
gUAWTUM THEORV OF fWTEWSlTV CORRELATiOWS

IV. DISCUSSIOH

The preceding calculations have shown that to
fourth order in the Geld-detector coupling there is no
contribution to the mean correlation between the out-
puts of two photodetectors from the photon Geld
commutator. Consequently, for quantized Gelds whose
average behavior corresponds to that of a classical Geld,
there can be no difference between the results of semi-
classical and fully quantum theories of intensity
correlations.

In conclusion, we note that the above result does not
mean that the zero-point Quctuations of the field can-

not play any role in correlation experiments. However
such contributions will be at least eighth order in the
Geld-detector coupling and will involve the reQection
of light from one detector into the other. At normal
intensities, the experimental arrangement can bc con-
structed. so as to make such processes extremely
negligible.
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On the basis of reasonable physical assumptions, it is proved that for systems of identical spinless particles,
the permissible nonrelativistic Schrodinger wave functions are either all symmetric or all antisymmetric.
The proof is a generalization of that given by Girardeau. Although connectivity properties of the con6gura-
tion space play an important role in the proof, it is not true, as eras previously believed, that a connected
space is alvmys necessary. In particular, for one-dimensional systems, conneetivity of the configuration
space is not necessary for the proof to hoM.

I. INTRODUCTION

1
M~NE of the important superselection principles of

quantum mechanics ls the so-called syIninetllza-
tion postulate. This states that physically realizable
states for collections of identical particles are repre-
sented by either syrrinetric or antisymmetric wave func-
tions. A number of highly mathematical "proofs" of this
statement have appeared in the literature in recent
years. Most recently, Girardeau' pointed out that these
proofs "involve mathematical assumptions which are
either in conQict with known physical principles or at
least do not follow directly from such principles. "
Girardeau then presented a proof of the symmetrization
postulate explicitly using the condition that the con-
Gguration space be connected. Major emphasis was
placed on a class of one-dimensional counterexamples to
the symmetrization postulate, for which the conGgura-
tion space is not connected.

In this paper, we present a more general proof of the
symmetrization postulate for spinless particles. We show
that connectivity of the configuration space is, in fact,
not necessary for the proof to hold. In particular, it is
not necessary in one-dimensional problems with hard-
core particles. For dimensionality greater than j., con-
nectivity appears to be necessary, hut we have neither

*Supported in part by the U. S. Atomic Energy Commission.' jg. D, Girardeau, Phys. Rev. 139, B500 (1965).

proved nor disproved this. We believe that the present
discussion puts the question of connectivity in its proper
perspective.

Our approach is similar, in some respects, to that ad-
vanced over thirty years ago by Kitmer and. Vinti. ' %'e
do not require (as Girardeau does) the existence of a
nondegenerate energy level. Rather, we deGne permis-
sible wave functions solely in terms of permutation
properties. Our hypotheses contain Girardeau's assump-
tion of a nondegenerate level as a special case.

In Sec. II, we discuss the meaning of "permissible"
wave functions. Section IH contains the proof of the
symmetrization postulate for spinless particles. Section
IV consists of an explicit discussion of one-dimensional
problems.

II. DEFINITION OF PERMISSIBLE STATES

The Grst underlying assumption of this discussion is
that the position probability density, for identical par-
ticles, can he written as p(xr, ' ')xN)=If(xr, )xy)
Xf(xt, .,xs) s and that P(xr, ,x~)dx, dx~ isthe

s E. E. Witmer and J. P. Vinti, Phys. Rev. 47, 538 (1935).Un-
fortunately, this early treatment does not make full use of the
superposition principle. In particular, the right-hand side of
%itmer and Vinti's Eq. (11) is identically zero because of this
principle.

~%'e emphasize that this is an assumption. For an opposing
viewer see W. Pauli, Buldblch der Ehysik, edited by H. Geiger and
K. Scheel Julius Springer Verlag, Berlin, 1934), Vol. 24.
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probability that there is a particle in (xi, xi+dxi), a par-
ticle in (x,, xz+dx;), and so forth. This assumption
differs from the one for distinguishable particles in that,
for distinguishable particles, the order in which one
writes the position coordinates defines a labelling of
particular particles. That is, for distinguishable particles
p(xi, ,xi')dxi dx~ is not simply the joint probabil-
ity that there is one particle in each of the intervals
(x,, x,+dx,), wherei = 1, , X.Rather, it is the proba-
bility that a particular particle lies in the first interval,
a second particular particle lies in the second interval,
and so forth. With the above interpretation for identical
particles, it is clear that p(xi, ,x~) must be permuta-
tion-invariant. Consequently,

where I' is any permutation of the dynamical variables,
i.e., the arguments of P.

In addition to this, we also require that if iP (xi, ,x~)
is a permissible wave function (the criteria for perrnis-
sibility will be stated shortly), then PP(xi, ,x~) is also
permissible. The motivation for requiring this was given
by Witmer and Vinti in one of the first papers on the
symmetrization postulate. BrieRy, if, for a symmetric
Hamiltonian, iP is an eigenfunction of Schrodinger s
equation, then PiP must also be an eigenfunction cor-
responding to the same energy. Also, the dynamical
states represented by iP and PiP cannot be distinguished

by any observation. Thus, it is reasonable to require that
PiP be permissible if P is.

Our precise definition of permissibility can be stated
formally in the following way, using the Dirac bra-ket
formalism.

For a given Hamiltonian II, which is symmetric in the

single particle variables, those states havizzg the following
properties wzlt be permissible states: (i) The permissible
states If) form a subspace S, of the Hilbert space of P.
(ii) If I|t) is contained zn 5, then P

I P I'=
I P

' for all P,
where $(xi, ,x~)=(xi, ,x~I&). (iii) If lt) is cori

tained in 5, then Up Iip) is contained izz 5 for al/ P. Up
is the unitary operator which corresponds to the permutation
oPerator P in the sPace of wave functions iP. SPeczfzcalty,

Up II/) — ' dxi' dxg
I
xi, ' ',xy)PIP(xi, &xg) .

principle holds for wave functions in the configuration-
space representation, irrespective of any considerations
of connectivity properties. This is important in our
analysis.

Finally, we point out that implicit in our interpreta
tion of iP*iP is the assumption that iP must be continuous.
It is not necessary to assume the continuity of any de-
rivatives of tP. Thus, our discussion even applies to the
one-dimensional 5-function model4 for which the erst
derivative of P is discontinuous.

III. PROOF OF THE SYMMETRIZATION
POSTULATE

We now prove that for all permissible wave functions
iP, either

or
PP(xi, . ,xg) = (—1)PP(xi, ,tv)

PiP(xi) ' ' ')xg) ='iP(xi, ' ' ',xzz) .

Since this must be true for all complex a and b, one can
conclude after a bit of algebra that

(P4)*PS=4*4.

However, from Eq. (2),

Py= Cp~y and PiP=CptiP

Thus, Eq. (5) requires that

(—1)P is (+1, —1) accordingly, as the permutation P
is (even, odd). Our analysis does not predict which of
the above situations prevails, but only that one of them
does.

It follows from (ii) that

Plb(xi, ,xiv) = Cpp(xi, ,x~)iP(xi, ,xi'), (2)

where

I Cpv(xi»xN) I
1

The requirement that S must be a subspace of a Hilbert
space implies that if Ip) and IP) are contained in S,
then a

I g)+b I iP) is contained in 5 for all complex num-
bers u and b. Therefore,

The above hypotheses are couched in the language of
abstract Hilbert space for purposes of generality. In
statements (ii) and (iii), and in the remainder of this
paper, the configuration space representation is used
explicity. One expects that the analogs of (ii) and (iii),
in the momentum-space representation, are also valid.
However, we have not been able to determine the rela-
tionship of these conditions with our analysis in the
configuration-space representation. Hypothesis (i) is
a statement of the superposition principle in the abstract
Hilbert space S. As a consequence, the superposition

Since IC»I =1, Eq. (6) can be written as

(Cpz —Cpp)&*/=0.

In order to fully appreciate the significance of Eq. (7),
we classify all points in the 3S-dimensional configura-
tion space as follows: (a) a point (xi, ,x~) is a type-u
point if all allowable wave functions vanish at that
point; (b) a point (xi, ,x&) is a type-P point if at
least one allowable wave function does not vanish at

See, for example, E. H. Lieb and W. Liniger, Phys. Rev. 130,
1605 (1963);M. Girardeau, J. Math. Phys. 1, 516 (1960).
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or
Q(P))t) = Cq(xi, ,XN) (PP) (10)

C (x, ,x )It(x, ,x )= C (x, ,x )
XCp(xi, ,XN)It (xi, ,xN) . (11)

Since for any type-p point there is at least one non-
vanishing function f, we may conclude that

Cqp(X1 ' ' XN) = Cq(X1, ' ' ' XN)Cp(X1 ' ' ',xN) . (12)

One can also operate directly on Eq. (9) with the opera-
tor Q yielding

Cqp(xi, ,xN) = Cp(Qxi, ,QxN)Cq(xi, ,xN). (13)

It follows that

CP(QX1) ' ' ')QXN) = CP(X1) ' ' ')XN) ~ (14)

Since any permutation can be written as a product of
transpositions, it is convenient, for the moment, to
treat only the latter. For a transposition which is repre-
sented by the operator P, Eq. (12) implies

Cpp(xi, ',xN) = [Cp(xi, ' ' ',XN)$'. (l5)

Since C~~= 1 when I' is a transposition, it follows that

that point (i.e., a point is a type-p point if it is not a
type-a point). Thus, from Eq. (7), we see that, at each
type-P point, Cp is independent of It and )t) for all pairs
It and p which are not zero at tha, t point. For wave func-
tions which vanish at any specific type-P point, one can
consistently define C& to have the value obtained for
nonvanishing wave functions. Since the above argument
is independent of P, we have shown that, at all type-P
points

Cpp(xi, ' xN)=Cp)t(xl ' ' xN)

for all I'. A discussion of the functions Cz at type-o,
points is not necessary since Eq. (7) is trivially satisfied
at these points. Our procedure, so far, has been equiva-
lent to that of Girardeau.

We now deviate from Girardeau's method. In what
follows, all configuration points under discussion will be
of type P unless explicitly stated otherwise. Equation
(2) can be written as

PP(X„,XN) = Cp(xi, ,XN)$(xi, . ,XN) . (9)

Operating on Pf with another permutation operator Q,
and recalling from (iii) that PP is permissible if f is, we
obtain

for all i and j. Here, we are using a new notation in
which the double subscript on C refers to a single trans-
position. Thus, at each point, the C;; functions, for all
i and j, are the same. Consequently, from Eq. (16),
either C;,=+1 for all i and j or C;;=—1 for all i and
j.Finally, for an arbitrary permutation represented by
the operator I', which can be written as a product of
transposition operators, we have

Cp(xi, ,xN)= (—1)P or (+1)P. (19)

(—1)P is negative when P represents an odd permuta-
tion of (xi, ,xN) and is positive otherwise.

If f is a solution of Schrodinger's equation, then
Bp(xi ' ' ' XN) —Cp(X1 ' ' ' XN)f(xi, ' ' ',XN) is also a
solution. As stated in Sec. II, all permissible solutions
must be continuous. By definition, for a type-P point,
(xi', ,xN'), there exists at least one permissible wave
function It such that $(xi', ,XN') 40. Since f must be
continuous, there exists a neighborhood K(xi',
XN', )I) [8 is the diameter of the neighborhood about
(xi', . . .,xN') j for which f/0. Clearly, Cpf&0 in
K(xi) )xN)b). Thus,

Cp(xi, . . .,xN) = Cp(xi, ,xN)p(xi, . )XN)

$(xl ' ' ')XN)

is continuous at (xi', ,xN'). It follows that for all
type-P points which can be connected by a continuous
curve, passing only through type-p points, Cp must be
a constant. As we have seen, this constant must be either
+1 or —1.

It is quite possible that one will not be able to connect
all type-P points in this manner. This will happen if
type-n points are distributed so that the configuration
space is separated into disjoint P regions. If this situa-
tion prevails, the above argument fails. Physically, this
might happen if singular interactions exist both be-
tween particles of a given species and between particles
of different species (e.g., between the molecules of a gas
and those of the container walls). Figure 1 illustrates
such a situation for two discs in a two-dimensional
square box. Classically, it is impossible to get from con-
figuration (a) to configuration (b). Quantum mechani-
cally, we may argue that no paths, containing only

Cp(xi) ~ . ~ )xN) =+1 (16)

for all transpositions I'. It is well known that any trans-
position P',; can be written as a product of other trans-
positions (P;; transposes x; and x,). For example,

I iq
—I

leap

2~I 12I2' l s & (17)
(a)

from which it follows, using Eqs. (14) an.d (15), that

C)& (Xi) ' ' ' )XN) = C11(Xi) ' ' ',XN) (18)

I'xo. 1.Two discs near close packing. The representative points
in configuration space for states {a) and {b) cannot be connected
by any path containing only type-P points.
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Co~A) =Co(~)C~(~) . (2o)

If the zeros of fo are all case (ii) points, then it is
suflicient, for our proof, to have but one /=f0 with
the property that PP, is permissible if $0 is. Since
Girardeau's assumption of one nondegenerate level is
a special case of the latter statement, our proof con-
tains his when case (i) points do not occur for leap.

If fp llas case (i) points then, to our knowledge, there
is no way to demonstrate Eq. (20) and the proof cannot
be completed. ' We have required that PP be permissible
for all, rather than for just one, wave function f on the
basis of this fact as well as on the basis of the motivation
discussion of Sec. II. It is well to point out that if
Girardeau's single nondegenerate level has an eigenstate
with case (i) points, then his proof also cannot be com-

pleted. Thus, the present proof is not more restrictive

' This statement is directed primarily at type-P points only. If
f0 vanishes on a set of 6nite measure, and all other permissible
wave functions vanish on the same set, then our prior discussion
of type-e points holds.

type-P points, exist which connect these two configura-
tions. Thus, the two configurations could have diferent
symmetries. It is emphasized that this situation is caused

by the existence of container walls. Were there no walls,
the discs could be moved freely from configuration (a)
to configuration (b). Our conclusion at this point is that
connectivity of the conhguration space is sufhcient to
ensure that permissible wave functions are either sym-
metric or antisymmetric. This conclusion is in complete
agreement with Girardeau. In two or more dimensions,
the connectivity restriction may or may not be satis-
fied, depending upon the system's density. In the next
section, we show that for one-dimensional problems
there is no such density dependence, and that corlnec-

tieity is not rIecessary.
To close this section, we point out some of the simi-

larities and diGerences between our proof and that of
Girardeau. Requirements (i) and (ii) for permissible
wave functions are common to both proofs. Require-
ment (iii) is a generalization of Girardeau's assumption
of a nondegenerate energy level. To see this, suppose
that we had required that there be only ore /=4'0 such
that Pgo is contained in S for all P. We could conclude
then that Eq. (12) holds only at points where PpAO.
Now, it is convenient to classify points where $0=0 in
the following way. We denote such points by the short-
hand notation y and denote a /nile neighborhood of
diameter b about y by Ol, (y, b).

Case (i) Points y for which all K(y, 8) contain a
subset of points of finite measure on which Pp=0.

Case (ii) Points y for which at least one X(y, b) exists
in which the points for which fo 0 form a s——et of
measure zero.
Each y included in case (ii) is the limit of a continuous
set of points on which $0/0. Invoking Eq. (12) and us-

ing the continuity of Ci (x), we find that for case (ii)
points,

than Girardeau's. On the contrary, it appears to be
more general.

Cp(Qxi, ,Qx~) =Cp(xi, ,x~) . (21)

The fact that connectivity is not necessary for one-

dimensional problems is well illustrated by the example
of a system of two identical hard rods. For this system,
the allowable wave functions f(xi,x2) vanish when

~
x2—xi~ (d, where d is the hard rod length. Thus, one

cannot connect the point (a,b) with the point (b,a)
without passing through type-n points. It thus appears
on the surface that since the configuration space is not
connected, the preceding proof does not go through.
However, this is not so. The shaded region in Fig. 2 con-
sists solely of type-n points. %e may get from any point

(a,b) above the shaded region to its reflection (b,a)
below the shaded region by permuting the two argu-
ments. Since Ci(xi, xg)=Ci(Qx, ,Qx2), it follows that
C~(xi,x2) =Cp(x2, xi). Thus, Ci has the same value below

the shaded region as it does above this region. This
argument can be extended directly to a system of E
hard rods. We conclude that Ci is either (—1)~ at all

type-P points, or is (+1) at all such points. No explicit
appeal to connectivity properties is necessary in one
dimension. Apparently, this is so because the disjoint

P regions are related to one another via interparticle
permutations.

In light of the above discussion, we now consider the
one-dimensional counterexamples of Girardeau. The
systems of interest consist of E particles with hard-core
repulsion and arbitrary attractive forces. The Bose
(i.e., completely symmetric) solutions to Schrodinger s

equation corresponding to energy 8 are denoted by
Ps&'&(xi, x~). Girardeau has pointed out that the

.(b,a)

=Xl

I'IG. 2. Configuration space for two hard rods in one dimension.
All points in the shaded region are type-o, points.

IV. ONE-DIMENSIONAL PROBLEMS

Our formulation is particularly suitable for analyzing
one-dimensional problems. For such cases, we denote
configurations by the E numbers (xi, ,x~), in which

case Eq. (14) becomes
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functions

Pg(xi, ,xpr) = gP sgn(x; —x()]pe&'(xi, ,xN) (22)

sgn(x; —x~)Pe&'~(xi, . ,tv), (23)

where all (j,l) pairs and all possible Pe&' are included,
then hypothesis (ii) is violated, but (iii) is not. If one
considers the class of functions for which the prefactor
in (23) contains only one specific (j,l) pair, then hypothe-

are also solutions to Schrodinger's equation with the
same energy. Here, sgnx—=

~ x/x and the primed prod-
uct may extend over any number of the E(E 1)/—2
particle pairs. The various possible qb~ functions are
neither symmetric nor antisymmetric in general. These
functions each satisfy hypothesis (i) and thus appear
to be candidates as counterexamples to the symmetriza-
tion postulate. We wish to emphasise that these wave func
tions are not permissible and thus are not counterexamples
To see this, we now show that these wave functions
violate either hypothesis (ii) or hypothesis (iii), or both.
For example, if one considers the class of functions de-
6ned by

sis (iii) is violated, while (ii) is not. For the class of

functions for which the prefactor in (23) contains two

or more, but not all, (j,l) pairs, then both hypotheses

(ii) and (iii) are violated. One may note that the various

P& functions are linearly independent so that each en-

ergy eigenvalue E is multiply degenerate. Therefore,
these functions violate Girardeau's assumption of one

nondegenerate level. '
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The gravitational radiation arising from the relative orbital motion of a two-body gravitationally bound
system is analyzed on the basis of the Brans-Dicke theory. This theory predicts radiation by a scalar field
as well as the usual tensor Geld. It is found that for small eccentricities the quadrupole scalar radiation due
to the circular component of the orbit is the dominant contribution of the scalar radiation field, and that
this is almost a hundred times smaller than tensor quadrupole radiation.

I. INTRODUCTIOH

KCENT observations of solar oblateness by Dicke
et a/. ' have cast some doubt on the correctness of

Einstein's general relativity theory. This observed solar
oblateness provides an additional perihelion precession
for the planet Mercury which makes the general-
relativity prediction about 8% too large. It is, how-
ever, in agreement with the Brans-Dicke theory, ' which
for a particular choice of the scalar interaction coupling
parameter (&o 6) reduces the general relativity pre-
cession by 8%. This observation fixes the coupling
parameter in the Brans-Dicke theory. However, because
the interpretation of this observation is rather involved

~ R. H. Dicke and M. H. Goldenberg, Phys. Rev. Letters 18,
313 {1967).' C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961); C.
Brans, ibjd. 125, 2194 (1961);R. H. Dicke, ibid. 125, 2163 (1961).

and is not without controversy, it may be useful to look
for other locally observable consequences of scalar
gravitational fields.

%e consider here the scalar wave radiation arising
from the relative orbital motion of a two-body system;
more specihcally, the scalar radiation from planetary
orbits and binary star systems will be investigated.
BrilP has calculated the radiation of scalar waves from
a planetary orbit, and has found, in the monopole
approximation, that the radiation rate is proportional
to e', where e is the eccentricity of the orbit.

However, as will become apparent in the following
sections, there are quadrupole contributions to the
radiation for both circular and elliptical components of
the orbit, and in fact the circular component dominates

D. R. Brill, in Evidence. for Gravitational 'Theories, Enrico Fermi
Course XX (Academic Press Inc., New York, 1962), p. 63.


