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A method of determining exactly the general-relativistic effective potential for a given nongravitational
central potential is presented by a formalism based on the extended Hamilton-Jacobi theory of point-
particle mechanics to the general-relativistic gravidynamics. The general result is applied to the Newton-
gravitational, Coulomb-electrostatic, and Yukawa-nuclear potentials to give further insight. A numerica&
estimate is made for the gravitational effect superimposed on the original, nongravitational, central potential.

for a given nongravitational 4-force f" with a central
character, ' is equivalent to that found by solving the
corresponding Newtonian equation of motion given by

mo d'r/dt'= —8&.. (2)

Here mo is the proper mass of the moving point-particle,
c is the special-relativistic photon speed in vacuum,
(X,pp} is the Cllrlstoffel three-index symbol in the
coordinate system x" (X= 1, 2, 3, 4) defined by the in-
variant hne element d$ of the form

(3)

ln thc Riemannian space-tlD1cq Rnd the suIIlmatlon
convention is adopted here and henceforth. The first
three coordinates (x',x',x') represent the spatial co-
ordinates, and x' represents the pure-imaginary time-
coordinate defined by x'=acct. The coordinate time t is
regarded as the Newtonian time in this theory. Thus,
Eq. (3) reduces to the corresponding Lorentz form,
d$2=dP —c2dP, with its spatial part dI2 if the gravita-
tional source vanishes. Ke call the space-time defined

*Research supported in part by the U. S. National Science
Foundation and the National Aeronautics and Space Admini-
stration.' For example, in an electromagnetic Geld, P= —ie(du/ds)F„~,
where F„ is the mixed component of the antisymmetric intensity-
tensor of the electromagnetic Geld, and e is the charge of the
moving particle.

I. INTRODUCTION'
' 'N order to develop a simpler understanding of the
~ - general-relativistic behavior of a point particle in a
nongravitational central potential field superposed on
a spherically symmetric, static gravitational field which
vanishes at infinity, a theory is developed for finding a
corresponding general-relativistic effective potential.
By "the general-relativistic cGective potential" we
mean the Newtonian-mechanical potential which gives
exactly the same orbit as that found by the general
theory of relativity. In other words, our main problem
is to find the central potential p, (r) such that the spatial
orbital equation r= r(/) obtained by solving the general-
relativistic equation of motion

d'x~ X dx" dx"
tPl OC + =f~, (&=1,2, 3, 4) (1)

d$2 p v d$ d$

by this Lorentzian line element the coordinate space-
time corresponding to Eq. (3).Then, r and 8 in Eq. (2)
represent the spatial position vector of the moving
point-particle and the spatial gradient operator in this
coordinate space-time, respectively.

Our method is based on the Hamilton-Jacobi theory,
extended to the general-relativistic gravidynamics by
using the length $ of the worldlinc as an extra parameter
in addition to the four coordinates x" (X= 1, 2, 3, 4). The
parameter $ plays a similar role to that of the time
parameter in the usual Hamilton-Jacobi theory. We can
construct the gravidynamical Hamilton-Jacobi theory
of a particle moving in a given nongravitational
potential Geld p in analogy to that of a charged point-
particle moving in an electrostatic potential field
superimposed on a gravitational field. The Hamiltonian
II of the particle is found in the following form:

H= pox" L=g""(pi, —g),'y)(p„g—„'y)/2moc'—. (4)

This is obtained by applying the Legendre transforma-
tion given by

pi,=BL/Bx = sloe g&,&x"+gi, p,
or x"=g"I"(p„g„4&)/mo—c', (5)

by using thc I Rgrangian I dc6ncd by

L—=mpc'gi, „x"x&/2+g),'x"y.

Here x"=dx"/ds, an—d we assume that the nongravita-
tional central potential p is given by the temporal
component of a four-vector potential field (0,0,0,ip) in
the particular coordinate system under consideration.
The Hamilton-Jacobi equation for the generation
function 5' is

2moc'BOW+ g"I'(Bi,W gi,'p)(B„—W g„4&)=0—, (&)

where B0—=B/Bs and Bq —=B/Bx". As is well known, the
gravidynamics of the moving particle is given by' '

BW/Bni, =P~, p), = Bi,W,
(P"=const), (X=1, 2, 3, 4),

Y. S. Hagihara, Foundations of CelestiaL Mechanics (Kawaide
Shobou, Tokyo, Japan, 1NO), Vol. 1, p. 148.

g A somewhat similar formalism to ours is seen in L. Landau and
E. Lifshitz, The Classical Theory of Fields (Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, j.951),p. 312,
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constructed from the complete solution to Eq. (7) which and therefore Eq. (12) is found in the form
is of the form

2moc 0!

W=—W(s; x',x',x',x4; n&, n2, n3,n,),

where det(B(BiW)/cjn„)&0. It should be pointed out
that the function W in Eq. (9) has the dimension of
(energy)&length) and is pure-imaginary, since ds'(0
along the worldline of the particle under consideration.

ds' = dr'/g (r)+r'dP f(r)c'dP, — (10)

where g(r))0 a,nd f(r))0 for all values of r. Thus,
Eq. (7) takes the simpler form

aw 1
(BW)'

1 /BW)'

1 BR'
—y (r) =0. (11)

f(r) Bx'

In Fq. (11), the coeKcients g(r) and f(r) ' produce the
general-relativistic eRect for the motion of the test
particle under consideration. By the general procedure
for solving the Hamilton-Iacobi equation, we look for
the complete solution tt/' in the separated form

O' =Ex'+ns+in'8+iR(r) . (12)

The three constants F, a, and a' corresponding to n), in

Eq. (9), and the one variable function R(r) must be
real in accordance with the pure-imaginary character
of the generation function 5'.

The substitution of Eq. (12) into Eq. (11) gives

(dR/dr) 2 = 2moc'n/g (r)
+(F 0(r))'lf(r)—g(r) n"lr'g(r), —(»)

C. Mgller, The Theory of Relativity (Oxford university Press,
I ond&m, 1955l, p. 323, Eq. (63)i.

II. GE5ERAL-RELATIVISTIC
EFFECTIVE POTE5TIAL

let us suppose that the given nongravitational
potential field p is static and spherically syrrunetric
about the origin of a static and spherically symmetric
coordinate system set up in a gravitational field, and
that a test particle is moving under the inRuence of this
superimposed field. Since the orbital plane of this test
particle passes through the origin (the synunetric
center), it is convenient to choose this orbital plane as
the spatial coordinate plane on which we set up a two-
dimensional polar-coordinate system (rP) Then. , the
gravidynamics of the test particle can be described by a
three-dimensional line element of the standard form4

given by

W =Ex'+ns+in'0+i dr
- g()
(E y(r))2 nI2 —I/2

f(r)g(r) r'g(r)-
(14)

Equation (14) is the complete solution of Eq. (11)
corresponding to Eq. (9). The orbital equation of the
test particle is found from one of the first set of equa-
tions in Eq. (8). It is as follows:

P=BW/Bn'=ie&in' dr(r'g(r)) '

&&L2moc'n/g(r)+(E —p(r))'/f(r)g(r) —n"/r'g(r)] '",

Since the right-hand side of Eq. (16) expresses the
special-relativistic total mechanical energy plus the
proper mass energy of the particle if the gravitation
vanishes, i.e., f(r) =g(r) = 1, it can be interpreted as the
general-relativistic total mechanical energy plus the
proper mass energy of the particle. This total energy is

conserved on the orbit, since F. in the left-hand side of
Eq. (16) was introduced originally as a constant. By
this constant of the motion, we may de6ne a conserved

quantity m characteristic to the orbit by

E~ =mc (17)

Hereafter, we call this newly dehned quantity m the
general-relativistic orbital mass of the particle under
consideration. In analogy to the velocity-dependent
mass of a particle in the special theory of relativity, we

may de6ne another mass m' by

ru'= mof (r)Pf (r) (r'2/g(r)+r'8')/c' ]
'—" (l8)

or, by putting u= 1/r and choosing the coordinate axes
so that P=O,

du iploc2n (F—y(u 1))2 n/2u2 1/2

g(u ')-g(u ') g(u
—')f(u—') g(u ')

(15)

The dimension of each of the three dynamical constants
n, n', and F. is easily obtained by comparing the dimen-
sions on both sides of Eq. (15), or Eq. (12) and the
dimension of the function 8'. For example, the constant
F.has the dimension of energy. For our later use of the
constant F., we shall find its physical meaning by the
aid of the second set of Eqs. (8) and (5). We substitute
Eq. (12) into the second set of Eq. (8) with X=4, and
refer to the first of Eq. (5). We then have

E= a,W= p.= ru, c'f(r)x4yy(r),

or, by eliminating x4 (—=dx4/ds) with Eq. (10) and de-

fining i"=dr/d1 and &=—de/d&,

E=mac'f (r) (f(r) (i'/g (r)+ r'tJ')/c—') '/'+p(r) . (16)
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m= m'+y(r)/cs. (21)

All the above results are consistent with those derivable
from another approach. s Classically, the total energy
E is a continuous function of the geometrical structure
of the orbit. However, according to the postulate of the
old quantum theory, the only orbits which can actually
be realized in nature are those satisfying the Bohr-
Sommerfeld quantum condition. ' %e will use this con-
cept of the quantized orbit in the subsequent discussion.

%'e are now in a position to find the general-rela-
tivistic effective potential P, (r) of Eq. (2) by using the
general-relativistic orbital equation given by Eq. (15),
which is the orbital solution of Kq. (1) obtained in-
directly through the extended Hamilton-Jacobi theory.
As is well known in Newtonian mechanics, the relation-
ship between the central potential p, (r) and the orbital
equation is given byv

l(l+1)h' d'0 /d8)s-
(22)

m dus kdg)

where l(l+1)ks is the square of the magnitude of the
angular momentum on the quantized orbit. Further-
more, in Eq. (22) the orbital mass m, invariant on the
orbit, is taken instead of the proper mass mo, since it is
more reasonable to take the orbital mass m in place of
the proper mass mp on the orbit in Eq. (2). Note also
that the introduction of the quantization rule is not in
contradiction with the fundamental postulate of New-
tonian classical mechanics at all. '

The substitution of Eq. (15) into Eq. (22) gives,
after a simple integration,

l (l+1)fis g(r)
s.()=-, (~-e())'

2mu" f(r)

mp l(f+\)0sc'n l(l+1)h' 1—g(r)
g(r)— (23)

2m

5 C. Mgller, Selected Problems in General Relativity Brandeis
Lectures in Theoretical Physics (W. A. Benjamin, Inc. , New York,
1960), p. 59.

6 M. Born, The Mechanics of the Atom (Frederick Ungar
Publishing Company, New York, 1960), p. 99.

7 H. Goldstein, Classical Mechanics (Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1959),p. /2, Eq. (3-34).

by using the 6rst term of Eq. (16).This mass m' varies
with both the velocity and the position of the particle
in the gravitational field. In particular, the rest mass
mo' in the gravitational Geld is given by

mp' ——mp[f(r)]'ls,

and it depends upon the position of the particle. Thus,
the gravitational potential energy g'(r) of a particle at

4'(r) ™«'(Lf(r)]'"—1) . (20)

The combination of Eqs. (16), (17), and (18) yields a
relationship between two masses m and m', given by

In order to determine the two constants n and 0,
' in

terms of the remaining constants, we now impose two
boundary conditions upon Eq. (23): (a) both g(r) and

f(r) approach unity as r ~ ~, and (b) p, (r) approaches
the special-relativistic effective potentials p(r) —p(r)'/
2mc'asr~ ~.By noting that the last term of Kq. (23)
goes to zero and the first term produces the special-
relativistic potential under the use of conditions (a) and

(b), we obtain the final form of the exact general-
relativistic effective potential given by

g(r) O(r)'-
&.(r) = 4 (r)—

f(r) 2mc'

g (r) l(l+-1)k' g(r) —1
+-,'mc' g(r) —— +

f(r) r'2m
(24)

V—Vs/2mcs= y

This is an algebraic, quadratic equation with P un-
known. Thus, V is given by the root

V(r) =mc'[1 —(1—2g, /mc')'"7 (25)

where it, (r) is replaced by Eq. (24). The remaining root
is discarded because it does not give the result V=/
when g= f=1 in Kq. (24). We should note here that
V(r) exists only in the region where the general-
relativistic effective potential p, satisfies the condition

1—2P,/mcs &~ 0.

That is, qh, (r) is no larger than one half the total energy,
including the proper mass energy, of the moving par-
ticle. The general-relativistic mechanics reduces to the
special-relativistic mechanics by using the potential
V(r) of Kq. (25) in the central-potential problem.

s Jong K. Jeen, Nuovo Cimento, Suppl. (to be published).

Note that the original potential p(r) must be repre-
sented by the functional form peculiar to the coordinate

system given by the line element of Eq. (10).The hrst
term is the special-relativistic effective potential
coupled with the Riemannian space-time structure of
the Geld. The second term, dependent upon the orbital
mass, and the third term, dependent upon both the
orbital mass and angular momentum, represent the
pure gravitational effect on the test point-particle under
consideration.

There is another kind of the effective potential, i.e.,
the special-relativistic mechanical potential V(r) which

gives exactly the same orbit as the general-relativistic
mechanical orbit of the test particle. It is found by
equating the special-relativistic effective potential
V(r) —V(r)'/2mc' to the general-relativistic effective
potential p, (r). That is,
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A. Pux'e-Gravitational Field

In this case, Eq. (24) reduces to the simpler form

g(r) 1(1+1)&'g(r) —1
4t, (r) =-',mc' g(r) —+

f(r) 2m r'
(26)

We use the Schwarzschild gravitational field (exterior)
given byg

g(r) =1—2Rp/r+-', Xrs= f(r),

where 2Ro is the gravitational radius of the spherical
mass fixed at the symmetric center (the origin of the
coordinate system), and X is the cosmological constant.
Substitution of Eq. (27) into Eq. (26) gives

mc'Rp l(1+1)k'Rp 1 Xmc'.()=- —+ r' (28)
r m r' 6

by dropping oR the additional constant produced by
the cosmological term. "The first term represents the
Newtonian gravitation, and the second term represents
the general-relativistic correction. The last term is the
cosmological correction which is negligible for terrestrial
phenomena. Unfortunately, this effective potential of
Eq. (28) does not contain the special-relativistic cor-
rection term ——', mc'(Rp/r)' of the Newtonian gravita-
tional potential.

Now let us consider the Yilmaz gravitational 6eld
given by"

g(r) = exp( —2Rp/r) =f(r).

This gives the following gravitational law'.

l(l+1)hs 1
y, (r) = —-', mc'(1 —e-'"p'") 1+

tsc r

(29)

SEC2~o PEC2+o2

r2

t (l+1)ksRp 1
+-'mc'Rp' —+.. .

3
m rs

(30)

The first two terms are in agreement with the special-
relativistic eRective potential of the Newtonian gravi-
tational potential, apart from the lack of the numerical
coefficient ~ and the opposite sign in the second term.

K. Schwarzschild, Sitzber. Berlin Akad. Wiss. 424 (1916).
This result agrees with that obtained by another method. See

A. Trautman, Lectures on General Re4ti7Jity, Brundeis Summer
Institute in Theoretica/ Physics (Prentice-Hall, Inc. , Englewood
Clips, New Jersey, 1965), p. 155, Kq. (6-96).' H. .Yilmaz, Phys. Rev. .111, 1417 (1958).

DI, APPLICATION OF THE GENERAL RESULT

We apply the general result of Eq. (24) to the three
familiar cases of the pure-gravitational, Coulomb-
electrostatic, and Yukawa-nuclear potential fi.elds.

Using the line element given by Schild, "we can obtain
a grayitational eRective potential which also contains
the-special-relativistic correction terms stated above.

y(r) = qe/r,

and the fundamental metric tensor is given by

(31)

g(r) = 1—2Rp/r+kq'/r'= f(r), (32)

where 2Eo is the gravitational radius of the particle M,
and k—=8s-G/c'=2. 073&(10 " cm 'g ' sec' with the
Newtonian gravitational constant G. The electrostatic
energy term kq'/r' is negligible at large relative dis-
tances, but is quite dominant inside of the spherical
region of radius 47rq'/3Ecs, compared to the mass energy
term 2Rp/r.

The substitution of Eqs. (32) and (31) into Eq. (24)
gives exactly the eRective potential

r r2 ra r4
(33)

where the four constants oi, (X= 1, 2, 3, 4) may be ex-
pressed in terms of the classical electrostatic radius
rp=e'/mc' and the first Bohr radius a—=k'/me' of the
moving test particle. They are as follows:

o i=—qe (1—eRp/qrp), o s—= -', q'rp (1—ke'/rp'),
(34)

o's= l(l+ 1)e 4sRp
&

o 4—=—,'kl (l+ 1)esqsu.

In Eq. (33), the oi term is the original Coulomb
potential with a small parameter correction due to the
general-relativistic effect, and the o.2 term agrees with
the special-relativistic modification, apart from the
small parametric correction. This term is always
attractive since o.2&0. The o.3 and o.4 terms are entirely
a result of the general-relativistic inQuence on the
orbital angular momentum of the moving particle.
These two terms vanish simultaneously for the ground
state of the two-particle system under consideration.
If the orbital angular momentum exists, the o.

& term
is always attractive, and the o 4 term is always repulsive.
Thus, we see that the relativistic eRect is Newtonian-
classically equivalent to adding two attractive and one
repulsive potentials to the original potential with a
small parametric correction in this central-potential

"A. Schild, Am. J. Phys. 28, 778 (1960)..
» H. %'eyl, Ann. Physik 54, 117. (1917).
"H. Reissner, Ann. Physik 50, 106 i1916l.

B. Coulomb-Electrostatic Potential Field

Next, we consider the effective potential between
two charged particles of charges (q, e) and mass (cV,m),
respectively, and assume that the particle of charge q
and mass M is at the origin of the coordinate system
given by the line element of Eq. (10). According to
Weyl'3 and Reissner, '4 in this coordinate system the
electrostatic potential p(r) takes exactly the Coulomb
form given by
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problem. In particular, the presence of the repulsive
term o4/r' proves that no two charged particles with a
relative angular momentum can adhere.

In the two-electron system, the potential of Eq. (33)
has a potential hill of height p, (ro)=~wc'(1 —280/ro
+ke'/r 0)=0.256 MeV at a distance approximately
equal to the classical electron radius ro =—e'/wc'= 2. 82

&&10 'A. There is a tremendously deep potential well
of depth = —5.6&(10"/l(l+1) MeV in the vicinity of
the distance =1.34/i(l+1)jil'&(10 "A if /&0. It is
instructive to note that the radius of the potential well
is much larger than the electron gravitational radius,
1.2)&10 4r A, which is the general-relativistic limit of
an electron size. This unusual potential well is produced
by the general-relativistic gravitational effect due to the
electrostatic energy distribution of the electron at the
origin. As is shown in Eq. (33), the general-relativistic
gravitational effect in the two-electron system is almost
negligible in the region at or beyond the distance of the
classical electron radius ro and is very dominant within
the spherical region of the radius ro if there exists a
relative angular momentum between the two electrons.
This effect shows again that the tunneling eGect allows
the possibility of a bound state between two electrons
even when they are initially in a repulsive state, just as
in the case of the special-relativistic effective potential.
Would we not explain even more the present belief in
the stable electron crystal" by a nonrelativistic quan-
tum-mechanical treatment" with the use of the effective
potential given by Eq. (33)?

equations:

',p"+—,'p'(p' -—n') —n'/r= —H "—,'ka'0-'~, (38)

',p"+—,'p'{p-' n')—+p'/r= ,'ka—'e-'e. ,

1 P'—n' 1——g = ——ks'P8 ) (40)

where a prime denotes d/dr and a double prime d.enotes
d'/dr' Any. one of these three equations can be derived
from the remaining two equations. "The conservat, ion
law given by Eq. (35) yields

1 d / d%') p' n'd—%

rm dr( dr) 2 dr
=c2'ke~. (41)

e =r 'exp~ —k dry"/2
~

dr 1—ka'r'P 2

The three unknown functions n(r), p(r), and @(r) are
determined by the three independent equations, i.e.,
Eq. (41) and any two equations among Eqs. (38), (39),
and (40). Equation (41) differs from the Klein-Gordon
equation with the original Yukawa potential in the two
terms q (P'—n')4' and a'4')exp(n) —1$. Thus, the
unknown functions n(r) and. P(r) are found to be

C. Yukawa-Nuclear Potential Field

The sylnmetric stress-energy density T"& of the
Yukawa-nuclear potential field p(r) L—=~(r), where $
is a coupling parameterj which satisfies the law of
conservation

is given by
(35)

&& Zr(1—kama+2/2)

T)p—ghrgprsg @ Lgi p(go&a@ @ +a2@2) (36)

where a=moc/k, tno is the rest mass of n.o meson, and
the semicolon represents absolute differentiation.

Following the discussion of Yilmaz" and DeWitt, '~

we may substitute Eq. (36) into Einstein's field equa-
tion Le.g., Eq. (16.60) in Ref. 16j.By taking a nucleon
at the origin, we may set up a spherical coordinate
system with the spherically symmetric, isotropic line
element

ds'= e&'&dr' r'(—d8'+sin'8—dg')+ee'&c'dP (37).
In this coordinate system, Einstein's field equation
yields the following three simultaneous differential

"%'. J. Carr, Jr., Phys. Rev. 122, 1437 (1961}.
"The relativistic quantum-mechanical treatment would be

possible by using the eGective potential given by Eq. (25}.
~~ B.S.DeWitt, Dyeuesiccl Theory of Groups md Fields (Gordon

and Breach Science Publishers, Inc., New York, 1965), p. 137,
Eq. {16.62}.

Here, we have taken the gravitational radius 280 of the
nucleon as the constant of integration, in order that
these solutions reduce to Schwarzschild's exterior
solution when 4 goes to zero. Using Eq. (43), Eq. (41)
takes an alternative form given by

(e Qd( d%') e 1 d%—+ ka'r4' =a'+ (44)
kr')dr& dr) r r

'
dr

where exp( —n) is replaced by Eq. (42). Equation (44)
is an integrodiGerential equation from which the
modi6ed Yukawa-nuclear potential may be determined.
The concrete function forms of the two components of
the fundamental metric tensor given by Eqs. (42) and

'8 See, e.g., Ref. 4, p. 324.
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(43) are found by substituting the solution of this
integrodiGerential equation into them.

Now we are in a position to determine the general-
relativistic effective potential g, (r) of the modified
Yukawa-nuclear potential P(r) by using Eq. (24).
Although the line element of Eq. (37) is defined with the
sign opposite to the line element fo Eq. (10), the poten-
tial g, (r) is still found by taking g(r)=exp( —a) and

f(r) = exp(P) into Eq. (24). It is as follows:

g, (r) =
t p(r) —$(r)'/2mc'j exp~ —k dr r+"

~

(

+p'mc' exp( —a) —exp~ —k dr r%'"

+=+ k%;(r), a=+ k a, (r),
jM j

(46)

where 4;—= (8&/Bk&)&=p/(j!), a,—= (8'a/Bk')&=p/(j!),
and we have taken o,o

——0 in order to make the line
element of Eq. (37) reducible to that of pseudo-
Kuclidean space-time if k =0. We substitute both
expressions of Eq. (46) into Eq. (44) and compare the
coefFicients of powers in k. This gives as the zero- and
first-order approximations,

and

1 dp d%p
=0'p,

x'dxE dx
(47)

1 d d%'y fay )d%'p—%a= a8'p —
I

——x&ps
I i (48)

x'dx dx Ex ) dx
'

where x=ar. The physically meaningful solution to
Eq. (47) is given by the original Yukawa-nuclear
potential

+p ———ge
—'/x, (49)

where g is the coupling constant for which the numerical
value is given later. In order to find the function nq, we
follow a procedure similar to the above by substituting
both expressions of Eq. (46) into Eq. (42) and calculate

+(l(l+ 1)k'/2m} /exp( a)—1j—/r' (45)

where p(r)—=$4'(r), and exp( —a) is replaced by Eq.
(42). The last two terms represent the gravitational
potential caused by the mass energy and nuclear
potential source energy distribution of the nucleon. The
first term is the nuclear potential coupled with the
metric structure of the Riemannian space-time around
the nucleon.

Next we are interested in finding the 6rst-order
approximate solution (with respect to the small physical
constant k) to the integrodifferential equation given by
Eq. (44). We expand the exact solution 4(k,r) and
a(k, r) in the following power series:

obtained by substituting Eqs. (49) and (50) into Eq.
(48).

In this way. , we find to a first-order approximation the
following modified Yukawa-nuclear potential in the
coordinate system given by the line element of Eq. (37):

P—=$%= $(%p+k%y)
px 'e—*[1 aRp(—lnx+e'*Ei(2x) —x '}

——'kq'fx —'—4e" Ei(2x)+14e4~ Ei(4x)}e-"j, (52)

where p=—$q, and Ei(s) is the exponential-integral
function defined by

Ei(s)—=f."dy y-' exp (—y) .
The constant vP is given by" q'—=pa/4s-=7. 25X10'
g cm sec ' for a nucleon. The two scalar constants uEO
and kg' are dimensionless.

I.et us study the asymptotic behavior of the potential
in Eq. (52) at large distances x pp and in the vicinity
of the origin x 0. The asymptotic expression at very
large distances is easily found to be

g= —px
—'e—*(1—aRp lnx) . (53)

This is obtained by referring to the asymptotic series"
of Ei(s) and dropping all terms much smaller than
x ' exp( —x). Since numerically aRp=0. 93&(10 PP, for a
nucleon, the second term in Eq. (53) can certainly be
neglected in terrestrial phenomena. This substantiates
the validity of Yukawa-nuclear potential at large
distances of terrestrial size. This approximate potential
becomes repulsive beyond the boundary radius of
attraction given by x= exp(a 'Rp '), or r= 10" cm for a
nucleon where mr=4. 65&10".This numerical value of
the boundary radius is almost infinite in comparison
with the radius of the universe arrived at in modern
cosmology.

The asymptotic behavior of the potential very near
the origin can be investigated by the approximate
expression" Ei(s)= —y —lns for a small value of s,

"The constant k is not actually contained in o.&, since k is also
contained in R0 to make a cancelation with the k in the de-
nominator.

«' G. Wentzel, QNantlm Theory of Fields, translated by J. M.
Jauch (Interscience Publishers, Inc. , New York, 1949), p. 37.

«1 HamSook of Mathematical Functions, edited by M. Abramo-
witz and I. A. Stegun {Dover Publications, Inc. , New York,
1965), p. 231, Eq. (5.1.56).

"Reference 21, p. 229, Eq. (5.1.11).

the concrete form of aj by using Eq. (49). We then
obtain"

ar ——(2aRp/kx) —p'ri(x '+x ') exp( —2x). (50)

Finally, the concrete form of the function 0'& is found
simply from the linear differential equation

d2

(x@g)—xaam
———2gaRpk '(x '+x—'+x ') exp( —x)

dx
+p'rP(2x '+3x '+2x '+x ') exp( —3x), (51)



GE N ERAL —RELATI V I ST I C EFFECTIVE POTENTIAL 1367

where y=0.5772 is Euler's constant. Since numer-
ically kp'=1.503&(10 ' for a nucleon, in the neighbor-
hood of x= 10 "we have, to a very good approximation.

ex—'e *(1+aRox ' —kr—l'x 'e '*). (54)

In this approximate potential, the second term repre-
sents the correction due to the mass energy, and the
third term is the modidcation due to the nuclear
potential energy source of the nucleon. The ratio
12aRox '/kvPx 'e "of the two terms is of the order 10 '9

in this region. Thus, the correction term due to the mass
energy is certainly negligible in this region, so that we
have the simpler form

y= —ex—'e—*(1——,', kg'x 'e '*) . (55)

The potential of Eq. (55) has a tremendous depth"
P;„=—3.14X10" MeV at x,„;„=1.22&& 10 '0, or
r; =1.44)&10 "cm. Itbecomes&=0 atr=8.31X10 "
cm, '4 and p=~ at r=0 (the pole of third order).
Beyond the boundary radius r; of the repulsive force,
the potential of Kq. (52) rapidly approaches the
Yukawa-nuclear potential —~~ 'e *, since the correc-
tion terms are short-range potentials. Therefore, the
general-relativistic inQuence on the Yukawa-nuclear
potential is effective only within the short range with a
radius of the order 10 "cm.

Finally, we may find the general-relativistic eRective
nuclear potential to erst order by substituting the
6rst-order approximate solution of Eq. (52) into Eqs.
(42) and (45)."The form of this approximate effective
potential is too complicated to be handled analytically.
However, a good approximate form in the region
(kvP)'"(=10 ")«x«1 is easily found by using the
approximate expression of Ki(s) for a small value of s.
The result is

go ( krl'm'c') k'g4t(1+1)k'
11+ 4'0

2mc' E 2e' ~ 16m&4

Xexp(kg'yo'/2e') (56)

where po =— ex 'e —Among .the four terms of Eq. (56),
the erst two terms are the special-relativistic effective
potential of the Yukawa-nuclear potential coupled with
the Riemannian space-time structure around the

3 This depth is -', the numerical value of the original Yukawa-
nuclear potential at the same distance.

~This value is much larger than the gravitational radius
280=2.2X10 "cm and much smaller that the Compton wave-
length 1.32)(10 "cm of a nucleon.

'5The higher (than first) order approximate solution can be
found by an iteration method based on the same ide@ applied to
the first-order approximation.

y, = —ex 'e *L1+(e/2mc')x 'e *j——
(58)

Since e/2mc'=3. 6&&10 ', the second correction term in
Kq. (58) is significant in the nuclear-potential problem.
For example, the ratio of the suggested potential

to the original Yukawa-nuclear potential, i.e.,
p,/L —ex ' exp( —x)j at x=0.1 (the neighborhood of
the effective distance of the nuclear force) is about
1.326, which represents an increase of 32.6%.

As we have seen, the general-relativistic gravitational
effect is quite negligible compared with the nongravi-
tational effect of the Coulomb-electrostatic and
Yukawa-nuclear potentials at intermediate distances,
but quite dominant in the vicinity very near the poten-
tial source. It is possible that we have overlooked this
important general-relativistic effect in describing the
structure of matter in the microscopic world. Perhaps
new insight into the microscopic structure of matter
could be gained if the general-relativistic effective
potential were used in the quantum-mechanical theory
of matter. "
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"There is a viewpoint from which one explains the nuclear
force as a gravitational force. See J. M. Barnothy and M, I'.
Barnothy, Bull. Am. Phys. Soc. 12, 420 (1967),

nucleon at @=0,and the third and fourth terms are the
general-relativistic gravitational potentials due to the
nuclear-potential source. It is interesting to note that
the gravitational action due to the mass is much smaller
than that due to the nuclear-potential source of the
nucleon in this region. Therefore, the mass-gravitational
term has disappeared from Eq. (56). Since kvPm'c'/2e'
= 10—"and the last gravitational term is approximately
given by 10 "'l(l+1)x 'exp( —3x), the two gravita-
tional terms are certainly negligible. Thus, Eq. (56) can
be written

y, = (yo yo'/—2mc') exp(kq'yo'/2"). (57)

In this potential the gravitational effect is exhibited in
the exponential function. Since the exponent of the
exponential function has a short-range character and is
approximately 0.751)&10 40x ' exp( —2x), it is im-
portant in the region near @=10 ' but approaches zero
rapidly beyond @=10 '0. For example, for x=10 " its
value is less than 10 '. Therefore, in the region much
beyond x=x ", Eq. (57) reduces to the special-rela-
tivistic effective potential given by


