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to reduce the positronium amplitude (from the Born
result) but that the major reduction comes from the
"centrifugal" term —2pts/r'. This term arose from the
choice of coordinates (Eq. (6a)J and the requirements
on the wave function at s ~~.However, the continua-
tion to small r is certainly not unique. For instance, the
modification of the basic form (6a) discussed with
reference to (6b) would modify the potential in question
with the resulting form —2(pt'/r')P'(r). The asymptotic
requirement P(~)=1 ensures the correct asymptotic
form for 4, but setting P(0) =0 would turn off this term
at short distances. We have chosen the form

(27)

and. have rerun the problem with several values of the
parameter u. For a&2 there are essentially no changes
from the results quoted here. This indicates that our
results d,o not depend critically upon the continuation of
long-range e6ects into the origin. For small values of g,
we drastically modify the short-range terms and the
results are changed. The parameter a could be inter-
preted as a variational parameter, and optimized. This
requires further calculation which we hope to report
on soon.

No experimental evidence is available for comparison

here. However, there are some data on positron-helium
scattering. "This is a swarm experiment, and. its ana-
lysis" depends upon some assumptions concerning
positronium formation. One assumption in particular
is that positronium will be formed rapidly when it is
energetically possible. H the results of this paper are to
be relied upon and if they can be extrapolated to helium,
then this assumption will have to be reexamined. For
this reason, and for the additional reason that direct
positron scattering experiments on helium are now con-
templated, " we propose to apply the method used
here to that problem.

Ãofe added sm proof. B. Bransden and Z. Jundt have
reported on a similar calculation at the Fifth Inter-
national Conference on the Physics of Electronic and.
Atomic Collisions, Leningrad, USSR, 196/ (unpub-
lished), in. which they solved the equations associated
with our Eq. (1). Their positronium-formation results
are drastically different from ours. In particular they
show a pronounced peak in the s-wave results near
threshold. The reason for the discrepancy is not clear.
"S. Marder, V. W. Hughes, C. S. Wu, and W. Bennett, Phys.

Rev. 103, 1258 (1956).
"W. B. Teutsch and V. W. Hughes, Phys. Rev. 103, 1266

(1956); R. Drachman, eNd 138, A15.82 (1965).
r' W. McGowan (private communication).
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In this paper we g ve a complete and straightforward analysis of the n=2 Zeeman structure which ls
intrinsically accurate to 1 ppm for determining the Lamb shift from present experiments. This analysis takes
into account the current experimental and theoretical knowledge of the atomic Hamiltonian. It is sh
that the magnetic part of this Hamiltonian can be taken as that of a free electron and a free nucleus. Radi
tive corrections to this assumption are shown to be negligible. The total Hamiltonian can th
ized in the IF~ 2'1~ 1~ ntr & represent:ation. Matrix representations of the Hamiitonian are given for a)i n= 2
states of hydrogen and deuterium. We give theoretical predictions for the )= ]. hypergne intervals in h d o-
gen and deuterium which are accurate to 1O ppm. Values of the Lamb shift calculated from the recent Zee-
man level crossings of Robiscoe and Cosens are tabulated.

I. INTRODUCTION

~HE +=2 Zeeman structure of atomic hydrogen
and deuterium has served as a precise testing

ground. of quantum electrodynamics. Our knowledge

of the Lamb shift, the 2E1/2-2S~/2 interval, and the

Qne structure separation, the 28@2-28~~2 interval, has

been determined from an extrapolation to zero field of

*Work supported by the U. S. Atomic Energy Commission.

f Present address: Department of Physics, Northeastern Uni-

versity, Boston, Massachusetts.

experimental measurements of the atomic spectrum
in a nonzero magnetic field. In this paper we calculate
in detail an accurate extrapolation of the Zeeman
levels. This seems especially important now in view
of the discrepancy of the measured and predicted
Lamb shift.

The first comprehensive analysis of the precise
Zeeman structure theory required to interpret the
experimental spectrum was given by Lamb in conjunc-
tion with the pioneering experiments performed by
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Lamb and his co-workers. ' The same type of analysis
was also applied by Robiscoe and Cosens' to their
recent measurements of level crossings. A precise
analysis of the dependence of atomic levels on a mag-
netic Geld is also necessary in order to interpret the
results of experiments involving the new technique
of resonance Quorescence. '

The analysis given by Lamb and Robiscoe involves a
complicated perturbation theoretic treatment of the
Zeeman spectra. Many contributions which individually
could have affected the determination of the Lamb
shift at the order of 0.01 MHz were not included; the
intrinsic accuracy of their analysis is thus not certain.

In this paper we give a complete and hopefully
straightforward analysis of the e= 2 Zeeman structure
which is intrinsically accurate to 1 ppm for determining
the Lamb shift from present experiments.

The method used here is essentially a diagonalization
of the total Hamiltonian of the hydrogen or deuterium
atom at rest in a uniform magnetic Geld. It is shown

that, to suKcient accuracy, 4 this Hamiltonian may be
written as the sum of two parts:

(1) A magnetic Hamiltonian appropriate for the
interaction of a free electron and a free nucleus with a
uniform magnetic 6eld. (See Appendix A.)

(2) The Hamiltonian of the atom with no external
Geld applied.

All that is required for the specification of the latter
part of the Hamiltonian is the eigenfunctions and
eigenvalues for n=2. Our philosophy is to take the
accurately known experimental numbers for this
spectrum whenever possible. For example, the 2S
hyperGne separation has been accurately measured,
and is used in the analysis.

The E-state hyperhne levels must be calculated
from theory, but to the accuracy required (=100
ppm), this can readily be done without considering
corrections from quantum electrodynamics. The deri-
vation is given in Appendix B.

The Lamb shift and Gne structure interval can be
considered as parameters which may be adjusted to Gt
the observed Zeeman spectrum, and then compared
to theory.

An order of magnitude estimate is given of all un-

' W. F. Lamb, Jr., and R. C. Retherford, Phys. Rev. 79, 549
(1950); 81, 222 (1951); W. E. Lamb, Jr., ibid 85, 259 (1952.);
W. E. Lamb, Jr., and R. C. Retherford, ibid. 86, 1014 (1952); S.
Triebwasser, E. S. Dayhoff and W. E. Lamb, Jr., ibid. 89, 98
{1953);K. S. Dayho6, S. Triebwasser, and W. E.Lamb, Jr., ibid.
89, 106 (1953).The analysis of the Zeeman structure is given in
the third paper.' R. T. Robiscoe, Phys. Rev. 138, A22 (1964); R. T. Robiscoe
and B. L. Cosens, Phys. Rev. Letters 17, 69 (1966); Bull. Am.
Phys. Soc. 14, 62 (1966); B. L. Cosens, Ph. D. thesis, Yale
University (unpublished) .

3 See, for example, H. Wieder and T. G. Eck, Phys. Rev. 153,
103 (1967); F. D. Colegrove, P. A. Franken, R. R. Lewis, and
R. H. Sands, Phys. Rev. Letters 3, 420 (1959).

The error, which occurs due to radiative corrections, is shown
in Appendix A to be of order n'ppB.

TABLE I. Glossary of symbols.

m mass of electron
M~ mass of proton
M~ mass of deuteron
m~ reduced mass of electron-proton system
m& reduced mass of electron-deuteron system
g, measured electron gyromagnetic ratio
gg electron orbital gyromagnetic ratio
gran Lande factor for the proton =5.58ra/3f~
gin Landd factor for the deuteron =0.86ra/M~
S electron spin vector
j' orbital electron angular-momentum vector
I nucleus spin vector
J total electron angular momentum =I +S

total atomic angular momentum= J+I
Ry„Rydberg for in6nite mass
AEn f'me structure interval (2P&gs —2P&ls) for hydrogen
BED fme structure interval (2Psls —2P&~s) for deuterium

anomalous magnetic moment of the proton (1+ap=2.79)
anomalous magnetic moment of the deuteron (1+en
=0.86 (iVn/Mp) )
magnetic moment of proton=2. 79(e/2Mp)
magnetic moment of deuteron=0. 86(e/2M'~)
electron Bohr magneton
corrected center NMR (proton in water) frequency

jMp

PD
PO

Ve

computed contributions. In particular, the analysis of
Appendix A shows that there are no important radiative
corrections to the Zeeman structure which have not
been taken into account.

In this paper we do not consider the complications
due to asymmetry of the line shape, but conGne our-
selves to the magnetic field dependence of the energy
levels (line centers) of a stationary atom in a uniform
magnetic Geld. The line shapes which occur in the
experimental measurements depend critically on the
experimental details. A complete discussion of how line
asymmetry corrections have been treated in the experi-
ments of Ref. 2 will be published shortly. Most of the
symbols in this paper are deGned in Table I.

el
Xt= —nt ~ej&t+(g,—2) S H.

27S

Similarly, 3.'2 is the magnetic Hamiltonian for the
nucleus and includes a term for its magnetic moment.
Ke write, for hydrogen,

Xs=rrs ~e(As —(2~&)
23EI

' R. T. Robiscoe (private communication).

II. THEORY

A. The Total Hamiltonian

We write the Hamiltonian for a hydrogenlik. e
atom in a constant external magnetic Geld H as X
=Xt+Xs+Xs. Xt is the magnetic Hamiltonian for
the electron (subscript 1) in the external potential
A~= —,'r&XH and includes a term for the anomalous
magnetic moment of the electron:
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and for deuterium

X&—— ps ~e~As —(1+Kg&) I'H,
Mg) 2Mg)

(3)

where As ——rsrsXH. Xs is the remainder of the total
HamiItonian, and thus contains all the electron-nucleus
interaction (as could be derived from the full Bethe-
Salpeter equation) as well as all the self-interaction of
the particles. It is shown in Appendix A that K3 is
essentially independent of the external field, in fact

The error in each theoretical prediction corresponds
to 1 standard deviation (s.d.) error in n and includes
theoretical estimates of uncalculated terms of order
u(Zn)smc' and higher. In Sec. V we compare these
values with S obtained from experiment.

The total hyperfine splittings of the 25~g2 state in.
hydrogen and deuterium have been measured' and
found to be

Av(25gis, H)=177.55686&0.00005 MHz 1 s.d. , (6)

Av(2Sr~s, D) = 40.924439&0.000020 MHz 1 s.d. ,

Xs(H) —Xs(H= 0) =O(aspsH) . (4)
and the hyperfine levels are

Thus we will take Xs as its H= 0 value; Xs(H= 0) =Xs.
It can be specified, for our purposes, by its eigenvalues
for those eigenstates with which we are concerned.
Some of the eigenvalues of 3CO can be determined
accurately by experiment, for example, the l =0
hyperfine splitting and the fine structure interval of
the x= 2 levels. Other eigenvalues must be determined
from theory, for example, the 1&0 hyperkne structure
and the Lamb shift. Once the spectrum of 3'.0 is known,
we can diagonalize the Hamiltonian and obtain a
precise prediction for the Zeeman levels of the atom.

The spectrum of Xs in lowest order is the (rsj)
spectrum of the reduced-mass Sommerfeld formula.
The degeneracy with respect to l is removed by quantum
electrodynamic self-energy and vacuum polarization
level shift corrections as well as by relativistic reduced-
mass corrections as defined by the Bethe-Salpeter
equation. Finally, the hyperfine interaction removes the
degeneracy with respect to the total angular momentum
F where F=J+I=I+S+I. The spectrum of Xs can
thus be specified by the states' ~m, Fj,l,m ).+The
radial dependence of the eigenfunctions is described
accurately, except at very small distances, by the
Dirac equation using reduced coordinates. ~

v (25„,,H) = Av (25r)s, H) (I J) )

v(2&1/2)D) = s&v(25r, &,D)(I J).
(7)

s (s} r, (g, —2) m (1+2 pI-(».i.,H) = — +
3 2 4 4M~(1+sp

47
X 1+—(Zn)s (I ' J)

24

Ep (H) g, 5 (g,—2) 5' 1+2a~)
v (2I' ps, H) = —— +

15 2 8 83fv 1+ap)

7
X 1+—(Za) (I.J),

24
(8)

The hyperfine splitting of the 3=1 levels must be
predicted from theory. One complication is that the
hyperfine interaction is off-diagonal in j. For the
diagonal part of the hyper6ne Hamiltonian (propor-
tional to I J) we And (see Appendix B)'

B. The Spectrum of Ko for n= 2

In this section we review the current state of knowl-

edge of the spectrum of BCO for e= 2.
The theoretical predictions for the Lamb shift

2gy~2-2I y/'2 al e

S= 1057.57&0.08 MHz for hydrogen,
S= 1058.83&0.08 MHz for deuterium.

'If L&0, j is no longer a good quantum number due to the
tensor part of the hyperfine interaction. This will be dealt with
later.' E.E. Salpeter, Phys. Rev. 87, 328 (1952).' G. W. Erickson and D. R. lennie, Part I, Ann. Phys. (N. Y.)
BS, 271 (1965); Part II, Ann. Phys. (N. Y.) BS, 447 (1965).
M. F. Soto, $r., Phys. Rev. Letters 17, 1153 (1966).The numerical
values for the Lamb shift were given by D. R. Yennie at the
International Conference on Electromagnetic Interactions of
Low and Intermediate Energies, Dubna, February 1967 (un-
published). He used n '=137.0359~0.0004 (1 s.d.) obtained
from a new value of 2e/h from the ac $osephson effect. See%. H.
Parker B. ¹ Taylor, and D. N. Langenberg, Phys. Rev. Letters
18, 28 (f967). This new value of a changes the theoretical
prediction of the Lamb shift by +0.07 MHz.

s (D) g, (g.—2) m

(
La

)qv(2Pt)s, D) = +
9/2 2 4 2M') 1+st)

47
1+—(Z )' (I.J),

24

& (D) r. ~(a. 2) &m( a

)v(2I'vs, D) = — +
45/2 2 8 4M' (1+~n

7
X 1+—(Za)' (I J)

24

9 J. W. Heberle, H. A. Reich, and P. Kusch, Phys. Rev. 101,
612 (1956).H. A. Reich. J. W. Heberle, and P. Kusch, i'. 104,
1585 (1956).' These expressions ignore possible radiative corrections of
order (a/s. )(Za)'ln(Za)Zv and relativistic recoil and nuclear
size corrections of order a(m/Mv)Ev. Note also that v(2P3ys, D)
does not take into account the deuteron's induced or static electric
quadrupole moment.
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where Eg is the Fermi splitting for the 2S~/~ state"

fs„(mar) s

E.(H) =-: "&y;l
psalm/

'

f o(mn)
E» (D) =n'cd„

"psl, m&
'

and where g, is the measured electron gyromagnetic
ratio"

g,/2 = 1.001159622~0.000000027.

The oS-diagonal hyperfine Hamiltonian is"

Es (H) g, m 1+2x~)—
Xhr, '= 2——+ i (I L) (10a)

16 2 M~ 1+x~ ~

for hydrogen, and

E,(D)
Xgr.' —— 2——+

~ ~
(I L) (10b)

24 2 Mo ~,1+x~)

ppm change in AE is required to produce a j. ppm
change in the determined Lamb shift.

The spectrum of Xe (excepting Xsy, ') for re=2 is
thus known. The radial dependence of the eigen-
functions is not known exactly, but from perturbation
theory we know that they differ from the e= 2 Dirac
wave functions only for r((h/mc. ' The eigenfunctions
are then completely specified by

~
Fj,l,mr ).

C. Evaluation of the Magnetic Hamiltonian

If one performs the radial integration for the v=2
states, then Xt+Xs is replaced by a general form

X,+Xs —+ X „=(A,S,+-',AzL, +stl.,AI+ArI, )peH

+O(esAts/m), (12)
where 5„I.„and I, are the s components of the electron
spin, relative orbital angular momentum, and the
nucleon spin operators, respectively. The z direction is
defined as the direction of H and H—=

~
H~. The coeK-

cients A„Al„and A~ are

for deuterium.
The 283/g-2Ej(g fine structure can be predicted from

theory using the value of a from the ac Josephson
effect"4.)

mIr'l' m CP

d,E(H) = t essay„c
~ g, —1+sn'+ ln(n—')

m/ mir

~g = —gqII for hydrogen
= —ggD for deuterium,

A.= g, (1+-,'W/m) for 1=0
=g, (1+-,'W/m) for l= 1,

Ar, =g (r1+W/ m SL—(2W/Sm)) for 3=1,

(13)

= 10969.0542 MHz,
(11)

mg))s ( m ) rrs

/).E(D) = ,',aEy„c—~g,
~ (

—1+-',n'+ —ln( ')
m ) tm~/

= 10972.0485 MHz.

If we wish, the fine-structure separation and the
Lamb shift can be considered as parameters which are
to be adjusted to fit the observed Zeeman spectrum and
then compared with the theoretical results given in
Eq. (5). In our analysis we concentrate on determining
the Lamb shift from the data in Ref. 2. For this purpose,
we can adopt the theoretical value for AE since a 75

n Ee (H) could also be obtained from Au(25} by removing the
binding corrections, radiative corrections and nuclear size effects.

2 2 cP
Fe = rsvp(2S) (2/g. ) 1——+ (-', —ln2) n'+- —ln'(1/n') —S~„.

Using n '=137.0359 and I'} „,=—36X10 ' the two formulas give
identical results. See S. ].Brodsky and G. %. Erickson, Phys.
Rev. 148, 26 (1966).

12D. T. Wilkinson and H. R. Crane, Phys. Rev. 130, 852
(1963).

'~The binding corrections of order (Zn)2 can be ignored here
since Xsfs is itself only a —',% correction to the hyperfine energies.

'4 R.P. Feynman, in The QNaatlee Theory of Fields (Interscience
Publishers, Inc. , New York, 1961),p. 61.The radiative correction
(n/s) (Zn)' ln(Zn)'AE was computed by A. 7. Layzer, Phys. Rev.
Letters 4, 580 (1960) and con6rmed by Erickson and Yennie
(Ref. 8). A bound on the next term, (n/s. ) (Zn)'nEX (16/3)u, has
been given by Erickson:

~
o) (1. LG. W. Erickson (private

communication}. 7

where 8' is the Bohr energy of the n = 2 state; t V
= —(Zu)'m/8. Here gr, = (1—m/M~) for hydrogen and
gr, = (1—m/MD) for deuterium taking into account the
magnetic interaction of the nucleon motion about the
atomic center of mass. "

The binding corrections given here are just the first
term in the expansion in (Zn)' obtained from the Dirac
wave functions. The error made in not using the exact
eigenfunctions of Xo should be of the same order as if
t/t/' were replaced by the actual binding energy. Such
corrections are of order (Zn)'m/M~. Thus the theo-
retical expressions given for 3, and Al. are accurate
to 0.1 ppm. Note that for a uniform magnetic 6eld
H&H(x), quantum electrodynamics affects A, only
through the static anomalous magnetic moment and
does not affect A~.

The quadratic Zeeman term (tze'Ats) is approximately
0.01 MHz for B=1500G." However all e=2 levels
are affected similarly and the maximum change in
separation of any two m=2 levels is 0.004 MHz for
H=15006. This term can thus be ignored in our
analysis, as well as the negligible Al= 2 state mixing it
induces.

We have also ignored the negligible An&0 contri-
butions of Xo.

III. CALCULATIONS

Our task in this section is to find the eigenvalues of
the total Hamiltonian Xs+Xt+Xs. To do this we shall

"See the third paper of Ref. 1.



J ~ +ROD$Ky G. pA R, SONS

by I.,=Ii,—I,—5 . e matrix elements of 5, I
~ are most easily calculated b the e

turn in quantum mechanics. "
2

require matriatrix representations of S„ I, I. F

,j, ,esp)=mpII' /m„~»mph. Vv'e can eliminate I.,

j', ', , p IS, (g,I,p,mp)= ( 1)i+s+r+i+2P z—bsa, b, pbr8&8.b«'b». t r'(2F'+1) (2F+1)(2j'+1)(2j+1)J"
pf 1 F F 2

~p ~z) —( 1) '+z r —
b«—,'b&&, br&, b, 2p

j j 2 1

~ ~~«bsa err 8~y f(2F'+1) (2F+1)(2I+1)(I+1)(I))'"

and for t&0 and I&0

(j',I',p', , II LI
'

I jI P gg )—( 1)2j+l+E+I+8/2b p pI8m gns @~8)p8 g81811I

xI
F 1 F' F 1

i-.. . 0.p I

x 2g 1 2j' 1)(2I+1)(I+1)(I) (21+1)(l+1)(l)J" I 2
(16)
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Tsrsxm II. Submatrices of the Hamiltonian for I= xs (hydrogen). The notation in this table is explained in Eq. (17).

{I= 2, l =0, my = —1} {I=-,', l=1, my=0}

ay(2S, H)
2 (—1, —2, —2)+

1 —,
' (0,0,0)+Esi (0, —-, —-',) (0,0,0)+E» ! 0, , 0

3

{I=s,l=o, mg =0}
p

—v2
(o,o,o) yE„ o, , o !

3
(0,0,0)

Ay(25, H)
1 —; '

(0,0,0)+

0

(o, 2, -2)
3hy(2S, H)

(0,0,0)—

2

2

(0,0,0)+Ess (o, 2, —k)

(0,0,0) +Ess,
Ey(H) (1) g, (g, -2)

3 (4j 2 4

Ey(H) ( 3 g. (g*—2)

3 i, 4 2 4

{I=as l=0, m2P =+1}

Ay (2S,H)
1 2 (1,k, s)+

{I=-'„l=1, my= —2}

Ey(H) ( 5 g. 5(g,—2)
Ess= !

——— +»rr
15/2 ( 8 2 8

EF (II) 3 g, 5 g, —2)

B„s(y)(2—)=( )
{I= -'„ l = 1, my =+ 1}

2 -', P(—2, ——,', ——2')+E»$

(Ez(H) (3) g. 5(g,—2)
+»~

4 15/2 ESj 2 8

2 Q E

(1, -2, 2)+E» (
K2

0, —,0 I+Essj
~) 7 ++22

(»2 k)+Ess '

1 —,
' (—1, -'„—

—2,)+E» 0, , 0 !+E»j
—5

1y r 4 +E22
12

(" &i

( 1 —uS

4484

Ey(H) ('1 g (g —2)
~11

(Ey(H) ( 5 g, 5(g,—2)
E22=!

k 15/2 5 8 2 8

2 Q

(Ez(H) 1 g. (g —2)

4 2 4

(—1, —2, —2)+Ess-

(Ey(H) 5& g 5(g.—2)
Ess=! +»sr

( 15/2 Sj 2 8

(Ey(H) (3 g. 5(g.—2)
Ess-! +»rr

E 15/2 (8 2 8

Z„=Z, ja)(2—
~2j 48 j

Ey(H)) 3) g, 5(g,—2)
&33= +»~

15/2 j Sj 2 8

g,) —W2)
Z„=a~(II) 2—

2j 48 j
{I=22,l=1, m» =+2}

2 t (2,—2',—2)+E»g

(Ey(H) ) (3'i g* 5(g.—2)
E»=! — +»~

(15/2 jESj 2 8
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Tant III. Submatrices of the Hamiltonian for 1=1 (deuterium). The notation in this table is explained in Eq. (12}.

(I= 1, I=0, ms = ——,
' }

hv(2S, D)
(—5 —

k,
—1)+

3

(I= 1, l =0, mJ = ——',)

s k (—2, 6, —s)+E»

k
2

t' K2 —
K2)

3 3

(—2, —6, —k)+E2~

E» = ', hv (2S,—D)-

Egg = -,'Av (2S,D)

(I=1,/=0, mp =+~)

2 (k, —-'-, -')+E»
3 3

3 1
2 2 (s,—',,—,')+Egg

E»= —-', Av(2S, D)

Eg2 ———,'nv(2S, D)

(I=1,l=0, mJ =+-', }

hv (2S,D)

3

(I=1,l=1, my = ——',}
2

5 E(—s, —2, —1)+E»3

(E~(D)) (3 a 5(g —2)
+~E.

(45/8/k8 2 8

(I=1,l=1, my = ——,')

(—l, l, —1)+&»

5 3
2 2

3 3
2 2

(E» (D)) (1& a. (g.—2)

( 3 i E3) 2

t'Ev(D)% /3 g. 5(a.—2)
+&En

k 45/8 E8 2 8

(2 'i"'
0, -I —i, o

k»)
3 3 3)

I+E~~
2 10 5)

3
2
3
2

( —2

i
0, , 0 +E»

l, '3''

543 5 )
t' 3 11 2)

/

——,——,——f+Ess
2 30 5)

fE (D))t' 1 g. 5(r.—2)
+nE&

i 45/8 ) E 4

g.l (—&5a =& (&)(2—l~2j( n
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Tmx, z III. (contimzced)
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TABLE III. (coetinled).
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2 2
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The 3-j symbol

nsl m2 'm3

j.In Tables II and III, these submatrices are tabulated
for I=

2 (hydrogen) and I= 1(deuterium).
The notation in these tables is as follows. AH matrix

elements are of the form

is zero unless m~+m2+ma ——0 and the vector triplet »IILF g~y5 (g g~) I (gr+.g~)j+.~
(jq, jm, ja) satis6es the triangular condition

~ j&—j2~
& js&ji+j2 (if ml m2 mS o, ji+j2+j8 must be
odd). The 6-j symbol where E is the matrix element of Kp.

jl j2 j3

j4 j5 j6

is zero unless the triplets (j&,j2,j3), (j 3j4j5), (j&,js, j6),
and (j&,j4,j6) satisfy the triangular condition. Thus
we can easily obtain selection rules for the matrix
elements of 5„I„and I L. In order that (5,), (I,), and

(I 1) be nonzero, the triplets (F',F,1) and (j',j,1) must
satisfy the triangular condition and we must have
mJ m~ In ——addit.ion, if m~ ——mp =0, then 1+F+F'
must be odd for (5,) and (I,) to be nonzero.

From the selection rules, we see that the matrix
representation of the magnetic Hamiltonian for a
hydrogenlike atom in the m=2 state can be separated
into submatrices of a given l and nap. The basis states
for these submatrices are then characterized by F and

Since the effective values of 3, and AL, depend on /

and j, the appropriate values given in Eq. (13) should
be used when computing the numerical value of the
matrix elements. The energy of a Zeeman line for a
given magnetic Geld can then be found by solving for
the eigenvalues of the submatrix. The submatrices
are symmetric and only elements of (BC);; for i(j are
given. The results have been cross-checked by several
methods.

IV. LAMB SHIFT

Robiscoe and Cosens' have recently remeasured the
Lamb shift in the e= 2 state of hydrogen and deuterium.
In their experiments a magnetic Geld was applied to a
beam of neutral metastable atoms in the 251~2 state
and in a definite hyperfine state. The magnetic Geld
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in deuterium, n =2, including hyper6ne
structure. Crossings marked A, B, and C are
observable transitions with Amr =0.

2S IOOO

2P)

-500

-IQQQ
t

2

—l500—

l I I

500

I &

[
1 I

l000
MAGNETIC FIELD (GAUSS)

1500

was adjusted so that the energy of the atom was
degenerate with one of the 2E»2 levels. The crossings
which obey hm1=0 are observable by coupling the
levels via a static electric Geld. These crossings are
marked A and B for hydrogen in Fig. 1 and are marked
A, B, and C for deuterium in Fig. 2.

By knowing the magnetic Geld at which these
transitions occur, one can extrapolate back to zero
magnetic 6eld and determine the 25»~-2E~/2 separation
at II=0 (the Lamb shift).

In the Robiscoe and Cosens experiments, the mag-
netic 6eM was measured by observing the proton NMR

TALK IV. Lamb shift for crossing hydrogen A.

Tmr.z V. Lamb shift for crossing hydrogen B.

P (G)

604.565
604.800
605.034
605.269
605.504
605.739
605.974
606.209

v, {kHz)

25'?4.000
2575.000
2576.000
2577.000
2578.000
2579.000
2580.000
2581.000

s (MHz)

1056.535
1056.962
1057.389
1057.816
1058.242
1058.669
1059.096
1059.523

frequency v, in water and calculating H, from

(g,la.= v,
]

—
/

~fr~ o g.Po

H {G)

537.391
537.626
537.861
538.095
538.330
538.565
538.800
539.035

v, {kH..)
2288.000
2289.000
2290.000
2291.000
2292.000
2293.000
2294.000
2295.000

S (MHz)

1056.440
1056.867
1057.294
1057.720
1058.147
1058.573
1059.000
1059.426

where (g,/g„)0 is the ratio of the g factor for free
electrons and the g factor for protons in water. A
measurement of this ratio has been made by Lambe
and reported by DuMoncV'.

(g,/g„) 0
——658.22759&0.000022. (19)

~ E. R. Cohen and J. W. Dulond, Rev. Mod. Phys. 31, $37
{1965).
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7&sLz VI. Lamb shift for crossing deuterium A. TmLz VIII. Lamb shift for crossing deuterium C.

27 (G)

563.227
563.462
563.697
563.932
564.166
564.401
564.636
564.871

v, (kHz)

2398.000
2399.000
2400.000
2401.000
2402.000
2403.000
2404.000
2405.000

S (MHz)

1057.655
1058.084
1058.512
1058.940
1059.368
1059.797
1060.225
1060.653

583.191
583.426
583.661
583.896
584.131
584.366
584.600
584.835

v, (kHz)

2483.000
2484.000
2485.000
2486.000
2487.000
2488.000
2489.000
2490.000

S (MHz)

1057.421
1057.849
1058.277
1058.705
1059.133
1059.561
1059.989
1060.41.7

H (6)
573.092
573.327
573.561
573.796
574.031
574.266
574.501
574.736

., (kHz)

2440.000
2441.000
2442.000
2443.000
2~no 000
2445.000
2446.000
2447.000

S (MHz)

1057.484
1057.912
1058.340
1058.768
1059.196
1059.624
1060.052
1060.480

Tmx,z VII. Lamb shift for crossing deuterium B.

Crossing

Hydrogen A
Hydrogen 8
Deuterium 8
Deuterium C

2291.627 kHz (+50 ppm)
2577.570 kHz (~50 ppm)
2444.354 kHz (+38 ppm)
2487.261 kHz (+51 ppm)

1057.983+0.05 MHz
1058.059~0.05 MHz
1059.348~0.04 MHz
1059.245~0.05 MHz

& See note added in proof after Sec. V.

TmLz IX. Experimental values of the Lamb shift. The errors
given here correspond to a one-standard-deviation experimental
error. ~

The relevant eigenvalues for the Robiscoe and Cosens
experiments have been calculated. The apparent value
of the Lamb shift has been determined for several.
assumed values of the magnetic field for a zero-fre-
quency crossing. These value~ are tabulated in Tables
IV—VIII. These predictions for the Lamb shift are
accurate to I ppm. If the parameters gr„g„(g,/gv)e,
n, hE, ~, and hv are altered from their nominal value
by 1 s.d. in the case of experimental numbers and by
an order of magnitude estimate of error in the case of
theoretical numbers, the resultant error in the Lamb
shift is less than 1 pprn.

V. CO5'CLUSION

In this paper, we have presented a method of calcu-
lating the energy levels of a hydrogenlike atom in a
magnetic Geld. We have applied this method to the
level-crossing experiments of Robiscoe and Cosens.
Their recent results for the corrected center NMR
(proton in water) frequencies' along with the value of
the Lamb shift calculated by our method are shown in
Table IX.

The di6'erence between the theoretical prediction for
the Lamb shift and the averages of the results listed in
Table IX are

S, ~
—Sth =0.45&0.13 for hydrogen

=0.47&0.13 for deuterium.

The error interval given here is obtained by adding the
one standard deviation experimental error to the
estimated accuracy of the theoretical prediction.

The perturbation theoretic treatment given by
Robiscoe for the 3 crossing of hydrogen can be derived
by keeping the leading terms of our result.

Our results disagree with those obtained by Robiscoe
and Cosens' by less than 0.06 MHz. The differences

are understandable since their perturbation treatment
ignored several terms of order 0.01 MHz. The largest
correction is attributable to radiative corrections and
finite mass contributions to the hyperfine splittings of
the 2P~f2 state.

Eofe added in proof Since t.his paper was written,
Robiscoe (private communication) has discovered a
systematic error in the Robiscoe and Cosens experi-
mental results. ' This error, due to a previously ignored
effect of a motional electric field, reduces the experi-
mental value of the hydrogen Lamb shift by =0.15
MHz and the value of the deuterium Lamb shift by
=0.10 MHz. This effect reduces the discrepancy be-
tween theory and experiment and brings the Lamb
experiments and the Robiscoe-Cosens experiments into
agreement within the experimental errors.

APPENDIX A

We analyze here the extent of any residual magnetic
field dependence in the total Hamiltonian beyond that
already exhibited in Xr+Xz in Sec. II-A. Xr+X2
gives the entire interaction of free particles with a
constant magnetic field. This form is also clearly
correct when the electron and nucleus interact through
a potential with no momentum dependence; e.g. , the
potential from one photon exchange. It is not true,
however, that Xr+Xz gives the entire magnetic field
dependence when self-energy interactions or the full
Bethe-Salpeter interaction is taken into account. The
type of correction we are seeking thus involves a
computation of the dependence of the quantum electro-
dynamic level shifts on H.

Following the approach of Erickson and Yennie, "
one Gnds that the order 0. self-energy correction to the
energy E„of an electron in a static electromagnetic
"See, for example, Ref. 11, Eqa. (2.6) and (2.7).
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t1E„(L)=—2n ( m 11)
(n)p] ln +—

[ Ly,eA][n), (A2)
3 ms l, 2H& 24i

u t'
aE„(M)=—

~

— ~(n ~-', a„„F")n).
2~& 2m&

(A3)

4E„(R) contains terms explicitly quadratic in P&"

and terms which modify the operators in I. and M at
small distances, r(h/mc. Our notation is the same as
Ref. 8 with

II"=p"—eA».

p2

2mH~tt 2m ——+eA e+ e„
29Ã

—eo-„„I'&"—y-eA —eA y

field 2& may be written in the form

~E„=Z E„(L)+SE.(M)+~E.(E), (Ai)
where

through the Bethe-Salpeter equation are of order
cr(m/M)S. The change in the contribution due to an
external magnetic Geld thus can be no larger than
order (tteH/Ey)n(m/M) S.

In summary, we find that there are external mag-
netic Geld corrections to the Lamb shift 8, but these
corrections are of negligible order: (tteH/Ry) S. To this
accuracy the magnetic interaction of the atom is given
by the Hamiltonian corresponding to a free electron
and nucleus.

We, of course, ignore in our analysis the interaction
of the electric quadrupole moment of the deuteron
with the external magnetic field which is due to the
motion of the deuteron about the atomic center of mass.

A discussion of the radiative corrections to the line
shapes which are measured in electromagnetic transi-
tions has been given by Low."

APPE5'DIX 3
The one-photon-exchange interaction of the electron

and nucleus can be written as"

(n~ (y II—m) = (y II—m) ~n)=0,

e=-/ef,
(A4)

whcl e

V =4sre'u(p')y„u(p)A",

pe=E„=m—e„.

We are interested in the dependence of hE on the
external magnetic field. When the part of Ii&" corre-
sponding to H is inserted in AE„(M) we obtain the
contribution of the anomalous moment of the electron
to order n. This is already accounted for in X&. To
evaluate hE (I.) we follow the usual Bethe sum-over-
states procedure. If we use a nonrelativistic approxi-
mation, then'

1 (P+P')& io I'"q„
A"=—u(P') + (1+tc~) u(P) (82)

q' 23EI 2N~

for hydrogen, and

—1 (p+p') &ge
A~= .&*(P)—

q' 235~

—(1+~i)) e.(P) (83)

2G p 2

hE. (L)= — Q (n~ —~n')~" (e" —e ' )
3gm2 "' m

m
X ln +-NB,Xtt

i

(A5)

This is the major contribution to the Lamb shift S
where ~n) corresponds to the 25it2 state. The addition
of an external magnetic field is reflected in hE„(L)
through the change in the binding energies e„.~~. We
thus find that the change in the Lamb shift is of order

S(H) —S(0)= O(ttoH/Ey) S.

We also note that terms quadratic in the field strength
in AE„(E) yield corrections only of order (tt&H/m)S.
The external magnetic field changes the spin dependence
of the wave function ~n). This affects hE (M) and one
finds a correction of order cr(Zn)'tteH.

The vacuum polarization level shift contribution is
unchanged to Grst order in p,oH. The modifications due
to recoil and nucleon structure corrections as obtained

for deuterium. The plane-wave solutions of the spin-
one nucleus satisfy the subsidiary conditions

P e (P) = ett~(P')P'&= 0,
which can be used to eliminate the zeroth component
of the nuclear polarization vector e .

We have not included in Eq. (83) a term which,
added to the deuteron current, yields the measured
static electric quadrupole moment. We will discuss its
contribution at the end of this appendix.

Ke are interested in the part of V which yields a
potential dependent on the nuclear spin,

I= ~e for hydrogen,

(It,);;= ie;;~ for deu—terium.

In the center-of-mass system, qo
——0 and the spin-

» F. Low, Phy . R.ev. 88, 53 (1952).
~0 We use e'=a. Otherwise the notation is that of J. D. Hjorken

arid S. D. Drell, Relativistic Quatttttng Mecttalics (McGraw-Hill
Book Company, Inc. , New Vork, 1964). The momentum trans-
ferred to the nucleus is IJ=p —p'=P' —P.
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dependent vector part of A& is

1+@ 1
A(q) = —i

The contribution of this term is included in Eqs. (8)
and (10).

For deuterium,

for H(I=-,') and D(I=1). If we assume the electron
is nonrelativistic and add in the electron's anomalous
magnetic moment we get

P.A+A y' g. eX«1.A+i-
2m 2 2m

Ao= —«p'(P') g~"+ (1+~D)
q' AID 235D

P,'Pp Epg& —P~' ()p=—«;*(P') —(1+sn)- «I;(~')
q' 3JIg)' 2M g)'

q, a=1, 2, 3. (»)
The vector potential A(lf) yields the usual hfs

potential in the electron's position space."
—e e 1+m Bs.

l't t. (r) = ——P(r)g, S I
2m 2M I 3

Ke have made use of the subsidiary conditions,
discarded a spin-independent term, and dropped correc-
tions of higher order in 1/M~. We then rewrite A' as

2
+g,—(S I—3S rI r)——(I L) . (B7)

r' r'

The leading terms in Eqs. (8) and (10) are calcu-
lated from Eq. (37). We must also consider the spin-
dependent part of A'.

For hydrogen,

—1 E e q
u(&') +(1+.~) ~(f')

q2 ~~ 2' I
-sI. (P'X P)=—xt(P')

q' 435g'

(88)

In the second line, we have kept only spin-dependent
terms and have discarded terms of order M~ '. %e
thus obtain an additional contribution to Vhf, ".

$2 IL
+ (1+2~~)

2'~' r3

"H. A. Bethe and E. E. Salpeter, Quantlm, 3Iechanics of One-
and Tzo-E/ectron Atoms (Academic Press Inc. , New Vork, 1957),
Sec. 22. q—=—iV.

"This agrees with the result of W. A. Barker and F. N. Glover,
Phys. Rev. 99, 317 (1955).They made use of a Foldy-Kouthuysen
transformation for the tvro-body problem.

—1 I «11 q I PI I+I P'I P'
«,*(I") K~+

q' 231~' 2'~'

t:I tlX (P+P')
+ so «„(P), (810)

again keeping only terms dependent on nuclear spin.
The last term is an induced dipole moment for the
deuteron and gives the position-space potential

e' I L
+ —K~

2M')~ r3

The contribution of this term is included in Eqs. (8)
and (10). The spin-dependent remainder of Ao corre-
sponds to an induced quadrupole moment. The term
proportional to ft. ~ is a contribution to the static
electric quadrupole moment which necessarily ac-
companies the deuteron's anomalous magnetic moment.
We note, however, that the electric quadrupole mo-
I»ent can only aQect the atomic 283, 2 level. The
additional energy of this level is of order 0.006 MHz, 23

and may be neglected in determining the Lamb shift.
The hyperfine-splitting formulas in Eq. (8) include the
lowest-order binding corrections as given by Rose."
"See the third paper of Ref. 1, Appendix VI.
r4 M. E. Rose, Reloleelslic Electron Theory (John Wiley 8z Sons,

Inc. , New York, 1961).


