
MEASURED LIFETIME OF (3p04s) 'Pr STATE OF Ar

In view of the uncertainty in the initial conditions,
the value 21+2 nsec is quoted for the natural lifetime
of the (3p04s)'PI state of argon. This value can then
be compared with the value 10.5 nsec calculated by
Knox/

At present, the decay of the 4p'5s multiplet in
krypton is being measured. These measurements will
allow comparison to the experimental work of Turner'
in addition to the values calculated by Dow and Knox. '4

Since preliminary data indicate that the krypton decay

"R.S. Knox, Phys. Rev. 110, 375 (1958).
J. D. Dow and R. S. Knox, Phys. Rev. 152, 50 (1966).

is considerably faster than that for argon and that at a
given pressure the krypton signal is much larger than
the argon signal, the effect of resonance trapping upon
the krypton decay will probably be investigated over a
broader range of pressure than that reported here for
argon. In addition, it is planned that data will be taken
for a variety of initial conditions.
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Positronium Formation in Positron-Hydrogen Scattering*
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A pair of coupled equations describing positron-hydrogen scattering in the energy range where only
positronium in its ground state may be formed is solved numerically. The equations, unlike others previously
derived, are local to lowest order. The effects of the polarizability of both hydrogen and positronium are
included in various ways. The s-wave phase shift at threshold is close to that obtained previously by solution
of the nonlocal equations when no polarization is included, and is dramatically improved when polarization
of both hydrogen and positronium is included. The positronium formation cross section is about 40 times
smaller than the Born approximation. These are the only comparisons with previous work available.

INTRODUCTION

'POSITRON —HYDROGEN scattering is of interest
as a representative three-body problem. It is un-

complicated by symmetry requirements introduced by
the Pauli principle, but does have the complication of
the possibility of a rearrangement collision (positronium
formation). The importance of the positroniurn channel
even in elastic scattering has been repeatedly empha-
sized. ' Massey' and co-workers have allowed for this
channel by a variational treatment of the problem.
They assume a wave function of the form

+(ro,rr) = J'"(ro)4(r1)+G(s(ro+rt))x(lro rtl) (1)

where ro is the coordinate of the positron relative to the
inhnitely massive proton and r1 is the electron co-
ordinate relative to the proton. @ and X are the ground-
state wave functions of hydrogen and positronium,
respectively. The form (1) is then inserted in the Kohn
principle, which is made stationary with respect to

*Work performed under the auspices of the U. S. Atomic
Energy Commission and supported in part by National aero-
nautics and Space Administration Grant No. NGR 05-003-172.

)Present address: Space Science Laboratory, University of
California, Berkeley, California.' T. F.O' Malley, L. Rosenberg, and L. Spruch, Phys. Rev. 125,
1300 (1962).

~%. J. Cody, J. Lawson, H. S. W. Massey, and K. Smith,
Proc. Roy. Soc. (London), 278, 479 (1964).

small variations of the unknown functions Ji and G.
The result is a pair of integrodiRerential equations
determining F and G. The boundary conditions are

gipjF0

lim F= e'0' "+f(ro,P;)
gp ~op to71 finite

~st l ro+ri I tt 2

G= g((ro+r1)/lr0+rt l,p~) — (»)
Iro+r1 l/2

lim
(i-0+ii( ~ ~
j rp —1'1 [ finite

Here f is the elastic-scattering amplitude and g is the
rearranged amplitude. We assume here that the only
rearranged channel which is open is the ground-state
positronium one. This restricts the incident energy by

r) p,s) 1 (3)
where p

0 is the incident energy of the positron in
rydbergs. The n=2 level of hydrogen is energeticalm
allowed, but excluded from + by the choice of the forly
(1). The coupled. equations described, here for Ii and G
can be shown to be the lowest order of an exact pair. 3

Higher-order terms modify the potentials occurring in
these equations. The higher-order terms represent
virtual excitations of both hydrogen and positronium.
These higher-order potentials are well known' to be

0 M. H. Mittleman, Ann. Phys. (N. Y.) 28, 43 (1964).
4 B. A. Lippman, M. H. Mittleman, and K. M, Watson, Phys.

Rev. 116, 920 (1959),
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lim
p'p ~ 00

) rp —rij finite

where

e7,yf rP

P@=g(r"p, pp) X(
f
rp —ri f)

rl —r0
Xexpiprrp ' —

I
(4b)

2

pf 2pi

Chen and Mittleman' chose their projection operator
such that

&+=J'(ro)4(ri)+G(ro)x(lro —ril)
Xexpiprro (-', (ri ro)) (6a—)

and obtained equations coupling F and G. The asyrnp-
totic forms of Ii and G are implied by (4). The exact
equations for F and G contain eRective potentials
which in practice must be approximated. The simplest
approximation is to neglect all virtual transitions to
states not contained in E.This yields the same equations
as the variational method used by Massey with the
form. (6a) instead of (1).The equations obtained in this
way are local.

Polarizability of both hydrogen and positronium are
omitted in these equations. These effects may be in-
cluded by allowing for adiabatic virtual transitions out
of the E part of Hilbert space. %e include these by using
a potential which gives the correct dipole polarizability
but has a phenomenological cutoff at small distances.
Various cutoRs are tried.

Clearly, the projection operator implied by (6a) is not
unique. It need only be a form which reproduces
simply the asymptotic form (4). For instance, the ex-

p J. C. Y. Chen and M. H. Mittleman, Ann. Phys. (N. Y.) 37,
269 (1966).

nonlocal (integral operators) in this and analogous
problems, but the lowest-order terms are only nonlocal
in this problem because the coordinates in F and 6 in
(1) are different. This is a geometric complication and
can be eliminated by a different choice of coordinates.
Chen and Mittleman' have shown how this could be
done. They obtain an exact pair of coupled equations
analogous to those obtained for I' and 6 which are, in
lowest order, local. The essential point of their method is
the use of the positron coordinate to label positronium
rather than the center-of-mass (c.m.) coordinate as in
(1).Since positronium is a body of finite extent and the
coordinate used to describe it is not the c.m. , we may
expect spurious angular-momentum terms to enter.

The method of Ref. 5 is dependent upon the con-
struction of a projection operator I' such that aH. the
elastic and rearrangement scattering is contained in
I' N, where 0' is the total wave function. The asymptotic
form of I'4 is given by

iysrP-e'
lim I'+= e'o' "+f(rp, p;)

. @(r,),
p'p -+ eo

rI finite ~e—

ponential multiplying X in (6a) could be replaced by

expipgrp (-;(r,—rp))P(rp), (6b)

where the function P satisfies P(~ ) = 1 but is otherwise
unspecified. Inclusion of P will not affect the exact re-
sults but when the approximations described in the
last paragraph are made, P will then have an effect.
The error in the amplitudes can be shown to be linear
in the error in the eRective potential, and. 8 can be
chosen to minimize this error.

The energy range (3) excludes the higher states of
positronium. The reason for this was discussed in detail
in Ref. 5. Briefly, it is that if such a channel were open,
the form I'O' LKq. (6a)j, would contain the amplitude
for the production of the higher state in G and it would
be difficult to extract this amplitude from the ampli-
tude for the ground-state production. This is a result
of the lack. of orthogonality of the states f, 1s& and f,
2s&. The states of hydrogen do not present this problem,
since they are othogonal among themselves.

The coupled equations for F and G are

L&—(il~liHF+L» —&if~i fHG= o

L&—&fl3'-
I f&G+ CA*&—

&f I
x

I
i&HF = o

where the eRective Hamiltonian is given by

X,=H+HLQ/(E —QHQ))H,
Q=1 P. —

(9a)

(9b)

(10)

The approximation, in which the coupling to states
outside of P' is neglected, is obtained by replacing 3'. with
H in (9) (i.e., Q=O). The equations resulting from (9)
are still coupled through the kinetic-energy term. This
is numerically inconvenient, and a simple algebraic
operation decouples them. Next, a partial-wave de-
composition of Ii and G, is made:

F(r) =2 i'(2~+1)(1/r)~ (r)& ( ),
L=O

where p=p; ro.

RESULTING EQUATIONS

Ke shaH merely quote here the relevant results of
Ref. 5. The projection operator is given by

8(rp —ro')
=

I fi&&s I+ If&&fl
—A(«) Ii&(fi

1—IA(«) f' —A'(«)
I f)(i I 3, (7)

where

1 ~l

lf&=xi (Iro—ril) expipri'o (l(ri —»)),

~(«) = &'I f&= d'rishi (ri) "i (I"—ril)

Xexpipiro (o(ri —ro)) (8)
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The resulting equations are

d' l(1+1) 1 2 2 1
p'+ —— + — —v, ——(1+r)e '"—2~5+—

I
~ I2 I'&+

dr~ r' 1—
I
~l'- r

d 2p 2
X & —,'(1+p ')+ip + +&b—-(1—e (1y-', r)) +25*F2~'d/«+~" G& ——0, (12)

dr r2 r

f(i+ 1)+2Pr2 d 1. d 2Pr2 2—
ipse y —

l
z

l

' —ip~ — —p,'+- lP—(6"+2A'd/dr) (2/—r)
dr 1—lal' dr r' r

1 2 2
(1+~ir)e '—26*5*—'Ub G&+ — 25+iV 'U, +——(1+—r)e 2' Fi=o,

(13)

$(r) = d'rishi, (ri) xi, (l r—ri l) exp —ipfr" (2 (ri x))—
r—rq

and A(r) is given by (8). The functions 'U, and 'Ub are
the polarization potentials of hydrogen and positronium,
respectively. They are taken as zero in the approxima-
tion described here. Equation (12) presents no unusual
features, but (13) does. Note that the centrifugal term
is modified by an energy-dependent term (2pf'/r') The.
factor 2 is proportional to Jd'r r'X''(r), the "size" of
positronium. This term results from the fact that an
off-center coordinate is used to describe the outgoing
positronium atom. The term ipse d—/dr is really just
the term pr'. It takes this form because the outgoing
wave boundary condition Eq. (4b) is built into the pro-
jection operator through the presence of the exponential
factor in l f), Eq. (8). At large distances G~ e'"f', so
that ipf(dG)/dr)- pr'Gb

The lowest-order terms of the effective potential
are given by expectations of 6H between the states
li) and

l f), where

The dominant term is

Furthermore, the simple scaling relation

~-( ) = (lV'8)~-(-; )

yields the approximate result

'Ub(r) = U.(-,'r),

(18)

(19)

which we use to determine "Ub(r), having chosen 'U, (r).
Equations (12) and (13) were solved with 6ve dif-

ferent choices of 'U, . In the first case (I) we take V,=0.
In the second (II) we use the Buckingham form,

V.(r) ~ ——,'(1/r') .

Similarly, (fl8Hl f) is the polarization potential of
positronium 'U~, the dominant term of which is

vb ~ —36/r4.

&H= HI Q(&—QHQ)1H. 9{r2yd 2)
—2 (2o)

It is clear from the form of S or 6 that the expectation
(i l

0
l f) of any operator 0(ro) which is bounded as ro ~~

-will vanish exponentially in this limit. Ke shall not be
interested. in such terms, so only diagonal terms
(il5Hli) and (flbHl f) are of any interest. Consider
the term (i l 8H

l i). In the limit ro-+~ we use the hydro-
genic states as the complete set in which we expand
the intermediate states of 8B. This will involve terms
like 6 and S, since Q contains

l f) These may be .dis-
carded, since again they vanish exponentially. There-
fore, I' in Q could be replaced by the straightforward
projection operator for the scattering of a charged
particle on hydrogen with only the ground. state in-
:cluded in P. The term (ilbHli) at large distances,
.therefore, is just the polarization potential of hydrogen.

with d, = 1. In the third choice (III) we use (20) with
d, =2. The final two use

'U, = —9{1—e '*L1+2x+2x'+—'x'+2x4
+(4/27)xbj)1/r', (21)

with x=r/d, where in the fourth choice (IV) d, =1,
and in the fifth (V) d, =2. Form (21) was chosen to
coincide with the cuto6 function obtained from the
polarized orbital method as used in Ref. 2.

For these various choices of the polarization potential,
the equations for F~ and G~ are integrated by a Runge-
Kutta scheme. By a change of variables to elliptical co-
ordinates, the evaluation of both h(r) and S(r) is re-
duced to the computation of a simple one-dimensional
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sin(p, r—-,'lz )
pJ(r) ~ +fJeJ'(JJ~r «(2i'

GJ(r) ~ g(ei(pyr —Jn ls)

Two independent sets of initial conditions, determining
the amplitude of FJ(0) and GJ(0), yield two independent
sets, of solutions of F~ and G~. By the appropriate linear
combination of the two sets, the plane-wave term in 6,
given by (r2 in Eq. (22), is eliminated and the proper
asymptotic behavior, Eq. (24), is extracted.

A check on the accuracy of the solutions may be found
from the conservation equation for this two-channel
system, '

»n(fJ) =p'If(l'+sprig(I' (»)
FIG. g. Elastic cross sections in units of map as a function of

energy in rydbergs. Solid curves: total cross sections for four
forms of the polarization potential /labels correspond to numbers
in Eqs. (20) and (21)j.Dashed curves: corresponding contribution
from s wave.

integral, of the form

Only when the amplitude of f( and gJ were negligible,
with respect to the total amplitudes f and g, did the
did the two sides of (25) differ by more than 1%%uo.

Hence, the numerical. accuracy of the total values g
and g is about 1%%uz.

For a given positron energy p,', the total cross sec-
tions for the elastic and exchange channels, respectively,
are given by

where the limits of integration are complex functions of

pr and r. The integration from r= 0 to r= ~ of the
coupled equations is executed in three stages: first, a
power-series solution is found for r((1, enabling one to
start the numerical integration at 0(r= e((1; Runge-
Kutta integration takes the solutions to a large value
of r= ro, and then the long-range effect of the polariza-
tion potential, beyond r = ro, is calculated by first-order
perturbation theory.

The general asymptotic solutions for Eqs. (12) and

(13) are given by

sin(p, r ——,
'

lvr)

J J(r) (rr +Pre'"*'

00

~,=4~+ (2l+1) lg, l

l=o 2 '

(26)

O. I

beyond l=4, the contributions from f( and g('( were
found to be negligible: hence the summation in this cal-
culation extends from /=0 through /=4. For each of
the five polarization potentials, calculations were made
at eight energy values over the rangergiven in (3).

RIld

sin(prr ——,'-Ps.)
GJ(r) —Jrs +Pse"~",

(22)

where P(1*+1)= l(i+1)+2Prs. The amplitudes f and g
are delned in Eq. (4), and expanded as

U

O
MI-
Z
D

0.0 I

O

O
LJI
M

f=P (2l+1)f(PJ(u),
L 0 (23)

0.00 I
OA 0.6 0,8 I.O

Pf 2

Fn. 2. Contribution from p wave to elastic cross section in units
of 2I-a0' as a function of energy in rydbergs.

g=P (2l+1)gJJ'J(u) .
0

From Eqs. (4), (6a), and (11), the asymptotic forms of

'We have neglected the complex (absorptive) part ofgthe
potential which enters in (12) and (13) when the I=2 level of
hydrogen is energetically possible, p;2) ~3. Consequently, Eq. (25)
should be numerically correct even above this threshold.
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RESULTS O, O I

In Ref. 2 the elastic-scattering phase shifts in the
range below the positronium-formation threshold
(p;s(~~) were calculated in five different ways. Their
method, D, which starts from our Eq. (1) as described in
the introduction, may be compared with our no-
polarization calculation. The difference between the two
is just the di6erence in coordinates in the positroniurn
channel Li.e., the difference between Eqs. (1) and (6)$.
The only point of comparison is at the threshold,
p,'= sr, where the two calculations overlap. The s-wave
phase shift of Ref. 2 extrapolates to about —0.29 at
the threshold. , while ours yields —0.32. Probably the
best value yet obtained is the variational result of
Schwartz, which is about —0.05. Taking this as the
correct result, ours is about 10% further away than the
result of the integral equation. Method. K of Ref. 2
includes the polarizability of hydrogen by the polarized-
orbital method. Our fourth method includes the polariz-
ability of hydrogen in the same way, but also includes
the polarizability of positronium which is eight times as
great. Our s-wave phase shift at threshold calculated
by this method' is —0.14. Extrapolation of method E
of Ref. 2 is difficult because of insufBcient data.

The total elastic cross section in units of mao' as well
as the l=0 contribution to it are shown in Fig. 1.
Method H is not included, since it gives a much larger
(and less believable) result for the total and, 3=0 cross
section. Clearly, d, =1 in the Buckingham form is too
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FIG. 3. Positronium formation cross section in units of mao
as a function of energy in rydbergs. Solid curves: total cross sec-
tions for four forms of the polarization potential. Dashed curves:
p-wave contribution.

r C. Schwartz, Phys. Rev. 124, 146S (1961).
Actually, methods II, III, and IV all give essentially the same

result for this number.
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Fxc. 4. Contribution from s wave to positronium formation cross
section in units of 2I-a0' as a function of energy in rydbergs.

small a cutoG in that it contributes an anomalously
large, short-range attractive potential.

The inclusion of the attractive polarizations reduces
the elastic cross sections, the reduction being the least
in method IV. The /= 1 contribution is shown in Fig. 2.9
Their sensitivity to the form of the polarization is
evident.

In Fig. 3 the total positronium formation cross sec-
tion in units of mao' is again shown for the four methods
(excluding II, which is again as much as a factor of 10
higher). The dominant partial-wave contribution is
3= 1.This is also shown. The sensitivity to the polariza-
tion form is also quite pronounced here. In Fig. 4 the
s-wave contribution to the positronium formation cross
section is shown. Again, the dependence upon the
polarization is eviderlt.

The most startling part of the results on positronium
formation is the comparison with previous calculations.
Massey and Mohr" and Cheshire" have each done the
same Born-approximations calculation. They agree
within 20'%%. Cheshire" has also done an impulse-
approximation calculation which is about a factor of
15 higher than the Born result in this range and is
probably a poor approximation in this energy range.
The Born approximation is poorly dehned for rearrange-
ment collisions" but the results obtained in Refs. 10 and
11are probably characteristic of all of the different forms.

One can recover the Born approximation from Eqs.
(12) and. (13) by setting G&= 0 and dropping the poten-
tial terms intheF~part of Eq. (12) andby setting'U, =O
and dropping the potential terms in G~ and the "cen-
trifugal term" 2p~'/r' in Eq. (13).We—have changed
Eq. (13) in various combinations of the above steps and
convinced ourselves that distortion of the incident wave
and back-coupling from the 6 to F channels both tend

' The word "contribution" refers to the value 4(2l+I) I f~ I', 'or
4(21+1)~gt ~', so that it appears in the appropriate units.' H. S. W. Massey and C. B. 0. Mohr, Proc. Phys. Soc.
(London) A67, 695 (1954)."I.Cheshire, Proc. Phys. Soc. (London) SB, 227 (1964).'2 C. Joachain and M. H. Mittleman, Phys. Rev. 140, A432
(1965).
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to reduce the positronium amplitude (from the Born
result) but that the major reduction comes from the
"centrifugal" term —2pts/r'. This term arose from the
choice of coordinates (Eq. (6a)J and the requirements
on the wave function at s ~~.However, the continua-
tion to small r is certainly not unique. For instance, the
modification of the basic form (6a) discussed with
reference to (6b) would modify the potential in question
with the resulting form —2(pt'/r')P'(r). The asymptotic
requirement P(~)=1 ensures the correct asymptotic
form for 4, but setting P(0) =0 would turn off this term
at short distances. We have chosen the form

(27)

and. have rerun the problem with several values of the
parameter u. For a&2 there are essentially no changes
from the results quoted here. This indicates that our
results d,o not depend critically upon the continuation of
long-range e6ects into the origin. For small values of g,
we drastically modify the short-range terms and the
results are changed. The parameter a could be inter-
preted as a variational parameter, and optimized. This
requires further calculation which we hope to report
on soon.

No experimental evidence is available for comparison

here. However, there are some data on positron-helium
scattering. "This is a swarm experiment, and. its ana-
lysis" depends upon some assumptions concerning
positronium formation. One assumption in particular
is that positronium will be formed rapidly when it is
energetically possible. H the results of this paper are to
be relied upon and if they can be extrapolated to helium,
then this assumption will have to be reexamined. For
this reason, and for the additional reason that direct
positron scattering experiments on helium are now con-
templated, " we propose to apply the method used
here to that problem.

Ãofe added sm proof. B. Bransden and Z. Jundt have
reported on a similar calculation at the Fifth Inter-
national Conference on the Physics of Electronic and.
Atomic Collisions, Leningrad, USSR, 196/ (unpub-
lished), in. which they solved the equations associated
with our Eq. (1). Their positronium-formation results
are drastically different from ours. In particular they
show a pronounced peak in the s-wave results near
threshold. The reason for the discrepancy is not clear.
"S. Marder, V. W. Hughes, C. S. Wu, and W. Bennett, Phys.

Rev. 103, 1258 (1956).
"W. B. Teutsch and V. W. Hughes, Phys. Rev. 103, 1266

(1956); R. Drachman, eNd 138, A15.82 (1965).
r' W. McGowan (private communication).
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In this paper we g ve a complete and straightforward analysis of the n=2 Zeeman structure which ls
intrinsically accurate to 1 ppm for determining the Lamb shift from present experiments. This analysis takes
into account the current experimental and theoretical knowledge of the atomic Hamiltonian. It is sh
that the magnetic part of this Hamiltonian can be taken as that of a free electron and a free nucleus. Radi
tive corrections to this assumption are shown to be negligible. The total Hamiltonian can th
ized in the IF~ 2'1~ 1~ ntr & represent:ation. Matrix representations of the Hamiitonian are given for a)i n= 2
states of hydrogen and deuterium. We give theoretical predictions for the )= ]. hypergne intervals in h d o-
gen and deuterium which are accurate to 1O ppm. Values of the Lamb shift calculated from the recent Zee-
man level crossings of Robiscoe and Cosens are tabulated.

I. INTRODUCTION

~HE +=2 Zeeman structure of atomic hydrogen
and deuterium has served as a precise testing

ground. of quantum electrodynamics. Our knowledge

of the Lamb shift, the 2E1/2-2S~/2 interval, and the

Qne structure separation, the 28@2-28~~2 interval, has

been determined from an extrapolation to zero field of

*Work supported by the U. S. Atomic Energy Commission.

f Present address: Department of Physics, Northeastern Uni-

versity, Boston, Massachusetts.

experimental measurements of the atomic spectrum
in a nonzero magnetic field. In this paper we calculate
in detail an accurate extrapolation of the Zeeman
levels. This seems especially important now in view
of the discrepancy of the measured and predicted
Lamb shift.

The first comprehensive analysis of the precise
Zeeman structure theory required to interpret the
experimental spectrum was given by Lamb in conjunc-
tion with the pioneering experiments performed by


