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An exact analytic expression is derived for the Kramers-Heisenberg matrix element describing the elastic
scattering of photons by a hydrogen atom in the dipole approximation. The method followed consists in
writing the matrix element in terms of the Coulomb-Geld Green's function in momentum space and using
for this an integral representation originally derived by Schwinger. Various integrations then yield the
matrix element in terms of a hypergeometric function of the Gauss type 2FI with parameters and variable
depending on the photon energy. Different limiting cases are considered. Finally, a very accurate numerical
computation of the result is reported. The procedure used in the computation was to sum the series expan-
sions of the hypergeometric functions occurring in the different equivalent conveniently chosen forms of
the matrix element. The results presented cover all values of the photon energy.

I. MATMX ELEMENT

" 0%-ENERGY elastic scattering of photons by
- -~ atoms is dominated by Rayleigh scattering from
bound atomic electrons. The differential cross section
for this process is given by'

where rp=e'/rN, ' and OR is the Kramers —Heisenberg
matrix element' equal in the case of a single atomic
electron and the dipole approximation to

5K= S' S

(s' P)p-(& P)-o (s P)p-(&' P)-o
E„(Ep+co+is) —E„(Ep—co)—

Here ~ denotes the energy of the elastically scattered
photon, s and s' are its initial and 6nal polarizations,
P is the momentum operator, E„are the energy eigen-
values of the hydrogen atom and Eo is the energy of
the ground state. The infinitesimal positive quantity ~

prevents the occurrence of a singularity when co&
~

Ep ~.

In spite of its considerable age, there have been few
attempts to evaluate the Kramers —Heisenberg matrix
element, even in the simplest case of a hydrogen atom.
Thus for values to«

~
Ep ~, Podolsky and later Dalgarno

and Kingston4 have calculated the first terms of the
expansion of SK in powers of eo. Mittleman and Wolf, '
following a method of Schwartz, have given an evalua-
tion of 5R for values of eu up to the 6rst resonance
co(-,s

~
Ep ~. More recently, Constantinescu and the

' W. Heitler, The Quanta Theory of Radiation (Oxford Uni-
versity Press, New York, 1954},p. 192.' We use the natural system of units, such that A = v = 1; then
e2Z =uZ.

3 H. A. Kramers and W. Heisenberg, Z. Physik 31, 681 (1925).
4B. Podolsky, Proc. Natl. Acad. Sci. (U.S.) 4, 253 (1928);

A. Dalgarno and A. E. Kingston, Proc. Roy. Soc. (London)
A259, 424 (1960). These calculations actually refer to the re-
fractive index of hydrogen n, the quantity 5R/oP being propor-
tional to n' —1.

~M. H. Mittleman and F, A. Wolf, Phys. Rev. 128, 2686
(1962).

l6$

Therefore (2) is equivalent to"

OR = s s' —Q Ls,'s;II s(Qi) +s.;s/II;t(Qs) j,

II "(0)=rtt ' ups(rs) Ps&(rs, ri, II)

and Q~, 02 are given by
X+liup(ri) drl drs (3)

(2t=Ep+co+ze = —
I Ep I +co+ze,

Qs=Ep —co = —
i

Ep [
—to. (6)

'D. H. Constantinescu and M. Gavrila, Revue Roumaine
Phys. 12, 121 {1967).' L. Hostler and R. H. Prat t, Phys. Rev. Letters 10,469 {1963);
L. Hostler, J. Math. Phys. 5, 591 (1964).

8 J. Schwinger, J. Math. Phys. 5, 1606 (1964).
~Essentially the same result has been obtained also by S.

Okubo and D. Feldman, Phys. Rev. 117, 292 (1960);L. Hostler,
J.Math. Phys. 5, 1235 (1964),and V. G. Gorshkov, Zh. Eksperim.
i Teor. Fiz. 47, 352 (1964) LEnglish transL: Soviet. Phys. —JETP
20, 234 (1965)g.' Depending on the method of derivation one may consider
either (2} as the primary result and (4} its consequence, or vice
versa.
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author' have evaluated the matrix element for all
values of ~ by an approximate method.

In the present work we shall 6rst derive an exact
analytic formula for the Kramers —Heisenberg matrix
element by means of expressing it in terms of the
Green's function for the Coulomb field. This has
received considerable attention lately. Integral repre-
sentations have been given for it and even its closed
form expression has been found by Hostler and Pratt. ~

We shall write the matrix element (2) in terms of the
Fourier transform of the Green's function and use for
this an integral representation originally derived by
Schwinger. ~9

The general Green's function (defined in the complex
0 plane cut along the positive real axis) can be written
in the form of the eigenfunction expansion

G(rs, ri, &) = S Lu„(rs) u *(ri)/(E„—&)j. (3)
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5R=(s s')3I,

with
M =1—P(Q1) —P(Q2), (8)

cause of the rotational invariance of the ground
sta d of the Green's functionstate ei enfunction uo(r) an o e

h II"(Q) i p po tio l tG, it may be shown t at
unit tensor and hence

(&)

s function in momentum spacecontaining t e reens

framers-Heisenberg matrixThe calculation o
element is t us re uce to the evaluation of ( ) &

hich will be carried out in ec.
The differential cross section for u pun olarized inci en

rar olarization of the scattered
photon, yielded by Eqs. (1) and 2, as e we
known form

P(Q) = (3m) ' G(r2, ri, Q) [P2u() (r2) j"
d =,'-', (1+ cos'0)

)
M i2 dQ,

~ [Piu() (ri) ]dri dr2. (9)

Taking ek' th Fourier transforms of tthe functions in-
volved, P(Q) becomes

p(o) =(sm) f(p'pOa"'(p)o(p, pap as

X &yi dP2, (10)

where 0 is the scattering angle.

11. CALCULATION OF P((Q))

The Schwinger integral represenresentation for the
Coulom — reen s0 u ' function in momentum space may
be written as"

~gim. a (0+)SEK
~ n~=

2sr X 2 slnsrK
-'—( ' —2mQ) (p ."—2mQ) (1—p)2/8mQp] 2} dp. (12p

—"—
f [(1—p') /pj[(P2 —p, ) -'—pi —m

dp

Here ) =+Zan and

.=2 /(2mQ) 't', Im(2mQ) 't2& 0. (13)

e
' ' '

(12) begins at p = 1 (whereThe integration contour in,
runs along the real axis to aone should take p "= „

ri ht of p=o, encirces epoint closely on the rig p —, e
kwise sense and runs ac o p=in the counter-clock

on the rea axis.1
'

The integral representation ( )

describes the Green's function in the wwhole complex
~ ~

gen atom in momentum space is

.( ) =(»'/ ')'t'(p'+~')-' (14)

Inserting 1 ant 2t d (14) into (10) and interchanging
the order of integrations, onene 6nds

where

22 X4 2e'aa ("+' d 1 —p

3 2 siii ' dp p

[(p —p)' —p' —p'j
'—2mQ) (P22 —2mQ) (1—p) '/8mQp)2 (P12+X2) '(p2'+~') '[(p2 —pi) '—pi' m— (16)

~(Pl& P2y P12) dP1 dP2 ~(Pity P21) P12) P1P2P12 dP1 dP2 P12.

12=
~ pi —y2 ~. Therefore one can use the inte-(16) de ends only on the variables pi, p2, p12= pi —p2 . erThe integrand of Eq. g16~ epen s on

gration formula"

(1&)

Denoting
~ = (1 p)'/4p, — (18)

one gets

X2= —2mQ,

(P P1 P2 ) PIP2P12
2 2 12 g2 2'+"')'L&'p '+ (pP+&') (ps'+&') j'(pp

(2o)

h th o posite sj.gn of the one oC[. P
~eee, o, . 1)d H. Feshbach 3fethods of Ttteoretico sysscs'2 See, for example, P. Morse and H. es ac,

part II, p. 17372
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(21)
g2J1 ~~

L (Xz—X') '—2~ X ~ 4' BMp &=~
~+(X+ X'- + ra~

This may be exp

g2I—8~'X2Q

alsthe parameter-d p}erel and J ar

(22)

endent integr

dpz dp»~
pzpzp»

dpz z»)
p+X )j(p"++(p'+~' ,+ (pz+X')(Pz

g(y „;X')=

notation we haveab ove no

p pz zl+ y ln dP1'
pz —zr-In, +zr+pl Pz+~

hborhood of ~Zm& whereasvary in the neig

(22) the mtegral o

(30)

p
dPy dP2 dP»'. . . p+X)(p'+X') j"y(~, „x')= J (p,'+g')Lx')' +'

(I P~
—

Pz I &P»&p~+Pz

f(pz X') dpz,8Xz — (Pz'+zz')

&(p; X') =
+ pi
-- (Pi'+~')

can e
' '

1 carried out. The result iscan be immediately carrie ou .

(31)

of the residue theorem.ated by means of t e re
f th 6 tlo rith

is
oints o e

se the
d d the critica p

pp -p" P

half-plane. The opp
second g

'
ne 6nlo arithm. One Gn s

z X') =2zri In(i) —zr i

(31) into (24), one getsintroducing,f
a z' n X(Pzz+X') iPzX'—

X'(Pz Pz) + (P

of I with respect to theg
bles pz and pz has a owe nd

als from 0(pz, pzgration interva s x

pz& ao.
The e

m'z +~ pzzz ' zz+Xz)z) '+a(pz'+X') (pz
d (25)

(32)

E~——X'( g& pz) '+a(pp+X') (pzz X',
o . (25) may be wntten asoccurring in q.

E = (X'+nX'+npz') (pz zr+

withE = (Xz+nX'+nPzz) (Pz+zr+
p+=iPX,

(35)p = —zx(XyP~)/(X+PX).

m lex half-plane (pq),the upper comp exhe root p+ is in

Hence the integral o
successively

where

Xz&znpX(pz'+X')
X'+aX'+a pz'

and

a)/aj'"=(I+~)/(1 —~ .

Fg=X(Xz+nX'+aPzz) +nPX(Pz'

E . (32) maybe writtenoccurring in Eq. m ten

=n(~+PX)-(Pz —I+) (Pz I—
P.= (~+pX) (p.+~.) (p

~ ~

vis t X' is real positive.visionally t aWe wiII suppose provis'
aries}ways true for n 0This is aw

m }ex
a ong "g

h Io h If-
alwa s in

whereas zr is always inhalf-plane (pz, w crea
plane (p)).

(36)
izz+p+

, ln .2X zp p

d similarly to thee
'

has been perforn1e simThe integration has e
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Re X&0. (38)

Also, the principal value of the logarithm of Kq. (37)
should be taken.

Let us now pass to the evulzzatiozz of J(X, Zz; X') of
Eq. (23). Performing the integration over the variable
Piz, it can be written as [see Eqs. (26) and (27) j:
J=[16iaPX2] '

(p 2+ 2) (p 2+X2)

+CO

g (P2, X') = —, , I [(Pi+zr )
—'—(Pi—zr+) 'j

p 2yy2

+L(p —-) ' —(p+ +) 'ji ~p (4o)

and zr~ are given by Eq. (28) . We have again extended
the integration variables for pi, p2 to —~ &pi, p2&~.

one in Eq. (30). Taking into account Kqs. (35), we
get the result

zr2 (X+PX) (Zz+PX)
372X' Xp+PX(7,+p) +X'

We have derived Eq. (37) supposing that X2)0.
%e will now indicate how it can be shown that the
result is true for any X' in the complex (X') plane
cut along the negative real axis [i.e., by Eq. (19), for
any Q in the (Q) plane cut along the positive real axis).

We first notice that the integrand of f(p2, X') given
by Kq. (25) is an analytic function of X', except for a
line of critical points yielded by the equations E+——0
[see Eq. (26) ). It is easy to see that because Pi, P2 are
real and n&0, this line of critical points coincides with
the real negative axis of the (X') plane. Next, we
remark that the integral f(P2, X') is convergent for
every complex X'. Moreover, it can be shown that
whatever the value of p2, f(p2, X') is also uniformly
convergent in a circular (arbitrarily big) domain
~

X' ~&R which does not contain a strip of finite
(arbitrarily small) width situated along the real
negative axis of the (X') plane.

The integral f(P2, X') is thus an analytic function
of X' in the cut (X') plane, whatever the real value of
p, . The same is true also for the integrand of I(li, zz; X')
in Kq. (24) . I(X, zz; X') is convergent for any complex
X', because one can show that for

~ P2 ~

—&~, f(P2,. X')
is always of order 1/p2. Besides, I(X, zz; X') is also
uniformly convergent in any 6nite domain of the cut
(X') plane. Consequently, it is an analytic function of
X' in the cut plane.

Now the right-hand side of Eq. (37) is itself an
analytic function of X2. Therefore the equality (38)
we established for X'&0 holds by analytic continua-
tion everywhere in the cut (X') plane. This proves our
statement.

By continuity, one sees that for complex X' in Eq.
(37) one must understand by X the square root of X'
for which

Supposing that X2)0, for any real p2 we get

g(P2, X') =2zri[(ili —zr ) '——(i7+zr+) 'g (41)

or, taking into account Eqs. (34) and (35),
2zr X2+~X2+ezP22

g 2, X') = —. '+ P +P''
X I[(P2—P+) '—(P2+P ) 'j

+[(p2+P+) ' —(p2 —P-) 'jI (42)
Then

J= z~2—/40t2PX2 (X2+2XPX+P2X2) (X'—zzz)

X ((X+ X'—zz) [(ip+p+) (i—p p—) '5

X—'[(iX+p+) ' —(i—X p—) 2jI
— (.43)

After some elementary calculations this becomes

7r2

JX, p, ;X2 =
4 V(1+~)X'

X (X+X) '(zz+X) 'P p+PX(li+zz) +X2+'. (44)

t' O'I 2x' p

X (1+.) 4 [1 kPj2 '—
2' p(i —p)

2X'(1+~)' (1+P) (1—
&P)

'

t()J) 4zr2 p2[z(1 —z) p+ (1+&)2j

&84, „X'(1+)' (1-P') (1-kP)'
(48)

(
82J & 8m'p'

X'(1+~)"(1—P') (1—8 ) '

X[2 (1—z)'P+(1+a) (1+2m —2a)P+(1+~) j. (49)

In the above, we have set

5=L(1—~)/(1+~) 3'. (50)

fntroducing Eqs. (46)—(49) into Eq. (21), one finds

32zr' 2A p'[(1 —z) 'p —3 (1+~)'j
&' (1+~)" (1—P') (1—&)' (51)

Carrying now Q into Eq. (15), we obtain

(0+)
P' "(1 b~) dP (52-)

KS g%Ãg

P(Q) =128
(1+~)2 2 sinzr~

Equation (44) has been derived by supposing that
X2)0. Proceeding as in the case of I(X, zz, X') of
Eq. (37), it may be shown that, the result is true for
any X' in the complex (X') plane cut along the real
negative axis.

We next need the quantities appearing in the expres-
sion for Q in Eq. (21). We will give only their final
forms obtained by noting that on account of Eqs. (13),
(19), a,nd (38), we have

~=X/X, (45)

and that a and P are given by Eqs. (18) and (29) . Thus
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Z, '(1—3)"=5" '
pt

The arguments of the powers involved are Axed by

) arg(1 —g) ) &m, [ argg j
&m.. (58)

iI'(c) e'-
sFt(a, b, c; &) =—

I'(a) I'(c—a) 2 sins a

.P(Q) can be expressed in terms of the Gauss hyper- (50) and
geometric function 2F&. Indeed there exists the following
integral representation":

o '(1—p) '(1—kp) 'dp, (53)

provided that Rec& Rea. This allows us to rewrite
P(Q) in the 6nal form

P(Q) =128Las/(1+a)'(2 —«) $ sFt(2 —~, 4) 3—e) (),
(54)

with $ given by Eq. (50) .
Using well-known properties of the hypergeometric

function we will give some equivalent forms to our
result in Eq. (54), which will be needed in Sec. III.
Firstly, one can write""

P(Q) =$2a'/(1+~)'(2 —a) j sFt(1, —1—a, 3—a; $).

(55)
Then"

P(Q) =sL~/(2 —K)jsFtL1~4 3 —~;5/(5 —1)j (56)

Finally, one can express P(Q) by means of a series
expansion in (1—$). To this end we use the formula
for the analytic continuation of a hypergeomertic
series of variable $ to a series of variable (1—P). It
should be noted that in our case the 2F~ function ap-
pearing in (55) has an integer difference between the
third parameter and the sum of the first two. Using
the adequate formula of analytic continuation for this
case,"one finds

2 a (1+So+7m'+11~')
P(Q) =—

64+ — $' Lg(pn —~) + ln(1 —])j3 (1—as)s

64 as(1 —a) ~ (2 —a)~
, Z '(1-~)

3 (1+~)' „~ p!

1 1 1
X 4'(p+1) —

I + " +
Lm —~ m+1 —z p+I —)

(57)

Here m is an integer which may be taken equal to 0
or 1. In writing (57) we have taken into account Eq.

'3 See for example: A. Erd61yi, W. Magnus, F. Oberhettinger,
and F. Tricomi, Higher Trunscendental Functions (McGraw-Hill
Book Company, Inc. , New York, 1953), Vol. I, p. 114; Eq. {3)
and p. 60. This work will be referred to in the following as HTF.' HTF, p. 105, Eq. (2).

'~This result has been originally derived by the author using
in Eq. (9) the Coulomb-Green's function in closed form found
by Hostler and Pratt (Ref. 7).

's HTF, p. 105, Eq. (3).
»HTF, p. 110, Eq. (12).See also p. M, Eq. (10).

1)its)-,'v2) 0&)s&0.029437. (62)

The values of a~ and ~2 being real, M itself is real.
Formula (2) discloses the existence of singularities

of the matrix element for k=1—(1/ns), n=2, 3, ~ ~ ~ .
These singularities are nonphysical, a consequence of
the neglect in the theory of the finite width of the energy
levels. When M is expressed as in Eq. (8) they are
contained in P(Qt), which, on account of (55), has
simple poles at at=2 and ~t ——3, 4 ~ ~ ~ (that is, 3—Kt ——

0, —1, —2, ~ ~ ~ ). Between two consecutive poles, for
increasing values of Iq, P(Qt) increases from —oo to
+~, whereas M decreases from +~ to —~ passing
through zero LP(Qs) varies slowly in the intervalj.

%e shall now consider the expansion of M in powers
of k. At the same time this will yield a procedure for
determining the negative order sum rules for the
hydrogen atom.

Starting from Eq. (9) for P(Q) and making use of
(3), (6), and (60), it is not dificult to see that we can
write the expansion

P(Q, ) =-; g S(—p)k, (63)

containing the negative order sum rules for the hydro-
geIl RfAlTl

" L1—(&»/&s) j" (64)

III. DISCUSSION OF ANALYTIC RESULT

Now that P(Q) is determined, Eq. (8) yields the
matrix element M by specializing the values of Q. In
this section we shall consider the expression of M in
diQerent limiting cases and make a comparison with
previous results. The photon energy will be measured
subsequently in Z'XRydberg units setting

k =
t co/(X'/2pn) j= (co/Z'Ry) . (59)

We shall designate by subscripts 1 and 2 the values
of a and $ corresponding by Eqs. (13) and (50) to
Qr, Qs of Eqs. (6).

There are two distinct cases to be discussed: 0&k&1
and 1&k& .

If the photon energy is betoto the photoelectric threshold
(0&k&1), a& is positive real and

K1=1/(1—k)"' 1(Kt& ao
) 0&(t&1. (60)

As regards ~2, it is positive real for all values of k
(0&k& oo) and

«s =1/(1+k) 'i' 1&~s) 0, 0 &Ps& 1. (61)

For 0&k&1 we have
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1+K t K
P=

1 K t+K

Here f„o is the oscillator strength of the transition Changing the integration variable according to
0 +-n .By introducing the result (56) for P(Q) into
(63) and taking into account (60), it follows that

p2(1 —k)'I' —1y'2'(1, 4, 3 —(1—k) "'
—L1—(1—k)'"j'/4(1 —k)'")= Z S(—peak" (65)

Expanding the left-hand side of this equality into
powers of k, one obtains the expression of the sum rules
to any negative order. It is apparent that the series
(65) converges for k& 4.

Dalgarno and co-workers " have given general
methods for the calculation of sum rules and have
derived the values of S(—p) up to p=6. We have
checked these values by the procedure outlined above
and have calculated further'9

9 243 157

2 654 208

289 165 453

63 700 992 ' -',V2& ~'&0, 0.029437 &$g & 1.

F(Q) transforms into the expression given by Mittle-
man and Wolf:

F(Q) =16
g~ t'1 —1/g)" " 1 p/fp—t'\ yt/g)"

(z' —1)' &1+1/~) g (1+t)4 &1 t/—~j

If the photon energy is above the photoelectric threshold
(1&k& CC ), ~& is positive imaginary and

Kg=i/(k —1)'~' ~ & [ ~z I &0, [ Pz [
=1. (69)

For increasing values of k, $q moves on. the unit circle
centered at the origin of the $ plane, in the counter-
clockwise sense, starting from )=1fork=1 (~ zq

~
-+~),

passing through f= —1 for k =2 (~q=i) and returning
to )=1 for k~~ (I ~x

~
~0) . The situation is presented

in Fig. j..
As already mentioned, ~2 is given by (61); above

the threshold we have

S(—9) = 45 464 213 273

7 644 119 040
'

7 175 468 425 411
S —10 =

9i'7 294 284 800

Similarly, one can write for F(Q2) the expansion

(66)

The imaginary value of ~z makes F(Q&), and there-
fore also M, complex. This is connected to the fact
that when k&1, absorption of the photon may take
place by photoeffect.

We now show that the imaginary part of M can be
expressed in terms of elementary functions. Indeed,
noting that

F(Q2) =2 Z S(—p) (—k)', one has

Ki = Ki) 4*=1/$i,

which has the same coeKcients as (63) and. is con-
vergent for k&1. Combining (63) and (67) according
to (8) and taking into account that S(0) =1, one gets

ImF (Q~) = {F(Q~) —LF (Q~) j*}/»
Ky 2Fy(1, —1—

Ky, 3 Kg,
'

$y)

i (1+xg) '(2 —~g)

M =—Q S(—2p) k'".
@=1

(68)

"A. Dalgarno, Rev. Mod. Phys. 35, 522 {1963).
'9 This calculation was carried out by Mrs. V. Florescu.
"HTF, p. 59, Kq. (10).

M vanishes like k' for k—4.
The case 0&k& 4 has been considered also by Mittle-

man and Wolf. ~ They write the matrix element as in
our Eq. (8) and derive an alternative exact expression
for F(Q), following a method of Schwartz. In order to
establish the connection between their result and ours,
we remark that for 0&k& —,', ~& and ~2 satisfy the in-
equalities Re(3—~) & Re(2 —~) &0. This allows us
to use in both cases a standard integral representation
for the hypergeometric function occurring in Eq.
(54) P' so that

gs 1

P(Q) =128 p' "(1—$p)~dp.
(1+~)'

2Fz(1) —1+~g, 3+~g, 1/$g)
(70)

(1—~g) '(2+ zg)

The square bracket in Eq. (70) may be transformed

8 R=a-~)

(4 =2)

A

(k=1; k =co)

E

D
(4=4&2jF)

Pro. 1. Position of variable (1 given by Eqs. (50) and (69) ID
complex g plane for different values of k.
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using the formula of analytic continuation of a hyper-
geometric series of variable $ to a series of variable

1/$ "Hence,

exp( —~I K, I)
ImP(Qi) =—

(1—Ki')'1 —exp(-»! Ki I)

where C is the Euler constant. Introducing (77) into
the series expansion of r(s) and interchanging the
sum and the integral, one Ands

'expI s(t—1)g—1
r(s) =e* —C+ -dtI

jj

(78)

with This may be expressed in terms of the exponential
integral Ei(s);

arg
1+Kij Co g " (—s)"

Ei(s) = dl = —C—lns —Q, (79)
g I i=i k(k!)De6ning

(73)rt =1/(k —1) '"= —i Ki,
where the principal value of the logarithm is to be
t:aken. Thusone has, on account of (72),

(1—Ki'1 '
a,rg —

I I

= —m+4 arctano zt '.
(1+Klj

Therefore, because P(Qz) is real,

ImM = —ImP (Qi)

rtz expL —4rt arctanz (1/zt) g

(1+rtz) ' 1—exp( —2zri1)

This agrees with the result yielded by the optical
theorem. 6

We shall determine next the value of M at the
threshold k=1. This corresponds to ~~—+i~ so that
we are interested in the expansion of P(Qi) in powers
of 1/Ki. Because fi varies in the neighborhood of 1,
expression (57) should be used with m=0.

For the term in the second line of Eq. (57) we note
that on account of (58) we have

r(s) =e'Dns+Ei(s) ].
Consequently, '4

(81)r( —4) =e 4gln4+ ReEi( —4) j.

P(Qi) = zI22+64I e 4ReEi( —4)]I+i eee-zre 4

+O(Ki ') (82)

containing the first term of the asymptotic expansion
of P(Qi) in 1/Ki." The imaginary part of Eq. (82)
agrees with the one obtained from Eq. (74). Using
the tabulated value e ' ReEi( —4) = e4Ei(4) —=
—0.3595520, the real part of P(Qi) at the threshold is

ReP (Qi) = —0.3371095. (83)

Summing up the contributions to P(Q, ) one gets
(74) the result

= expL —4 I Ki I ar«ane (1/I Ki I) j
=e

—4+0 (1/Kiz),

and that the asymptotic expansion of f(—Ki) reads"

f(—Ki) = 111
I Ki I

—izr/2+O(1/Ki) .

The series contained in the third line of Eq. (57)
can itself be expanded in powers of 1/Ki, yielding to
lowest order

The value of P (Qz) at the threshold (Kz
——zV2,

Q'= —Xz/m) can be readily obtained from (55). One
Finds

P (—Xz/m) =0.259629. (84)

ReM = 1..077480.

For the imaginary part of M one finds from (82)
or (74)

(86)ImM = —1.227526.

Combining (83) and (84), we find the threshold value
of

where

Q =r( 4)+O(Ki ')—
y=o

g1I(P+1) „
p=0 P.

In order to calculate r(s) we remark tha, t"
ip —j

1t (P+1) =C+ dt,
0 S—I

HTF, p. 107, Eq. (34) and p. j.05, Eq. (14).
"HTF) p. 47, Eq. (7).
"HTF, p. 16, Eq. (13).

(75)

(76)

(77)

We consider finally the expression of 3f for large
values of k. This corresponds to I Ki I, Kz-+0, so that
one must expand P(Q) in powers of K As $ varies . in
the neighborhood of 1, Eq. (57) for P(Q) should a,gain
be used, this time with m=1.

The expansion of the term in the 6rst line of Eq.
(57) is immediate. In the case of the term in the second

-"'7 {s) is uniform; for s(0 one has

1nz+Eq(z) =1n
I

z I+ReEq(z) =1n
I

z
I
—E1(

I
z I) .

'~ The next term can be shown to be

(1/KP) (${122+320ge 4 ReEi( —4)j1+ (3204/z9)e 4)+O(Ki 4).
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Q = —
I (1+6)+(5+8C)«+ (17+28C)«'+0(«') j.

Summing up the contributions to P(Q), one obtains

P(Q) = sp[«' -3«4+—16«P+ ( 23+—32 in4+32i(p) «P

—(16+32((2) )«r+ (101—32 ln4 —32$(3) 32ip—)«'

+32«P(1—«') ln I « Ijyo(.P;.P ln
I

« I) (87)

When combined with Eqs. (69) and (61), the pre-
ceding result gives the expansions in powers of 1/k for
P(Qi) and P(Qs). The resulting expression for M is

16 1 32 1+i 32 iver

M =1+———— + ——
3 k~

16
I 7+4' (2) j(1—i)

3 PPt'

64 9—16 ln2 —2f(3) 2ipr—

3 k'

256 ink
+O(k Pl'; k Pi'ink). (88)

3 k'

Because this expansion is slowly convergent it can be
applied with good accuracy only for large values of
k.'r The imaginary part of M in Eq. (88) agrees to the
order considered with the one derived from Eq. (74).

IV. NUMERICAL COMPUTATION

%e now brieQy describe the computation of the
matrix element M in Eq. (8). This has been done by
summing the series of the hypergeometric functions
sFt occurring in the expressions for P(Qi) and P(Qs).
Different equivalent expressions for P(Q) had to be
used on diferent intervals of k in order to ensure as
rapid a convergence as possible to the series involved.
The module of the error with which P(Qi), P(Qp), and
3f were computed is less than 10 '. For larger Z values
and higher photon energies this is much smaller than
the corrections of a physical nature (relativity and
retardation) affecting Eq. (2).

line we relnark that the logarithm may be written

ln(1 —$) = 1nL4«/(1+«) 'j
= ln

I
« I +(ln4+iy) —2(«—tz«') +O(K ),

where, because of (58), pp=z/2 for K= Kt and q =0 for
«=«s. Moreover, the expansion of P(1—«) reads"

iP(1 —«) = —C—f (2) « f(—3) «'+O(«'),

where f is the Riemann function. Finally, the expansion
of the series of Eq. (57) in powers of « is

We begin by considering the computation of P(Qi).
0 0(k(1, P(Qi) presents an infinite number of reso-
nances for k=1—(1/tP), v=2, 3, . We have com-
puted P(Qi) up to the fourth resonance k&24/25. We
did not approach too closely the resonances because
then Eq. (2) breaks down (due to the neglect of the
finite width of the energy levels) . For the interval con-
sidered, the computation of P(Qi) was based on Eq.
(55) combined with Eqs. (60) and (50). Indeed for
k&24/25 we have pi(4/9, so ths, t the hypergeometric
series occurring in Eq. (55) converges rapidly.

If k&1, P(Qi) is complex and we have computed its
real and imaginary parts up to k =50. As already men-
tioned in this case the variable $t moves on the unit
circle of the complex $ plane as shown in Fig. 1. Its
position on the circle is decisive as to which of the
alternative expressions of P(Qi) should be used.

The threshold value of k=I corresponds to the
point )=1,'which is a critical point of the hypergeo-
metric function occurring in Eq. (55). This case has
to be handled analytically, which yields the values
given by Eqs. (85) and (86).

It is apparent that for $t on the arc BCD of Fig. 1,
we have

I $i/($t —1) I &1, so that the hypergeometric
series of Eq. (56) is convergent. Because the series is
rather slowly convergent near the points 8 (k =1.172)
and D (k =6.828), we have used Eq. (56) to compute
P(Qi) only for 1.30&k(5.00.

To determine P(Qi) outside this interval, we have
used Eq. (55), expanding the hypergeometric function
it contains about a suitably chosen point. This can be
done by taking into account the general formula

a„b„ fz zp "—
pFt(a, b, c;z) =(1—zp)~" 'Q.~ c.1, &1—zp

XsFt(c—a, c b, c+p; zp), —(89)

where zc is arbitrary; the series converges if
I

z zp I

I
1—zp I. The functions zFt(c —a, c b, c+p; zp) c—an

all. be determined by the recurrence relations for con-
tiguous hypergeometric functions from the first two
(with p=0 and p=1).

Taking zp i, z=$——, a=1, b= —1—«t, and c=3—«i

in Eq. (89), we get the series expansion of the hyper-
geometric function occurring in (55) about point
zp i which ——is convergent provided that

I (t i
I
&P2-.

This series was used for evaluating P(Qi) on the in-
terval 1.05 &k & 1.40 corresponding to b in the neighbor-
hood of point 8, on arc ABC.~

A similar procedure was applied for the interval
4.00&k&50, corresponding to $i in the neighborhood
of point D(zp —— i) on arc—CDA. Ps

26 HTF, p. 45, Eq. (5).
» Q, should be remembered, however, that the dipole approxi-

mation limits the validity of the calculation to k«1/nZ. Indeed
the retardation corrections are of order (~Zk) '.

~ There is an overlap between this interval and the one con-
sidered before (1.30&k&5.00). The values obtained for P(01)
in their common region by the two procedures agreed within less
than 10 ' in module, thus testing the accuracy of the calculation.
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TABx.z I. Matrix element iV for 0&k&1.

0.000
0.040
0.080
0.100
0.120
0.160
0.200
0.240
0.280
0.300
0.320
0.360
0.400
0.440
0.480
0.500
0.520
0.560
0.600
0.640
0.680
0.700
0.720
0.740

0.760
0.770
0.780
0.790
0.800
0.810
0.820

0.000000—0.001804—0.007269—0.011419—0.016553—0.029936—0.047843—0.070882—0.099907—0.117022—0.136117—0.181213—0.237667—0.309189—0.401605—0.458448—0.524625—0.695805—0.950750—1.375285—2.246993—3.177142—5.303624—15.763602

15.382871
7.538338
4.890397
3.535672
2.691623
2.094936
1.629203

0.830
0.840
0.850
0.860
0.870
0.880

0.890
0.894
0.898
0.902
0.906
0.910
0.914
0.918
0.922
0.926
0.930
0.934
0.936

0.938
0.940
0.942
0.944
0.946
0.948
0.950
0.952
0.954
0.956
0.958

1.230596
0.853766
0.451533—0.054939—0.879559—3.150374

32.260389
7.418436
4.313409
3.043218
2.312466
1.803441
1.394717
1.021148
0.628449
0.136127—0.667435—2.906862—8.169314

27.981406
6.145'?75
3.630968
2.593248
1.978565
1.529699
1 ~ 143898
0.755875
0.287687—0.441666—2.278530

"The less accurate numerical results reported by Constanti-
nescu and Gavrila (Ref. 6) agree within their estimated errors
with those of Tables I and II. The agreement is good also with
the values obtained for 0&k&0.750 by Mittleman and %'olf
(private communication). See also Ref. 5 and 6.' The complete results are contained in M. Gavrila, Joint
Institute for Laboratory Astrophysics, Boulder, Colorado Report
86, 1966 (unpublished}.

From Eq. (74) it is easy to compute ImP(Qr) =
—ImM. This can then be compared with the values
obtained by the methods described above. The agree-.
ment is within less than 10 ~ in absolute value.

As regards the computation of P(Q..), this is much
simpler because according to (78), we have 0(gs(1
whatever the value of k, so that the computation can
be based entirely on Eq. (55) .

Some of the results of our computation are listed in
Tables I and II.'O' Only the values of the matrix element
M are reported here. The general behavior of the matrix
element is the one to be expected from a qualitative
consideration of Eq. (2). We mention in the following
some particular features.

Below the threshold, for small values of k, the results
of Table I are, as they should be, in complete agree-
ment with the ones yielded by the series expansion
(68). Between every two consecutive resonances, the
matrix elements and the cross section vanish for a
certain k. The 6rst successive values of k for which this
happens are 0.859075, 0.9268'I5, and 0.954935.

TAB&,E II. Matrix element M for 1 &k &50.

Re 3I (—Im M)

1.000
1.200
1.400
1.600
1.800
2.000
2.400
2.800
3.200
3.600
4.000
4.400
4.800
5.200
5.600
6.000
6.400
6.800
7.200
7.600
8.000

. 8.400
8.800
9.200
9.600

10.000
12.000
14.000
16.000
18.000
20.000
24.000
28.000
32.000
36.000
40.000
44.000
48.000
50.000

1.077480
1.187203
1.221606
1.226119
1.218422
1.205980
1.178284
1.153045
1.131855
1.114414
1.100074
1.088218
1.078335
1.070027
1.062983
1.056961
1 ' 051774
1.047276
1.043349
1.039900
1.036855
1.034152
1.031741
1.029582
1.027641
1.025888
1.019235
1.014885
1.011880
1.009713
1.008097
1.005887
1.004482
1.003530
1.002856
1.002359
1.001983
1.001691
1.001569

1.227526
0.901823
0.690007
0.544400
0.440031
0.362705
0.258045
0.192414
0.148635
0.118025
0.095814
0.079209
0.066483
0.056525
0.048593
0.042179
0.036922
0.032563
0 ' 028910
0.025821
0.023187
0.020924
0.018965
0.017261
0.015768
0.014455
0.009774
0.006997
0.005226
0.004032
0.003193
0.002126
0.001503
0.001111
0.000850
0.000668
0.000537
0.000439
0.000400
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where the numerical computations reported here were
carried out.

"In contrast to this, when taking into account retardation,
~

Srt ~' of Eq. (1) tends to zero as k~ ~ for ail scattering angles
except for forward scattering.

From Table II one sees that above threshold, ReM
is always close to 1 presenting a slight maximum at
k=1.548. ImM is negative and decreasing in absolute
value. The resulting

~

M ~' is a monotonically decreasing
function of k; the maximum of ReM is prevented from
manifesting itself because of the rapid decrease of
1m' At threshold

(
M )' =2.667783. For large values

of k, ( M ~' slowly approaches the value 1."
Our computation extends to k=50. At high energies

formula (88) for M can be used with good accuracy. '~
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