(2)J(1—i) 64 9—16 In2—2¢(3) —2ir
3 k7/2 3 k4

L )

3 (88)

Because this expansion is slowly convergent it can be
applied with good accuracy only for large values of
k.27 The imaginary part of M in Eq. (88) agrees to the
order considered with the one derived from Eq. (74).

IV. NUMERICAL COMPUTATION

We now briefly describe the computation of the
matrix element M in Eq. (8). This has been done by
summing the series of the hypergeometric functions
oF1 occurring in the expressions for P(9;) and P ().
Different equivalent expressions for P(Q2) had to be
used on different intervals of 2 in order to ensure as
rapid a convergence as possible to the series involved.
The module of the error with which P(Q;), P(2), and
M were computed is less than 10~7. For larger Z values
and higher photon energies this is much smaller than
the corrections of a physical nature (relativity and
retardation) affecting Eq. (2).

2% HTF, p. 45, Eq. (5).

27 Tt should be remembered, however, that the dipole approxi-
mation limits the validity of the calculation to k<K1/aZ. Indeed
the retardation corrections are of order (aZk)2.
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We begin by considering the computation of P(Qi).
If 0<k<L1, P() presents an infinite number of reso-
nances for k=1—(1/%?), n=2, 3, +--. We have com-
puted P(Q1) up to the fourth resonance k<24/25. We
did not approach too closely the resonances because
then Eq. (2) breaks down (due to the neglect of the
finite width of the energy levels). For the interval con-
sidered, the computation of P(Q;) was based on Eq.
(55) combined with Eqgs. (60) and (50). Indeed for
k<24/25 we have £<4/9, so that the hypergeometric
series occurring in Eq. (55) converges rapidly.

If 221, P(Q) is complex and we have computed its
real and imaginary parts up to £=350. As already men-
tioned in this case the variable & moves on the unit
circle of the complex £ plane as shown in Fig. 1. Its
position on the circle is decisive as to which of the
alternative expressions of P(Q;) should be used.

The threshold value of 2=1 corresponds to the
point £=1, which is a critical point of the hypergeo-
metric function occurring in Eq. (55). This case has
to be handled analytically, which yields the values
given by Egs. (85) and (86).

It is apparent that for & on the arc BCD of Fig. 1,
we have | £/(5—1) | <1, so that the hypergeometric
series of Eq. (56) is convergent. Because the series is
rather slowly convergent near the points B (k=1.172)
and D (£=6.828), we have used Eq. (56) to compute
P(2y) only for 1.30<%<5.00.

To determine P(Q;) outside this interval, we have
used Eq. (55), expanding the hypergeometric function
it contains about a suitably chosen point. This can be
done by taking into account the general formula

© b - »
oFa(a, b, c; ) = (1—z) ot > %p0p (Z 20)

p=0 Cplp 1"'Z0

XZFI(C_—"IB C_b’ C+?; ZO) ) (89)
where 2 is arbitrary; the series converges if | z—2y | <
| 1—2|. The functions oFi(c—a, c—b, c+p; 2) can
all be determined by the recurrence relations for con-
tiguous hypergeometric functions from the first two
(with p=0 and p=1).

Taking z=1, 2=§, a=1, b=—1—x;, and ¢=3—x
in Eq. (89), we get the series expansion of the hyper-
geometric function occurring in (55) about point
z=1 which is convergent provided that | §—i | < V2.
This series was used for evaluating P(®) on the in-
terval 1.05<%<1.40 corresponding to & in the neighbor-
hood of point B, on arc ABC.®

A similar procedure was applied for the interval
4.00<%<50, corresponding to £ in the neighborhood
of point D(z=—1%) on arc CDA.®

28 There is an overlap between this interval and the one con-
sidered before (1.30<k<5.00). The values obtained for P(Q;)
in their common region by the two procedures agreed within less
than 1077 in module, thus testing the accuracy of the calculation.
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From Eq. (74) it is easy to compute ImP(Q) =
— ImM. This can then be compared with the values

obtained by the methods described above. The agree-.

ment is within less than 1077 in absolute value.

As regards the computation of P(Q), this is much
simpler because according to (78), we have 0<£&<1
whatever the value of %, so that the computation can
be based entirely on Eq. (55). -

Some of the results of our computation are listed in
Tables I and I1.2390nly the valuesof the matrix element
M are reported here. The general behavior of the matrix
element is the one to be expected from a qualitative
consideration of Eq. (2). We mention in the following
some particular features. ’

Below the threshold, for small values of %, the results
of Table I are, as they should be, in complete agree-
ment with the ones yielded by the series expansion
(68). Between every two consecutive resonances, the
matrix elements and the cross section vanish for a
certain k. The first successive values of £ for which this
happens are 0.859075, 0.926875, and 0.954935.

TaBrLE I. Matrix element M for 0<k<1.

k M k M
0.000 0.000000 0.830 1.230596
0.040 —0.001804 0.840 0.853766
0.080 —0.007269 0.850 0.451533
0.100 —0.011419 0.860 —0.054939
0.120 —0.016553 0.870 —0.879559
0.160 —0.029936 0.880 —3.150374
0.200 —0.047843
0.240 —0.070882 0.890 32.260389
0.280 —0.099907 0.89%4 7.418436
0.300 —0.117022 0.898 4.313409
0.320 —0.136117 0.902 3.043218
0.360 —0.181213 0.906 2.312466
0.400 —0.237667 0.910 1.803441
0.440 —0.309189 0.914 1.394717
0.480 —0.401605 0.918 1.021148
0.500 —0.458448 0.922 0.628449
0.520 —0.524625 0.926 0.136127
0.560 —0.695805 0.930 —0.667435
0.600 —0.950750 0.934 —2.906862
0.640 —1.375285 0.936 —8.169314
0.680 —2.246993
0.700 —3.177142 0.938 27.981406
0.720 —5.303624 0.940 6.145775
0.740 —15.763602 0.942 3.630968

0.944 2.593248
0.760 15.382871 0.946 1.978565
0.770 7.538338 0.948 1.529699
0.780 4.890397 0.950 1.143898
0.790 3.535672 0.952 0.755875
0.800 2.691623 0.954 0.287687
0.810 2.094936 0.956 —0.441666
0.820 1.629203 0.958 —2.278530

® The less accurate numerical results reported by Constanti-
nescu and Gavrila (Ref. 6) agree within their estimated errors
with those of Tables I and II. The agreement is good also with
the values obtained for 0<k<0.750 by Mittleman and Wolf
(private communication). See also Ref. 5 and 6.

% The complete results are contained in M. Gavrila, Joint
Institute for Laboratory Astrophysics, Boulder, Colorado Report
86, 1966 (unpublished).
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TasrLE II. Matrix element M for 1 <k <50.

k ReM  (—ImM)
1.000 1.077480  1.227526
1.200 1.187203  0.901823
1.400 1.221606  0.690007
1.600 1.226119  0.544400
1.800 1.218422  0.440031
2.000 1.205980  0.362705
2.400 1.178284  0.258045
2.800 1.153045  0.192414
3.200 1.131855  0.148635
3.600 1.114414 ~ 0.118025
4.000 1.100074  0.095814
4.400 1.088218  0.079209
4.800 1.078335 ~ 0.066483
5.200 1.070027  0.056525
5.600 1.062083  0.048593
6.000 1.056961  0.042179
6.400 1.051774  0.036922
6.800 1.047276  0.032563
7.200 1.043349  0.028910
7.600 1.039900  0.025821
8.000 1.036855  0.023187
18,400 1.034152  0.020924
8.800 1.031741  0.018965
9.200 1.029582  0.017261
9.600 1.027641  0.015768
10.000 1.025888  0.014455
12.000 1.019235  0.009774
14.000 1.014885  0.006997
16.000 1.011880  0.005226
18.000 1.009713  0.004032
20.000 1.008097  0.003193
24.000 1.005887  0.002126
28.000 1.004482  0.001503

32.000 1.003530  0.001111

36.000 1.002856  0.000850

40.000 1.002359  0.000668

44.000 1.001983  0.000537

48.000 1.001691  0.000439

50.000 1.001569  0.000400

From Table IT one sees that above threshold, Rel/
is always close to 1 presenting a slight maximum at
k=1.548. ImM is negative and decreasing in absolute
value. The resulting | M [ is a monotonically decreasing
function of £; the maximum of ReM is prevented from
manifesting itself because of the rapid decrease of
ImM. At threshold | M [* =2.667783. For large values
of k, | M |? slowly approaches the value 1.3t

Our computation extends to £=50. At high energies
formula (88) for M can be used with good accuracy.%
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“1In contrast to this, when taking into account retardation,
|91 |2 of Eq. (1) tends to zero as k—o for all scattering angles
except for forward scattering.



