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interesting questions such as: How do the particles move
relative to the core?

The answer, moreover, leads to a global description
0'f the IlonI'csoriRnt lntcl Rctlon Rnd provides thc foundR-
tion for physical deductions. There is nothing false about
the local approach, nor is there any inconsistency in de-
scribing the motions of Ã paltlclcs with lcspcct to s

diferent coordinate systems —but this approach is
hardly conducive to physical comprehension.
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A class of static, axisymmetric, interior solutions of Einstein's Geld equations in general relativj, ty is
obtained. The solutions are physically reasonable, and can be interpreted as sources for eyl and Levi
Civita's general exterior solution that is Qat at infinity, by making the metric components and their deriva-
tives continuous at the boundary of the matter. I'or a particular model, a correlation is exhibited between the
structure of the source material and the exterior Geld, which resembles closely, but not exactly, that of the
corresponding Newtonian model.

S INCE Einstein's equations are nonlinear differential
equations of the second order, problems arise in the

physical interpretation of general relativity which have
no counterpart in Newtonian theory. The problem
considered here is that of establishing a correlation
between the angular dependence of the field quantities
at large distances from the source, and the actual dis-
tribution of source material.

This is, of course, trivial in Newtonian gravitation
because of the linearity; the IQultipole structure of the
linearized gravitational field in general relativity and
its relation to a source distribution has also been
cxhlbltcd. Thc concept of IQultlpolc IQoIQcnt ls far
from clear in Einstein's theory and although there arc
various studies of asymptotic multipole moments, ' '
these are within a framework of a formalism not easily
adapted to examination of source distributions.

This paper deals with the static case only. A class of
interior solutions is examined and is matched with
Weyl and Levi-Civita s general exterior solution which
is Qat at in6nity.

where t is the timehke coordinate, r, s, and q are the
spacelike coordinates, I and k are functions of r and 2'

only, Rnd r=0 is the axis of symmetry.
The empty space-time field equations are then
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is the Sat-space Laplacian operator in cylindrical polar
coordinates. Then the solutions for which e and k
vanish at inlnity may be written in the form

ss= —Q a„p—&"+'V' (cos8),

Weyl and Ievi-Civitas showed that a static axi-
syIQmetric vacuum solution of Einstein's gravitational
field equations may always'. be put into the canonical
fOl'IQ
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k= —g g a)a (l+1)(sss+1)(i+ra+2)-'
l,eaM

r=p»n&, z=p cose, P (coso) are Legendre
polynomials and the e 's are arbitrary constants.

For this form of k, a Minkowskian tangent space
will exist at all points on r=o away from the origin;
the singularity in the line element at these points is a
coordinate one.
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2. THE INTERIOR SOE,UTION

It is assumed that the exterior solution represents
space-time outside an isolated body whose boundary is
p=d, where d is a constant. Interior solutions can now
easily be constructed which may, but need not, be
axisymmetric or static. In this paper, however, only
axisymmetrie and static interior solutions are
investigated.

Inside the boundary of the body a possible choice for
I and k ls

'R={)0

u= Q -'{(2n+1)(p/d)' —(2n+3))a p"d '"+' P—

The eigenvector corresponding to (1) is tinmlike, and
the other three eigenvectors are spacelike. Under the
conditions of symmetry assumed here, it would not be
reasonable to require the material of the body to con-
stitute a perfect Quid; it will be assumed merely that
the material is physically reasonable, so that the three
spacelike eigenvalues, corresponding to pressures or
stresses, are required to be much smaller than the time-
like eigenvalue, corresponding to density. This is
achieved if, for every ss, u d ('+"' is small.

The condition that the density of matter be positive
is that

k = —Q Q a)a„(1+1)(m+1) (l+n)+2)—'
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Then, the four eigenvectors X and eigenvalues X of the
energy tensor defined by
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where p is an integer &~ 3.
For this choice, the components of g, g and their first

partial derivatives are continuous across the boundary
p=d. If the appropriate series converge, then e and k
will be regular on the boundary of the body and there-
fore regular everywhere.

The nonzero components of the energy tensor are

I with (t,r, s, s) = (x',x',x',x') and e=1]

This inequahty, which must hold throughout the
volume in which matter is present, may be satis6ed in
various ways by the constants e„,n &~ 0. One possibility
is that a„=0 for n)0 and a,/d is positive an{i suS-
ciently small; this is discussed in the next section. If
u„=0 for all e&E, where E is a positive integer, then
the inequality will certainly hold if u„&~ 0 for n&~ E and
it is possible for some u„'s to be negative.

3. A SPECIAL CASE

In this section, the particularly simple case is dis-

cussed in which ao) 0, a„=0 for all n&0, an{i p=4.
The four eigenvalues of T,q may now be written as

4{{=e'" "(6ao/d' 15ao'r'/O' —Bags'/d'+—3aos/d'),

X,s= 'h2){ =e' —"(1 {r'+s')/—d') 3a(P/d',

X,){=e =s'(15aosr2/de+3a ss'/de-3a, '/d4),

where the three spacehke eigenvectors, corresponding
to ) &, X2, and. X3, are now in the r, s, and q directions,
respectively. )~ is always positive, and represents a
tension; similarly, ) 2 is always negative and represents
a pressure. The density given by Xo can be seen to be
greatest on the axis of symmetry, r=0. It is then to be
expected that pressures exist near the axis r =0 in the
q direction; this is eonhrmed by the expression for X3.

There are various methods for studying the shape of
the body. A "radar distance" may be calculated by
emitting photons from the origin of coordinates and
allowing them to travel to the surface of the body and
back agMn.

Thus for a null geodesic s=O, q =const, whose r, k

equation is determined by
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the time taken for the round trip is (with c= )
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Similarly, for r=O, +=const,
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Therefore the radar radius is greater along the axis of
symmetry than in the equatorial plane.

Another possible comparison is of proper distances
measured along geodesics in a spacelike surface 3= const.
Both the axis of symmetry r=0, /=const, and any
radial line s=O, y=const, /=const, are geodesics to
which this comparison may be applied.

Along the axis of symmetry,

ds—ds=
ds

1 Co 1 80 (+o
~3ao/2dd 1 + +0

6d 40 d kd

For any radius in z= 0

1 +o 11(ao) (&o)~
I.=e'on"d 1————

(
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This comparison agrees with the previous one: I is
greater along the axis of symmetry than for any radius
in s=0.

Schwarzschild's solution can be transformed into
these coordinates and compared with this case: The
transformation is given by

e'"= 1—2m/p',

e '"=1+(m' sin.'8')/(p" —2mp'),

r = sin8' (p"—2mp')'~',

s= cos8' (p' —m),

t=t',
where (t',p', 8', y') are the coordinates for the Schwarz-
schild line element:

ds' = (1—2m/p') dt" —(1—2m/p')-'dp"
p" (d8"+sin'8'd q ")—

The equipotentials, which are the 2-spheres p'=const,
become

&2p'-&(p' —2m)-'+s'(p' —m)-'= 1

then the first curvature is de6ned by

C= iC'C f"'

~P ~P P

=d-'Ll —2 (ao/d)+-3 (ap/d)'(1+ sin'8)+0 (ap/d)'].

Again, a calculation by Levy' of the timelike geodesics
of the exterior metric, and consideration of the peri-
helion precession, indicates that dynamically the
central body must be oblate, with quadrupole moment
+sao.

The following table summarizes the estimates of the
shape of the central body which have been made up
to now, together with two additional estimates de-
pending on the distribution of density and of the sum
of eigenvalues:

Radar from center:

Spacelike distance:

Distribution of density:

Planetary motion:

Curvature of boundary '.

Comparison with Schwarzschild's
solution:

Distribution of the sum of eigenvalues:

Prolate;

Prolate;

Prolate;

Oblate;

Oblate;

Oblate;

Oblate.

These eGects are all of the second order of smallness
in (a,/d) except the last one, which is of the third order.

Since the distribution of gravitational mass un-
equivocally determines the planetary perihelion motion,
these contrasting results suggest that neither the time-
like eigenvalue of T,y nor the sum of the eigenvalues
is as reliable an indicator of the grueitutioeu/ mass
density as has, up to now, sometimes been thought.

6 H. Levy, doctoral dissertation, University of London, 1966
(unpublished).

which are "ellipsoids" of revolution about the s axis,
with serniaxes of coordinate length (p' —m) and
p'(1 —2m/p')'". As p')2m, the coordinate distance
along the axis of symmetry is always greater than the
coordinate radius in s=O.

Since 2-spheres appear prolate in these coordinates,
the boundary of the interior solution under consider-
ation, which is a coordinate 2-sphere, must in fact be
oblate.

This result is in agreement with a calculation of the
first curvature of a line y=const on the coordinate
2-sphere. If

d2$ dx dg
C = — -+Fg,~

ds ds ds



163

Finally, the mass of the body, dined either by

p2To dp or M= Ape,

where dQ is the proper volume element, has the value

M =d[(ao/d)+0(ao/d)'j.

4. GEN'ERALIZATIO5'

If other terms besides ao are nonzero, the eigen-
vectors (2) and (3) will not point in the r and s direc-
tions, respectively, but @rill be slightly displaced.

If u~/0, then its e8ect will be that of introducing a
dipole moment, and the plane z=0 will no longer be a
plane of symmetry for the body.

A physically interesting situation is that where only
ao and u2 are nonzero, and further ao'd a2. The effect
of the a& is that of altering the quadrupole moment.
From the calculation of planetary perihelion precession'
it can be seen that, for the central body to be oblate, a2

must be negative in sign. It is reasonable to expect,
therefore, that by making u2 suQiciently negative, one
may change the result of the methods of investigation
which indicate that the body is prolate and, at the same

time, leave the conclusions of the other methods
unchanged.

The radar radius along the axis of symmetry is

T=d[1+ (8/3) (gp/d)+ (18/5) (gp/d)'+-', (ap/do)

+0(ap/d)'j,
and in the equatorial plane

2'= dL1+(8/3) (ao/d)+ (33/1O) («/d)' —
o (a /d')

+o(ao/d)']

Thus, if ao( —(3/20)ap'd, this method indicates that
the body is oblate.

A similar conclusion is reached, if ao( —(3/10)«'d,
when comparing the proper distance along the axis of
symmetry with the proper distance along any radial
line z=0, q =const, /=const.

The comparison with Schwarzschild's solution does
not depend on the sign of u2, and the reasoning con-
cluding that the body is oblate is the same as in Sec. 3.
%'hen the 6rst curvature, however, is calculated for a
line q=const on the 2-sphere t=const, p=d the
opposite conclusion is reached:

C=d-'[1—2( o/d)+-', ( /d)'(1+ i '8)
—4(ao/d')Eo(cos9)+0(a, /d)'j.

B ao( —(1/4)ap'd, the body appears prolate.
This is not as surprising a result as it may seem at

6rst. The erst curvature is that of the coordinate
2-sphere /=const, p=d; this 2-sphere is not an equi-
potential as in the Schwarzschild case, and thus need
not represent the gravitational shape of the body.

The eigenvalue Xo corresponding to the density (1) is

Xox=6aod '—3ao'd '[5—(p/d)'j
+70p d ~aoPo(cos0) —12aood p sin 0+0(g /d)o

Then, if ao( —(4/35)good, the result of this method
will change, and it will indicate that the body is oblate.

The last method considered, that of determining the
distribution of the sum of eigenvalues of T,g, becomes
a second-order effect if a2/0, and suggests that the
body is oblate if a& is negative.
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