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Stripping channels are phenomenologically coupled to the incident deuteron channel and the effect upon
the elastic cross section is calculated for incident energies at 7, 11, 12.8, 14.3, and 22 MeV. Only the stripping
to the 2p states in "Ca is explicitly considered, and the corresponding stripping cross sections are also ob-
tained. The spins of all particles are set equal to zero, and the nonorthgonality between stripping and
deuteron channels is ignored to a large extent. It is found that the deuteron amplitude is signilcant}y reduced
in the nuclear interior compared to that calculated with an optical model. This reduction has an effect upon
the stripping cross section which is reminiscent of a cuto6' in distorted-wave Born approximation calcula-
tions, but does not appreciably affect the main stripping peaks. The agreement with experiment is not
unreasonable.

r. 1mRODUCTrom

l 'HE description of pickup and stripping reactions
by the distorted-wave Horn-approximation

(DWBA) method' is in very good agreement with ex-
periment. In particular, the improvement over the
plane-wave Butler description is very satisfying. This
success of the DWHA method in describing the deuteron
nucleus interaction is remarkable in view of the fact
that there are various serious approximations involved
in the calculation. One of those consists in ignoring
entirely the internal degrees of freedom of the deuteron,
despite the fact that large distortions are expected to
occur in the internal deuteron wave function when the
deuteron's center of mass approaches the surface of the
target nucleus. Another somewhat paradoxical feature
is the relatively large probability, at least according to
the optical-model description, with which this undis-
torted deuteron is expected to be found in the interior
of the nuclear region' 4 during the elastic-scattering
process. This probability is larger than that for alpha,
particles and reveals itself in that the elastic scattering
of deuterons is sensitive to changes in the optical poten-
tial at small distances, while n-particle scattering is not.
This "nonabsorption" of deuterons in the nuclear in-
terior is at first sight surprising since, in view of the
small binding energy of the deuteron, one would expect
that it should not survive as readily as n particles in the
interior region of the nucleus.
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f Supported by the U. S. Atomic Energy Commission.
' A recent discussion of DWBA theories can be found in notes

of lectures given by G. R. Satchler, in I.ectures in Theoretical I'hys-
ics, edited by P. D. Kunz, D. A. Lind, and W. E. Brittin (Uni-
versity of Colorado Press, Boulder, Colorado, '1965), Vol. VIIIC.
Compare also N. Austern, in Selected Topics in Nuclear Theory,
edited by F. Janouch (International Atomic Energy Agency,
Vienna, 1963).' C. M. Percy and F. G. Percy, Phys. Rev. 132, 755 (1963).

s R. M. Drisco, G. R. Satchler, and R. H. Bassel, Phys. Letteis
5, 347 (1963).' G. H. Rawitscber, Ãucl. Phys. 85, .337 (1966).

It is the purpose of this paper to suggest tha, t the
nonabsorption of the deuterons in the nuclear interior
is a consequence of the optical-model procedure of
neglecting the deuteron's internal degrees of freedom.
Stated in another way, a procedure is here described in
which the deuteron channel is assumed to be strongly
absorbed in the nuclear interior and at the same time
a mechanism is introduced which takes into account,
at least approximately, the independent motion of the
two nucleons in the nuclear interior. Af ter the two nucle-
ons have traversed the nuclear interior independently
from each other, they, or some other nucleons, recombine
into a deuteron. This process is found to contribute a
significant portion to the elastic-deuteron-scattering
amplitude.

Previous attempts of incorporating the internal de-
grees of freedom of the deuteron into stripping calcula-
tions consist in introducing a complete set of states of
relative motion of the neutron and proton in the pres-
ence of the neutron-proton potential but in the absence
of the target-nucleus potential. ' ' This procedure is well
suited to describe the deuteron internal distortion at
large distarices, and interesting results have been ob-
tained by this approach. The starting point of the
present considerations consists in choosing as a complete
set of states the eigensta, tes of a nucleo~ in the potential
of the target or daughter nucleus. ' The main disci.culty
with this method is the great complication which would
be required to describe the wave function in the deu-
teron channel, but it is well suited to describe the

~ F. P. Gibson and A. K. Kerman, Phys. Rev. 145, 758 (1966};J. Testoni and L. C. Gomes, Nucl. Phys. 89, 288 (1966).' R. C. Johnson, in Proceedings of the Irtterlotiotmt Colferertce
on Nuclear Efzysics, Gatlinburg, 1966 (Academic Press Inc. , New
York, 1967).' G. Rakavy, Nucl. Phys. 7, 553 (1958); M. Tanifuji, ibid. 58,
81 (1964); A. J. Kromminga, K. L. Lim, and I. E. McCarthy,
Phys. Rev. 157, 770 (1967);S.T. Butler, R. G. L. Hewitt, B.H. J.
McKellar, and R. M. May, Ann. Phys. (N. Y.) 43, 282 (1967). A

.set of coupled equations for a (t,p) reaction somewhat similar to
the one arrived at in the present paper was given by A, P, Stamp,
Nucl. Phys. 83, 232 .(1966). ,
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stripping channels, in which, for example, the neutron
is in a bound state and the proton in a continuum state.
The stripping channels thus play the role of describing
internal degrees of freedom of the deuteron, particu-
larly while the deuteron is in the nuclear "interior. "

The aim of this paper is to see what CBects are intro-
duced into the elastic-deuteron wave function if ex-
plicit account is taken of the stripping channels. This is
done in thc simplest possible manner, ignoring to a
large extent the mathematical complications due to thc
nonorthogonality of the stripping and deuteron chan-
nels. In the calculation of the matrix elements which

couple the stripping alId deuteron channels the deu-
teron-channel wave function is replaced by the product
of an undistorted internal deuteron wave ps(r) times a
distorted center-of-Inass motion wave sq(R), and the

breakup channels are neglected altogether. One thereby
arrives at a simple set of coupled equations similar to
those encountered in inelastic-scattering calculations. If
one wanted to treat the deuteron channel rigorously,
and thus avoid the nonorthogonality problem, it appears
that one would have to include the breakup channels so

as to make the set of neutron-proton wave functions

complete. This would lead to a three-body proble, and

might be approached by Faddeev-type coupled-equa-

tion methods. ' The calculation is very involved but
results have already been achieved along these lines. '

Preliminary reports of the calculation here described

have been presented' previously. The present calcula-

tion divers from the older results'0 mainly in that the

ingoing wave boundary condition employed ln the

deuteron channel is now replaced by the more conven-

tional "regular-at-the-origin" treatment. The strong

absorption is achieved by employing a large volume

imaginary potential. The energy range of the incident

deuteron has been extended to 7, 11, 12.8, 14.3, and 22

MCV, and stripping differential cross sections are ob-

tained in each case.

II. THE COUPLED EQUATIONS

Despite the fact that there is no good derivation of

the equations used, some Cavort was made to see to what

extent it would be possible to take into account the

nonorthogonality difhculty. An account of this CBort is

~L. D. Faddeev, Zh Eksperirn. i Teor Fix. 39, 1459 (1961)
LEnglish transL: Soviet Phys. —JETP 12, 1014 (1961)g; Dokl.
Akad. Nauk SSSR 138, 565 (1961); 14S, 301 (1962) LEnglish

transls. :Soviet Phys. —Doklady 6, 384 (1961);7, 600 (1963)g.
9 R. D. Amado, Phys. Rev. 132, 485 (1963);A. N. Mitra, ~Md.

13/, @1472 (1.965); 150, 839 (1966);A. S. Reiner and A. I. JaGe,
ibut'. 161,935 (1967);W. Bierter and K. Dietrich, Z. Physik 202A,

75 (1967);R.Aaron and P. K. Shanley, Phys. Rev. 142, 608 (1966);
A. I. Qaz, V. F. Dermn, and I. I. Kuzmin, Soviet J. Nucl.
Phys. 4, 525 (1967);4, 537 (1967);K. R. Greider and L. R. Dodd,
Phys. Rev. 146, 6/1 (1966);146, 675 .(1966);P. E. Shanley, Ph.D.
dissertation, Northeastern University, 1966 (unpublished); J. V.
Noble, Phys. Rev. 157, 939 (1967).

"G.H. Ravatscher, Phys. Letters 21,'444 (1966); and in j'go-
ceedf'Ngs of the Intereatj'onal-Confefewce oe ENcleur I'hygiene, Gati jjs-

bgrg, 1966 (Academic Press, Inc. , New York, 19167)

gi«n b~l~w, and the reader interested in the 6nal re-
sults is invited to bypass the rest of this section.

The target nucleus is considered initially as an inert
core without internal degrees of freedom. They are later
reintroduced phenomenologically by means of an imagi-
nary part in the deuteron-nucleus potential. The
daughter nucleus resulting from the stripping process
is described by the various excited states of a nucleon in
the potential of the target nucleus. The complete
(8+2)-nuclcoI1 wave fllIlctloI1 Is w11ttcI1 as tllc product
of the supposedly known target ground-state wave func-
tion p~(gt gg) and an unknown two-particle func-
tion I(r„,rs):

As can be easily seen, the nucleon coordinates can
then be eliminated from the Schrodinger equation and
onc obtains

(E +E,+Vg"(r„)+V~I (r„)
+V(r„,r,)—E)N(r„,r,)=0, (2)

where E~ and E& are thc klnct1c-energy operators
E;=—(A'/2rrI;)V, s acting on the neutron and proton
coordinates, respectively, and V~" and V~2' are the real
neutron-nucleus and proto'-nucleus potentials obtained
by averaging the nucleon-nucleon potential, which acts
between the incoming nucleon and the target nucleons,
over the target wave function,

V '()=(4 ($) II:r. V(,G)j4 (h)).

After stripping, the daughter nucleus is described by
the wave functions

4~+-'(4 ",4r.)=4~(4 "4)~-"'(r-) (&)

in which y„&') are the solutions of the equation

$E +Vg"—e &'Ijte &'&(r )=0
which describe the states of a neutron bound to the
target core. The amplitude of the stripped proton,
given in general by (pg+„'l f), is in this case given by
the overlap integral of y &') and I,

The deuteron component of I is given by

f (R)=Q.()l (-, .)&,

where r and R denote, respectively, r —r and-'(r„+r„),
and where 4'd Is thc Internal dcutc1'oil ground-state wave
function, which satisfies the equation

Thc function Q contains, in addition to the components
mentioned above, a certain amount of compound nu-

cleus as weB as breakup amplitudes. The former have
exponentjtally decreasing asymptotic amplitudes when
r„and r~ go to in6nity independently, . and the ampli-
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tudes for the latter decrease asymptotically as r„-'r„-'.
The operator (&sl applied on a function l&p) which was
used in Eqs. (3), (6), and (7) is defined as

where the integration is carried out over all the variables
contained in the function q.

The operators (y &'&
I

and. (&~ I
could now be applied

to Eq. (2). The result would be

I K.—E+;~f (z) = —(y, l(v.-+v. )u&, (10)

PK~+V~s E+s„—&'&jf '(r )
= —(9.&'&

I
V(u p)u). (11)

In vrriting the above equations, use is made of the
relation

(12)

where Hs is the Hamiltonian of which
I P& is an eigen-

state. There are additional surface terms in Eq. (12)
whenever

I P& does not vanish asymptotically, as is the
case when the eigenvalue lies in the continuum.

If the stripping and deuteron channels were orthog-
onal to each other, i.e., if the overlap integral

(«-"&(r-)f."&(r.) I&.(r)f~(R))

vrere equal to zero, then the expansion for I,
u=Z & "&f~"&+A(r)fr(~) (13)

would be valid and Eqs. (10) and (11) would give rise
to the following set of coupled equations:

PKs+Qs(vg"+ Vg')yg& E+sgjfa—
= —Q(y. (V~"+V~ )f„&&~.&'&), (14a)

EK +V~' E+s-'jf "—'+Z (9.'*'V(»p) ~."'&f "'

= —(p„"I V(m, p)&f& fr&&. (14b)

The unsatisfactory aspect of Eqs. (14) is that the
coupling terms between the stripping and the deuteron
channels are not the same in the tvro equations, and, in
addition, the nonorthogonality betvreen the deuteron
and stripping channels has been totally ignored in the
underlying Eq. (13).

Numerically the term (&& I V(»p) Ipdfr&& is quite easy
to handle because of the short-range nature of the
neutron-proton potential. On the other hand, the func-
tion f~&" can undergo various oscillations within the
range of Vg "+V~~ and hence significant cancellations
are expected to occur in the integral

(y I (V~"+V~')f."&~-&'&&

making it thus hard to calculate. For this reason some

of the cancellations will be taken out explicitly by sub-
jecting Eq. (2) to transformations which are different
from those described above. These transformations are
reminiscent of those used by Buck and Hill" in another
context. The result is similar to Eqs. (14) with the ex-
ception that V&"+V&" is replaced approximately by
V(»p) on the right-hand side of Eq. (14b), and that
fz is replaced by a new function, called sz, which asymp-
totically equals fn, and for which the nonorthogonality
problems are somevrhat less severe. Additional inter-
action terms appear which are believed to represent
the cancellations mentioned above and which are neg-
lected. The steps are described belovr.

The function I is expanded in a complete set of ortho-
normal eigenfunctions of the operator K„+V~",given
by the solutions of Eq. (5). The index i is replaced by
k to label the states in the continuum, while i is reserved
for the discrete states:

(',")=Z f;(,)~-'(-)+ f:(,)~."(.)d%. (15)

The transformations become more transparent if they
are described in terms of projection operators. One set
of projection operators is obtained from the solution of
Eq. (5), i.e., P„&'&= &r„&'&)(p„&'&, and another set is ob-
tained from the proton eigenstates &P of the equation

fK„+Vg+&&—s,&'&]P,&'&(r„)=0, (16)
and is given by P~&'&=/„&'&&(&P„&". It is further con-
venient to introduce the bound and. unbound neutron
projection operators P„=P;P„"& and Q„=1 P„, re-—
spectively, as well as similar operators for the proton
states: P~=g; P&,&"=1—Q„. The sums in the above
expressions run over all the bound states. The operators
P„&" and Q„are orthogonal, i,e., P &'&Q„=Q„P„&'&=0
but P„(')P„&&')/P„(&)P ('). In the operator language one
has, for example, P "&u=f„"&«„&"and Q„u=JfP'
)& y„"d'k. The Hamiltonian

Hs= T',+Vs&+T„+V~ (17)
has the property that it commutes vrith both P„(') and
P„('),as can be seen by considering operations of the
type given by Eq. (12). As a result, Hs also commutes
with P„and P~, and hence also with Q„and Q„. By
multiplying operators P„&'&, Q„, and Q„Q to the left
of the Schrodinger equation (H&&+V—E)u=0, and
after commuting these operators with Bo, together with
some straightforward regrouping of terms vrhich in-
volve the identity Q„=1 P„, one obtains—

(H' E)P "&u= —P "'Vu- (18a)
(Hs —E)Q„u= Vu+P Vu, — (18b)

(H' —E+V)Q„Q u= —VP u —VP„Q u

+P~vu+P Vu P„P Vu. (18c)—
The quantity Q„u contains those states for which the

"B.Buck aud A. D. Hill, NucL Phys. 495, 663 (1967}.
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neutrons are unbound. Among these, P~")Q„N selects
the bound. proton states and Q„Q„u describes the
"continuum-continuum" states in which both protons
and neutrons have asymptotic values which vanish like
r„—' and. r„—', respectively. The latter contains both
the breakup states and the deuteron states. The deu-
teron component in Q,Q I is given by

«.(&)= Q. I Q.Q.~).

The approximation is now made of neglecting the
breakup states in Q„Q„u, i.e.,

Q~Q„u=gg(r)«g(R) .

The resulting approximation for u,

with the addition that transitions to and from the
stripping channel are also included. The approximations
introduced from this point on are, therefore, similar to
the ones made for the DKBA, or coupled-channel,
treatment of inelastic scattering. The matrix elements
(y '~ Vp J), (y„'~ VP &), and (y„'~ Vpd«d) represent, re-
spectively, transitions between inelastic states, charge-
exchange transitions, and transitions between stripping
and inelastic channels. Most of the channels i and j
can be expressed at least formally by means of Green's
functions in terms of a few chosen channels according
to a method described by Feshbach. " The resulting
potentials in the equations for the few channels which
remain are complex and. nonlocal. The results, written
for the case i= j=i, are

u= P„u+P„Q„@+pe(r)«q(R),

= —(v."'I V 2 4~"'y-"))—(v-")V4~«~) (22)

LE +V ~. py& i)~ (o+Q (p (~)(Vp o'))y„(j)

Here the quantity y„ is defined. as

y.")=(4"")
I Q-N) ~

The asymptotic behavor of y„"' and s~ should be equal

to that of 1 "=gi„&') ~u) and fq (Qq~u), resp——ectively.
The neglect of the breakup terms in Kqs. (20) and (21)
affects only those terms which arise from the right-hand

sides of Eqs. (18).The nonorthogonality introduced by
Eqs. (19) and (21) does not affect the left-hand sides

of Eqs. (22)—(25), but presumably enters only in the

matrix elements on the right-hand sides of these equa-

tions. The errors, however, are hard to assess, particu-

larly those due to neglecting the quantities (f~&') & P„VN)
and (p~~ (P,+P„—P,P„)Vu), as is further discussed

in the Appendix.
The Eqs. (22)—(25) are quite similar to the coupled

equations used to describe inelastic-scattering processes,

(25)

is inserted on the right-hand sides of Eqs. (18), and Eqs.
(18a), (18b), and (18c) are operated upon on the left

by (q „"&(r„)~, (P~&') (r~) ~, and (Pp(r) ~, respectively
Furthermore, the quantities g~") ~P„Vu) and (Qq~

X(P~+P„P„P„)VU—) are neglected, since, as dis-

cussed in the Appendix, they are expected to be small

compared to the other terms, because of cancellations

expected to occur in the integrals. This is probably the
weakest link in the argument. The result is

[&,+V~" &:+~.")]f—~"'+Z (v "'I Vv-"')fn")

The potentials U~+~& and U~+~" are complex and re-
place the terms containing j&i in the erst lines of
Eqs. (22) and (23), respectively, as well as the charge-
exchange processes which are not included here ex-
plicitly. However, if excitation of analog states is
involved in the reaction, then the charge-exchange proc-
esses are non-negligible"" and need to be treated ex-
plicitly, " for instance by means of the isotopic spin-
dependent I.ane" potentials. This case is discussed in
the Appendi. x, where it is shown that the resulting
equations give rise to stripping amplitudes which are
in agreement with the results of Zaidi and Hrentano"
to 6rst order in the stripping transitions.

The potentials U~ and Ug+~ should, of course, be
determined simultaneously by 6tting to experiment
the elastic-scattering cross sections of nucleon-nucleus
and deuteron-nucleus scattering, as well as charge-
exchange reactions, and stripping reactions, calculated
from the coupled equations LEqs. (26)j. However, ac-
cording to preliminary rough estimates, the presence
of the deuteron channels is expected to have a much
smaller eRect on the elastic nucleon-nucleus scattering
than the eRect which the stripping channels are found
to have upon the elastic scattering of deuterons. There-
fore the potential U~+~ is taken equal to the local
"measured" nucleon-nucleus optical potentials, al-
though this procedure is open to criticism. "The poten-
tial U~ is to be chosen phenomenologically. Although to
zero order in the nucleon-nucleus interaction U~ is

"I Feshbach, Ann Phys {N Y) 5 3/7 (19&8j
"C.F. Moore, C. K. Watson, S. A. A. Zaidi, J. J. Kent, and

J. G. Kulleck, Phys. Letters 17, 926 (1966).
"S.A. A. Zaidi and P. von Brentano, Phys. Letters 13, 151

(1967).
"T.Tamura and C. E. Watson (to be published); T. Tamura,

Phys. Rev. Letters 19, 321 (1967).
16 A. M. Lane, Nucl. Phys. 35, 676 (1962)."B.Buck and J. R. Rook, Nucl. Phys. A92, 513 (1967).



given by" the real function (&~~V~"+V~'~p~), the
point of view taken here is that the potential should be
strongly imaginary in the nuclear interior in analogy to
the optical potential encountered for the description of
o,-particle nucleus scattering. This strong absorption
should describe both the effect of compound-nucleus
formation and the belief that the two-body correlation
of the neutron and proton which exists in the undis-
torted deuteron cannot be maintained in the presence
of the other nucleons in the nuclear interior. This
view is contrary to one frequently adopted in the
literature.

A comment concerning the meaning of "strong" and
"weak" absorption of the incident particle in the nuclear
interior is useful at this point. In the optical-model
language, the degree of absorption of a particle is char-
acterized by the smallness of the amplitude of the
nuclear wave function in the nuclear interior. The radial
wave functions are usually damped exponentially and
hence the absorption can be expressed in terms of a
mean free path. Another criterion which describes the
absorption is given in terms of the elastic-scattering
characteristics. The angular distribution for strong1y
absorbed particles present regularly spaced diffraction
minima which vary in a regular and monotonic manner
with energy, while for weakly absorbed particles a new
minimum can appear in between two previously exist-
ing ones as the energy increases. Although this phenome-
non has not yet been unambiguously tied to the presence
of waves which are transmitted through the nuclear in-

terior, there are good reasons to suspect that this is the
case.' The effect also shows up in the angular-momen-
tum dependence of the rdkction coeScients. They have
a smooth monotonic I.dependence in the strong absorp-
tion case and a zigzaglike behavior for small L, values
(which appears to be necessary') in the weak absorption
case. The amount of absorption, as discussed above, de-

pends on the size of both the real and imaginary parts
of the optical-model potential, as well as on the mass
and energy of the incident particle. The imaginary po-
tential alone may, therefore, be a misleading indicator
of the degree of absorption taking place. As a matter of
fact, the magnitude of the imaginary potential (volume)
for deuterons is not far different from that for ot par-
ticles, yet the former are usually far less strongly
absorbed than the latter.

The coupling potential U(l, p) which arises, just as
potentials U~+g and Ug), as a result of the formal ehml-
nation of states p; and f, from Eqs. (22), (23), and (24),
also are complex and nonlocal. This can be ascribed to
the presence of transitions which occur 6rst to inter-
mediary states p, or f; and from there to the final states
via an inelastic or charge-transition interaction. Evi-
dence for stripping via intermediary inelastic states has

"S.Katanabe, gucl. Phys. 8, 484 (1958); J, R. Rook, ibid.
61, 219 (1964);J.F. Bloore, i'. 68, 298 (1965);G. Saumgartner,
Z. Physik 204, 17 (1967).A numerical test has been carried out by
F. G. Percy and G. R. Satchler, Nucl. Phys. A97, 515 (1967).

been seen experimentally" and studied theoretically. "
Although the corrections introduced are found to be
non-negligible they will, nevertheless, be ignored for the
present. As a result the potential U(m, p) is replaced by
the elementary nucleon-nucleon interaction potential
V(n, p). Even for the case of highly deformed nuclei,
for which inelastic transitions occur with high probabil-
ity in both the incident and the exit channels, the above-
mentioned calculations" indicate that the contribution
to stripping due to inelastic transitions is not excessively
large. It would nevertheless be interesting to re-examine
this point for the deformed nuclei.

III. NUMERICAL RESULTS FOR 4'Ca

The nucleus of calcium ls suitable fol Rn RppllcRtlon
of the equations presented. in Sec. II because the strip-
ping reactions have a large cross section (about 10% of
the geometric cross section) and the bulk of the stripping
proceeds to only a few 2p states in 4'Ca. The resulting
coupled equations are relatively easy to handle because
with an angular-momentum transfer of one unit, only
three radial waves are coupled at one time. Further-
more, the stripping and elastic-deuteron scattering
on Ca has been extensively examined both experi-
mentally" '4 and as a test of the applicability of the
DWBA.""

The basic equations are Eqs. (26). By means of addi-
tional simplifying assumptions now to be discussed,
these equations are brought into the form of Eqs. (28)
below. The spin of all particles involved is set equal to
zero, and the various p states found experimentally in
4'Ca at excitation energies of 1.95, 2.47, 3.95, and 3.98
MeV are coalesced into a single p state. The Q value of
the reaction is taken equal to 4 MeV, which is close to
the Q values for the two ps~s states (Q=4.19 and 3.67
MeV). Comparison with experimental stripping cross
sections is made by summing the two experimental pa~s
stripping cross sections and multiplving the result with
a factor —,

' in order to account for the statistical weight of
the missing pr~s cross sections, since experimentally
these are not known as well. The sum of the spectro-
scopic factors for the two pals transitions is found in
D%BA calculations" to be close to unity, and hence R

» R. Bock, H. H. Duhm, R. Rudel, and R. Stock, Phys. Letters
13, 151 (1964); T. A. Belote, %. E. Dorenbusch, 0. Hansen, and
J. Rapaport, Nucl. Phys. 73, 321 (1965); D. Dehnhard and J.L.
Yntema, Phys. Rev. 155, 1261 (1967)."S.K. Penny and G. R. Satchler, Nucl. Phys. 53, 145 (1964);
S. K. Penny, thesis, University of Tennessee, 1966 (unpublished);
P. J. Iano and N. Austern, Phys. Rev. 151, 853 (1966); P. J.
Iano, thesis, University of Pittsburgh, 1965 (unpublished)."L.L. Lee, Jr., J. P. Schiffer, B. Zeidman, G. R. Satchler, R.
M. Drisco, and R. H. Bassel, Phys. Rev. 136, 8971 (1964); 136,
AB6 (E) (1964)."R.H. Bassel, R. M. Drisko, G. R. Satchler, L. L. Lee, Jr.,J. P. Schiffer, and B.Zeidman, Phys. Rev. 136 B960 (1964)."H. Niewodniczanski, J.Nurzynski, A. Strzalkovrski, and G. R.
Satchler, Phys. Rev. 146, 799 (1966).

'4 S. A. Hjorth, J. X. Saladin, and G. R. Satchler, Phys. Rev.
138, B1425 (1965)."J.Raynal, Phys. Letters 3, 331 (1963);7, 231 (1963).
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i.e.,
1'(r)S.(r) =—»()

(1 5)i/sD (1 5)&&2)(1(P M@7 Fet' (27)

where the factor 1.5 makes up for part of the hnite range

eRects, as is discussed in Ref. 21.
With the approximations discussed above, Eqs. (26)

become

(Kz+ 1J.+z E,)fo(,-) =Dv -*(r,) e(r,),
(Kit+ Uz& E&))ze(R) =—XDy (R)f„(R).

unit spectroscopic factor (suitably adjusted for the iaclz

of spin) is also assumed here. The stripping to the
ground state of "Ca(f7/s) has a cross section which is
about 10%of the stripping to the p states, and therefore
it. is neglected. A further approximation consists in in-

cluding in the coupled Eqs. (26) only one stripping
channel explicitly (the 2p state discussed above) and
assuming that the other stripping channels are repre-
sented by functions which are sufficiently similar to the
one treated explicitly. To account for these implicit
channels, the sum ct&f+&fry in the last of Eqs. (26) is re-

placed by iVct&„f„, &p„representing the bound 2p neu-

tron and fo the corresponding proton amplitude. The
factor N is chosen rather arbitrarlily to have the value 3
so as to represent the (d,rt) stripping to the mirror states
in which a proton is captured and a neutron emitted,
plus the presence of an additional amount of stripping
amplitude (z for each neutron and proton case). A

change in the choice of the value for N affects the param-
eters of the potential U~. If N is increased above unity
the range parameters in U~ also increase, and the peaks
and valleys of the stripping cross sections move to
smaller angles. The calculated cross sections are not very
sensitive to the choice for N, a value of N = 1 also giving
acceptable results, but the agreement with experiment

appears to improve if its value is larger than unity.
Finally, the zero-range approximation is also used,

the "measured" proton-"Ca elastic-optical potential,
the parameters being the same as those employed by
jLee et al."

The reduction of Eqs. (28) to coupled equations be-
tween radial waves is accomplished after introducing
the partial-wave expansions"'

~-'-)(r-) = L' (r-)I' "('-),
'")f.(r.)=r. ' Z (™f.z (")1'z (r.),

L,M

ze(R) =
t (4sr)"'/knR]g (2J+ 1)'t'i~

(29)

(3o)

)&e""Pfgn(R) Vgo(R)]. (31)

The direction of the Z axis is taken parallel to the inci-
dent deuteron momentum. The orbital angular momen-
tum of the captured neutron is l, its projection along
the Z axis is r&t, and the deuteron radial waves fz) are
normalized such that asymptotically

fsn~e'xs sin(gsD+Ksn), (32)

where the (complex) nuclear phase shift is denoted by
KD and @ is given by

= kz&R zJrr+ o qD r—&D in(2kz)R) .— (33)

Here O.g and g are quantities" which arise because of
the Coulomb interaction. The asymptotic deuteron
wave number is ki) = $23fz)Ez&/0']'t' lt is convenient
to define a combination Ftzt) g(r) of proton waves which
is independent of m and iV,

F izt) s(r) = Lk&&/(i~e'" (&4&r))]
l L Jq

ea, M t&t i' 0)

where the objects in parentheses represent Qligner 3 j
symbols. The resulting radial wave equations are

The main difference between Eqs. (28) and those used

to describe inelastic transition amplitudes is that in the

present case the complex potentials and the masses of

the scattered particles are not the same in the two chan-

nels, and the coupling potential is not given by the de-

rivative of an optical potential but is proportional to the

bound-neutron wave function q „.This latter feature is

also shared by the coupled equations employed by Breit
and co-workers" in describing, transfer of a neutron be-

tween two nitrogen nuclei. The potential U~ is to be
found by 6tting of the elastic and stripping cross sec-

tions to experiment; the other quantities U~+~, Dy„,
and I)l are assumed to be fixed ct priori by the theory as

discussed in Sec. II. In particular, U~+~ is taken to be

It' / d' L(L+1)
— +L'~+i —E„

2m, t are rs

XE(zt)s(r) = &t&tzt)sf~ (r) &

J(J+1)
+&z&—Ez) fsn(r)

21@~

=+~1 t 2 Cut)sE&z&)s(r),
L

where"
1't(r) = D«(r) L(2l+ 1)/4m]'»,

l L Jq
&&zi)s= (2L+1)'t'

OOOi

(36)

(37)

"G. I&reit, in Proceedings of t tie Conference on Direct Interactions

and ÃNclear ReactiorI, j/Iechurlisrgs, I'adga, 196Z (Gordon and
Breach Science Publishers, Inc. , Neer York, 1963);G. Breit, Phys.
Rev. 135, 81323 (1964);G. Breit, J.A. Polak, and D. A. Torchia,
ibid. 161, 993 (1967}.

» D. M. Chase, L. filets, and A, R. Edmonds, Phys. Rev.
110, 1080 (1958).» "fhe notation is that of M. H. Hull and G. Breit, in Irandbgch
der I'hysik, edited by S. Flugge (Springer-Verlag, Berlin, 1959),
Pol. 41, Part 1.
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I' v»~ (38)

The coupled equations (35) are solved numerically with
the boundary conditions that the radial waves are
regular at the origin and at large distances f has both
ingoing and outgoing waves, as determined by Eq. (32),
while F(L,~) has only outgoing waves. The numerical
procedure adopted consists of the iterative employ-
ment of the Green's-function method, "
J'"ir,»z'"+"(r) =

fq'"+»(r) =N

Gr, &(r,r') Vt(r')

C(I »zfJ (r )dr
(39)

Gz (r,r') l'tLZ Cu»~

&~v.~»'"'(r') 3«'.

The Green's functions are given by

(40)

where s stands for either p or D and the functions f and
8 are, respectively, the regular and irregular solutions
of the homogeneous equations obtained from Eqs. (35)
by setting the right-hand sides equal to zero.

The asymptotic r dependence is given by

jr, ' sin(yr. '+X'r, ') exp(iZz, '),
(41)8J' exp(iver, ') .

In order not to lose accuracy, the functions Ar. are ob-
tained from the functions G and f' by the relation

Hr, = (Gr+igg)/(sr[1+exp(2iKr) j}, (42)

where G(r) is a solution of the homogeneous equation
with the boundary condition Gn cos(&L) obtained by
numerical integration from large distances towards the
origin.

The zeroth order (n=0) functions used in starting
the iterations, described by Eqs. (39), are carried out
by means of the Gauss procedure. "%ith 96 points in
the integration interval the accuracy of the 6nal phase

» N. F. Mott and H. S. Massey, The Theory ofAtomic Collf'sioes
(Clarendon Press, Oxford, England, 1965), 3rd ed. , Chap. IV.

' Handbook of Mathematica/ Iieectioms, edited by M. Abrah-
Inovritz and I. A. Stegun (Dover Publications Inc. , tv York,
1965).

In the present application /= 1; therefore for each value
of J, I runs over the two values J—1 and J+1.

The outgoing proton waves are obtained for each
neutron orientation m in terms of the functions F(r.~~g

by means of the relation

'"'f»"=DV'4~)/&njE i'e*"(2J+1)

TAsLE I.Test of the iteration method.

Incident channel

S C
0.05764' 1.1736
0.05772b 1.1736-0.10082~ 1.1757—0.10065b 1.1758—0.25427~ 1.0130—0.25420b 1.0130—0.23483' 0.7425—0.23476b 0.7426

Coupled

S
0.08833
0.08833
0.01301
0.01296—0.12135—0.12140—0.21647—0.21654

C
0.0666
0.0666
0.1321
0.1322
0.09875
0.09879—0.02781—0.02783

Angular Number
Qlomen- of

turn iterations

L,
0

a Calculated via the uncoupled equations as described in the text.
b Calculated by iterations of the coupled equations 8=sin(R&(2XJ)g

)&exp/ —Im(2XL, )j;C =1 —cos LRe(2XL,)j exp L —IIn (2XL,)g.

shifts was found to be good to about the third figure
after the decimal point, which is sufBcient for the pres-
ent purpose, although between 6 and 12 iterations
might be required for the lower partial waves. The ad-
vantage of this method is the economy in memory space
required to store the various wave functions. The cal-
culations were carried out on an IBM7040, with 18 500
words required for the object program, inclusive of sub-
routines. (This leaves 8300 words of unused IBM7040
memory. ) A typical run takes 4—8 min.

A test of the solution of the coupled equations by
means of the iterative Green's function method de-
scribed above was carried out for the particular case in
which the masses, energies, and potentials in both chan-
nels are taken equal to each other (X is set equal to
unity), and the angular-momentum transfer / of the
bound neutron is taken equal to zero. In this case only
the term with I.=J appears in Eq. (35) and the two
coupled radial equations can be uncoupled" by intro-
ducing two new functions which are the sum and di6er-
ence of the two original radial functions. The potentials
in the corresponding uncoupled Schrodinger equations
are V@+I+V~ respectively. The uncoupled equations are
solved numerically by standard methods and from the
complex phase shifts the phase shifts of the original
coupled wave functions are obtained, and compared
with those calculated with the Green's-function method.
The integration for the latter were carried out with
Simpson's rule. A more detailed description of the
method can be found in Ref. 31. Table I shows a com-
parison of the results.

The differential stripping cross sections are calculated
simultaneously with the elastic-scattering cross section
in each numerical run, and the total stripping cross sec-
tion ls also obtalIlcd. Thc I'csults of thc differential str1p-
ping cross section were checked against a code developed
by Smith which used as input tlM asymptotic values of
the proton wave functions obtained f'rom the coupled

"G. H. Rawitscher, Phys. Rev. 151, 846 (t966), Appendix."W. R. Smith (private communication); G. H. Rawitscher and
W. R. Smith, in Proceedings of (he Interregional Conference on
&Nclear Physics, Gatlinberg, 1966 (Academic Press Inc., Nevy
York, 196'l).
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TABLE II. Potential parameters.

Coupled channel
Optical model Z
Optical model Z2

Coupled channel
Optical model Z
Optical model Z2

Deuteron

Vo ——120.7 MeV
Vo ——120.7 Me&
Vo=112.0 MeV

N«=60.0 Mey
8~=16.4 Mey
8'g) = 18.0 Me&

Proton
V= (60—0.5Z„) Mgr

8'&=11 Me@

ro=0.906 F
ro=0.966 F
ro=1.00 F

ro'=1.40 I
rg)=1.46 F
rg)=1.55 F

ro=1.20 F
rg) =1.25 F

e=0.846 F
a=0.846 F
@=0.90 F

u'=0.50 F
ag) =0.492 F
aD=0.47 F

a=0.65 F
@&=0.47 F

Woods-Saxon vrell
Square mell
Binding energy=6. 41 MeV

Vog =59.64
Vo@=40.8 Mgf

roN =1.21 F
rgq=1.49 F

Eqs. (28). In addition, the DWBA results obtained with
the code by setting the coupling factor E in Eq. (2g)
cquRl to zero, Rnd taking fol U~ the usUR1 opticR1-model
value, are in good agreement with the theoretical curves
of Lec e] ul."Of course, neutron wave functions bound
to R oods-Saxon potential rather than square-well
potential are used in this comparison.

The optical potentials Ug+.1 and UD are paramctrized
as follows:

Un-—Vo(1+e*) '+iWO(1+e*') '+U„(43)
Ug+g ——Vo(1+s*) '+4iWnd/dx(1+e*D) '+ U„(44)

The Coulomb potential Ug is the same for the proton
RHd thc deuteron. It Is pI'odUccd by R uniform chRI'ge

distribution of radius Bc=4.4 F=(1.3 F)A"'.
parison runs employing an optical-model calculation for
the Clast. ic case and the DWBA method for the stripping
cross section are also carried out. The radial part of the
neutron wave function bound to "Ca, U~(r) defined in

Eq. (29), was calculated as the 2P eigenfunction for both
a square vill of radius E~ and depth V~, and for a
Woods-Saxon well of depth Vox, radius 1.21X(40)"',
and di6uscness 8~=0.65 F. Thc neutron-binding en-

ergy E vras taken equal to the experimental separation

energy —{j.4$ McV. Thc VRluc of Eg, Rnd consequent]y
V~, was adjusted so that the negative-energy tails of
the square-well Rnd %oods-Saxon wave fUnctlons werc
nearly equal to each other. The value of &~ thus ob-
tained is 5.1 F, which is close to the radius (S.S I') be-

yond which the VVoods-Saxon potential is smaller than
the binding energy. The value of the parameters is given
in Table II.

IV. RESULTS

In addition to the parRHlctcrs foI' thc complex potcH. -

tials Ug+g and U~, and the neutron potential V~, given

ln Table II, the following parameters also enter into the
numerical solution of Eqs. (28). The number of strip-
ping channels X=3& the radius of thc uniform chRlge
distribution +g=4,4 F j 3 radius ~gg= 2 F sUch thRt
the coupling potential vanishes for distances less than
g~q, and the Inatching radius E,&,h ——I3 F beyond
which the couphng potential can be neglected. Of all
these, only the parameters which describe UL are as-
sumed to be freely adjustable, the others being chosen
as described ln Sec. III.

The imaginary part of UD is a, volume Moods-Saxon
potential. Its depth of 60 MCV is chosen large enough
so as to absorb the deuteron channel wave functions
which penetrate into the nuclear interior. The values of
the diGuseness a and depth Vo of the real well are taken
equal to those of the optical potential Z obtained by
Bassel e~ a~."On1y the radii ~0 and ro' of the real and
imaginary deuteron wells were varied independently so
as to obtain a reasonable fit to both the elastic and
stripping cross sections. The parameters for the optical
potential Z are also listed in Table II, and it is seen
that the vRlucs of fo RIll fo foUnd fol U~ are signi6-
cantly smaller than the corresponding values for poten-
tial Z. A plot of the volume and the surface potentials
which represent the imaginary part of the coupled-
channel and the optical-model potentials of the deu-
teron, respectively, shows that the two potentials cross
each other near the maximum of the surface potential,
the volume potential being the smaller one beyond this
point. The part of the volume potential in this tail re-
gion is found to be significant. This is seen by means of
coupled-channel calculations in which the imaginary
part of the deuteron potential is obtained as the sum of
a short-range volume potential plus a surface potential
equal to that of the optical potential Z but having R
variable radius. It is found that the elastic cross section
is a sensitive function of the position of the maximum
of the surface part, and its value turns out to be smaller
by about 0.5 F than that of the optical potential Z,
which is consistent with the diA'erence between the
values of ro', given in Table II.



EFFECT OF STRIPPING CHANNELS
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An average optical deuteron potential was found by
Lee e1 al."Its parameters have no energy dependence
and the results 6t the elastic-deuteron-scattering cross
sections fairly well in the energy range from 7 to 12
MeV, and the corresponding stripping cross section has
an energy dependence which is in reasonable agreement
with experiment. This potential is called Z2 and is used
as a basis for comparison with the coupled-channel re-
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Fzo. 2. Stripping cross sections calculated with the coupled-
channel equations. The parameters are given in Table II. The
neutron in "Ca is bound to the Woods-Saxon potential. Thc ex-
perimental (Refs. 21, 23) points represent the sum of the two
lowest P3gg cross sections (Q of 4.19 and 3.67 MeV) multiplied by
the factor $ to take into account the lack of spin in thc theoretical
calculations.

suits. The parameters are listed in Table II.The reaction
cross sections are listed in Table III.

The elastic and stripping cross sections are shown by
the solid lines in Figs. 1 and 2. The only energy depend-
ence of the parameters is the one prescribed" for the
proton potential. The experimental points are from
Refs. 21-24.

The elastic cross sections obtained from Eqs. (28) in
the absence of the couphng potential (but using the same
value of Un) are shown by the dotted lines in Fig. 1.
Comparison with the sol1d line sho%'s that the coupling
potential Vl has a considerable effect upon the cross
section. The position of the minima and maxima is aj-
tered relative to the equal spacings characteristic for
strongly absorbed particles reQected only from the sur-.

TmLE IG. Reaction cross sections.

40 50 80 IOO l20 I40 I60

Fn. 1. Elastic deuteron ' Ca scattering cross sections. The
ordinate shows the ratio to Rutherford cross section, the abscissa
shows the c.m. scattering angle. The lab energies are indicated;
the curves are calculated using the coupled-channel equations
with parameters given in Table II, thc bound neutron being the
solution of thc square-well potential. The circles represent maxima
or minima in the experimental values of a./erg. At 143 McV all
experimental points are shown. The dotted lines represent results
obtained if the coupling potential is set equal to zero.

Coupled channel Optical model Z2
E~ Stripping' Reaction Stripping Reactionb

(Mev) (mb) (mb) (mb) (mb)

11
12.8
14.3
22.0

91.8
106.6
104.5
101.1
75.8

1020 104.8 953
1252 99.7 1216
1292 96.6 1271
1310 93.7 1302
1321 68.5 1399

a The stripping reaction populates-the P states in 4~ca described by a
neutron bound to a Woods-Saxon well, as discussed in the text.

b In mb, including all reaction channels,
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FIG. 3. Scattering elements for
elastic d-~ Ca scattering at 11 MeV.
The quantities SL, are de6ned in
Eq. (47), and the numbers 1, 2,
~ ~ ~, 7 represent angular momenta.
The insert shows the absolute
values SL„i.e., the reflection codE-
cients. The neutron is bound to a
square well.
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face of the interaction region, which is what the dotted
lines represent, and the peak-to-valley ratio is increased.
In Fig. 3 the scattering elements, also called refIection
coefFicients,

Sr,= exp(2iE),

are compared. Again it is seen that the e6ect of the cou'-

pling potcQtlR1 ls to add R Qon-monotonic I depcndeQCC

to the regularly varying values obtained for the un-
coupled (and strongly absorbing) case. The values of
51, obtained for the optical potential Z2 have an I
dependence surprisingly similar to the results for the
coupled equation. As discussed previously, ~4 the non-
monotonic I. dependence of the scattering elements in
the optical-model description is due to the interference
of the two components of the partial wave which are re-
flected, respectively, from the surface (Coulomb barrier)
and the interior [L(I.+1)/rej of the optical potential.
Stated in three-dimensional language, the phenomenon
corresponds to the interference of the waves which are
transmitted through the interior of the nucleus with
those which are detracted from the surface. This inter-
ference probably gives rise to the interesting feature ob-
served"'4 in the elastic scattering of deuterons which
is the appearance of a new' valley as either the incident
energy or the mass number increase. For 4 CR the new
valley forms at about 60 at an energy of 42.8 MCV. The
present calculation does reproduce this phenomenon but
the valley occurs at too large an angle. This blemish is

33 For a recent review of deuteron nucleus interaction, see P. E.
Hodgson, Advan. Phys. 15, 329 (1966).

34 L. Freindl, H. Niewodniczanski, J. Nurzynski, M. Stapa, and
A. Strraztkowski, in ProceedjrIgs of the Rutherford Jubilee Interrru-
tioeal Conference Manchester, ZNJ, edited by J, B. Birks (Hey-
wood and Comapny, Ltd. , London, 1962), p. 529; Acta Phys.
Polon. 23, 619 (1963);H. R. E. Tjin a Djie, F. Udo, and L. A.
ehr. Koerts, Nucl. Phys. 53, 623 (1964); H. 'R. E. Tjin a Djie,
and K. W. Brockman, Jr., ibQ'. 74, 417 (1965}.

consistent with the approximation of taking too large
a neutron binding energy for the additional channels
represented by the factor E in Eq. (28), since the larger
the distance where the bulk of the coupling to the strip-
ping channels occurs, the more forward the interference
angle should go. Neglecting the breakup channels should
give rise to an error in the same direction. An indication
for the validity of this interpretation is given by the
fact that in the older calculations, '0 for which the neu-
tron square well had a radius of 4.6 F, rather than the
presently used value of 5.j, F, the new valley had not
yet appeared at E~=I2.8 MCV. The nonmonotonic I
dependence added to the deuteron phase shifts on ac-
count of the coupling to the proton channels disappears
if the protons are also strongly absorbed'0 and the de-
pendence becomes monotonic.

It is easy to understand the above-mentioned proper-
ties by semianalytical methods, but a rigorous formula-
tion which obtains an equivalent local optical potential
in terms of the potentials which occur in the coupled
equations, is still lacking. Of course the equivalent
nonlocal potential is easily w'ritten down in terms of
Green's functions and the coupling potential. It appears
that the nonlocality of the latter potential is Qot of the
form" U(r+r')P(r —r') commonly adopted as a basis
fol tIlc Qonlocal energy-approxlmat1on calculations~6;
however, this point should bc investigated in some
dCtRll.

A comparison between the coupled channel Rnd the
optical-model distorted deuteron waves is presented in

"F.G. Percy and B.Buck, Nucl. Phys. 32, 353 (1962)."F.G. Percy, in Proceedings of the Rutherford Jubilee Irlterwe-
teonak Conference, 3fanchester, England, 1%1,edited by J.B.Birks
(Heywood and Company, Ltd. , London, 1962};P. J. A. Buttle
and L J.S. Goldfarb, Proc. Phys. Soc. {London} 83, 701 (1964};
.G. Bencze and J. Zimanyi, Phys. Letters 9, 246 (1964};F. G.
Percy andD. Saxon, ibid. Io, 107 (1964}.
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Fig. 4 for the case J=0. It is clear that the optical-
model wave has a larger amplitude at small distances
and is of a "standing-wave" character. The standing-
wave character is revealed by the occurrence of the near
zeros in the absolute value of the partial wave, and is
due to the smallness of the imaginary part of the optical
potential in the nuclear interior, while, by contrast, an
ingoing character is associated with a large imaginary
potential. 4 The difference between these two deuteron
wave functions also embodies the difference between
the stripping cross sections obtained by the two
methods of calculation, because the T(d„) matrix for
stripping in the coupled-channel case can be written
as

where X„( )* is the solution of

(Eg+Ug+g E„)X„~—&'=0,

and has the boundary condition of an incident plane
wave plus an outgoing spherical wave. The DKBA ex-
pression for T(&„~ is formally identical to the one above,

I I I I I I I I I I I I I
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Fzc. 5. Comparison of coupled channel and DWBA stripping
cross section. The DWBA calculations are based on (Ref. 22)
potential Z2 described in Table II. Both calculations use the same
neutron wave function bound to a Woods-Saxon well, the param-
eters of which are given in Table II.

l2—

I I . I

COUPLING POTENTIAL

the only difference being that instead of sz(R), the
optical-model wave function Xq(R) is used.

Figures 5 and 6 show that the two calculations give
nearly the same energy dependence for the peak of the

80—

I I I.
WOODS-SAXON

I I

4 6
RADIAL DISTANCE ( F)

FIG. 4. Absolute values of the radial deuteron wave functions
for L =0 are shown in the top half of the figure. The asymptotic
value of the radial waves are exp( —i') sin(pe, +EL,), Eq. (32)
text, where Ez, is the complex-scattering phase shift. (The neutron
is bound to the square well. ) In the lower half of the figure the
radial wave coupling potential V&(r), Eq. (36), is shown for both
the cases in which the neutron is bound to a square well (SQ.W.)
and a Woods-Saxon well (W.S).These potentials are proportional
to the bound-neutron wave functions. For r &2F, V& was set equal
to zero in the calculations.

"The relation between the T matrix and the solution of the
coupled equations is discussed in the Appendix for the case that
charge exchange also is present in the equations.

~ TO—
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FIG. 6. Peak values of the diGerential 2p stripping cross section
versus energy of the incident deuteron for both the coupled chan-
nel and the DWBA calculations. The latter is based on potential
Z2. The neutron is bound either to a square or a Woods-Saxon
well, as indicated in the figure. The curves are drawn through the
theoretical points to guide the eye.
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arises from the di6erence between the deuteron wave
functions at sma/l distances, it would be interesting to
examine experiments which in the DWBA method of
calculation are sensitive to contributions from small
distances. The DWBA calculations of the j depend-
ence'8 of stripping cross sections may be an example of
such a situation. Ideally, the coupled-channel calcula-
tion of the j dependence should include the breakup of
the deuteron as well as the antisyrnmetrization of the
wave functions, since all of these effects may infIuence
the stripping cross section at large angles. The stripping
cross section is aGected to some extent by the presence
of the coupling potential, as is shown in Fig. 7. The
stripping cross section is less sensitive to the nuclear
interior when calculated by the coupled-equation
method as comparted to the DKBA method. This is
ilh~strated in Fig. 8.

I ' I
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Fn. 7. The dotted curve illustrates the stripping cross section
obtained from a DKBA calculation in which the deuteron optical
potential is taken equal to the complex-deuteron potential em-
ployed in the coupled-channel calculation. This cross section is
also equal to the result obtained in the 6rst iteration of the solution
of the coupled equations. The solid line shows the final coupled-
channel stripping cross section. The neutron is bound to a square
well in these calculations. Comparison of the two curves illustrates
the e6'ect which the presence of the coupling term Vi has on the
stripping cross section. ,

stripping cross section. This is to be expected since the
bulk of the cross-section peak comes from the large dis-
tance contribution of the stripping overlap integrals,
where optical-model and coupled-equation waves are
very similar. The DKBA cross-section peaks increase
somewhat more slowly with energy than the coupled-
channel results very likely because of the cancellations
in the stripping overlap radial integrals which arise from
the contributions at small distances, and which are ab-
sent in the coupled-channel case. The angular distribu-
tion of the stripping cross section, Fig. 5, shows a diGer-

ence between the two methods of calculation. This
di6erence increases with angle and with energy, and re-
jects the diBerence between the wave functions at small
distances. The difference is similar to the eGect of intro-
ducing a radia1. cuto6 into the DACHA calculations.
The coupled-channel results have a tendency to present,

deeper minima and faHoff faster with angle. Since the
main di6erence between the two methods of calculation

An attempt is made to include explicitly the presence
of the stripping channels in the calculation of elastic-
deuteron-nucleus scattering. The resulting equations are
of the coupled-channel type, and in the case of d-Ca
interaction, the stripping channels are found to give
rise to a large feedback to the deuteron channel. The
coupled equations are appmxirnate since they do not
explicitly take into account the nonorthogonality of
the stripping and deuteron channels, the antisym-
metrization of the nucleons in the incident deuteron and
those in the target nucleus, and the breakup of the deu-
temn. These effects may have been t.aken into account
implicitly to a certain but unknown extent by the use of
a phenornenological complex potential in the deutemn
channel. The imaginary part of this potential is as-
sumed to produce a large volume absorption, in analogy
to the large absorption encountered in the case of alpha-
nucleus scattering. In the pmton channel the complex
potential is taken equal to the "measured" proton-
optical-model potential. The main result is that this sys-
tem of coupled equations does produce roughly the
same features which exist in the experimental elastic-
deuteron-scattering angular distributions. Notable

among these features is the appearance of a new valley
beyond 12.8 MeV and the associated fact that the posi-
tion of the valleys do not correspond to what is expected
from simple diffraction scattering.

The presence of the coupling to the stripping channels
seems to demand a deuteron volume absorption which
is larger than that used in the conventional optical-
model description. This is found by running a coupled-

» L. L. Lee, Jr. and J.P. Schiffer, Phys. Rev. 136, B40S (&964);
J. P. Schiffer, L. L. Lee, Jr., A. Marinov, and C. Mayer-Boricke,
jbjd. 147, 829 (j.966); C. M. Glashausser, Ph.D. dissertation,
Princeton University (unpub1ished). Inclusion of the d-state
component in the internal deuteron wave function markedly im-
proves the DKBA 6t of the j dependence at forward angles, as is
shown by R. C. Johnson and F. D. Santos, Phys. Rev. Letters 19,
364 (1967).
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I I I I T I I I I I provide encouragement for additional work along the
same lines. Once the breakup channels are included into
the calculation in a realistic way, then the nonortho-
gonality problems mentioned above will be eliminated
and the resulting coupled equations will be more rigor-
ous. It is hoped that a further test of coupled-channel
calculations will be provided by the analysis of the j
dependence in stripping, " the energy dependence of
the stripping reaction, polarization phenomena involv-
ing deuteron rearrangement reactions, and the charge-
exchange inQuence of analog states upon stripping cross
sections. '~"
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FIG. 8. Sensitivity of the cross sections to the choice of the radial
dependence of the coupling potential VI. The solid curves are ob-
tained using a neutron bound to the Woods-Saxon well, the dotted
curves are based on a square well. Both coupling potentials V&

derived from these neutron wave functions are shown in the bot-
tom half of Fig. 4. The top two curves illustrate the elastic cross
section (ratio to Rutherford cross section), the two middle curves
represent stripping cross sections obtained with the DWBA
method based on the deuteron optical potential Z2, and the two
lower curves illustrate the coupled-channel result for the stripping
cross section. It is seen that the DWBA results are more sensitive
to the choice of VI than the coupled-channel results.

channel case in which the deuteron potential U~ is re-
placed by the optical potential Z2 which only has a sur-
face absorption and which, without coupling, gives a
reasonable fit to the elastic cross section. The result is
that in the elastic-scattering cross section the peak-to-
valley ratios are increased signi6cantly (almost a factor
of two beyond the second cross-section valley). If a
volume imaginary potential is then added to the deu-
teron potential, the peak-to-valley ratio is again
decreased.

The present results show that an alternative to the
description of elastic-deuteron scattering by means of
a local optical model which has weak volume absorption
is a coupled-channel treatment in which the deuterons
are strongly absorbed in the nuclear volume. The 6/= 1
stripping cross sections which are obtained with the
coupled-channel method are surprisingly similar to the
conventional DKBA results in the angular region of
the 6rst maxima. The deviations which occur at large
angles are progressively larger as the incident deuteron
energy increases. Although the coupled-channel equa-
tions discussed above do not give as good a 6t to the
elastic deuteron cross section than does the optical
model, it is nevertheless hoped that the present results
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APPENDIX A

The coupling terms neglected in Kqs. (18) will now
be discussed. The terms which are neglected are
Qi~"'IP Vu), /~I P~Vu), (Q~IP Vu), andQ~PQ Vu).
The terms which are kept are Q~~'&

I Vu), (QqI VP„u),
and (PqI VP~Q„u). What distinguishes the terms which
are kept from those which are neglected is the occurrence
in the latter of one or two additional projection opera-
tors to the left of V. For example, the QqP„Vu) term,
expressed in terms of the bound-neutron eigenstates de-
6ned in Eq. (5), is given by

(4~IP.Vu) = 0"(»«—»~)Z v-'(»-) v-"(»-')

&(V(r„',r„)u(r„',r„)d'r„'d'(r„r„). (AI)—
The interaction V(r„r~) is of short range and for the
present discussion it is replaced by Vob(r r~) and- .
Kq. (Ai) becomes

(ym Vu) = Vo y *(» —r„)Lg &„~(»„)& '*(» )j
&& u(r~, r„)d'(r„—r~) . (A2)

The non-neglected term (PqVP„u) to be compared with
(p&P„Vu) is then approximated by

(A3)

If the sum P; p &y„" in Eq. (A2) were equal to a delta
function b(r —r~), then expressions (A3) and (A2)
would be comparable and the approximation of neglect-
ing one of the two terms woul. d be totally unjusti6ed.
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The completeness relation of the functions y is

Z o.'(rl) o -"(ro)+ o -"(rl) o -"(ro)d'&= b(rl —ro),

and hence, because of the absence of the continuum
states from the sum g; Io„IIo„I', its value is not equal to
a delta function. If only a few terms contribute, the
value of the sum is an oscillatory function of the distance
r between the tvto coordinates r~ and r2 which is expected
to be nonvanishing over a regiog, of nuclear dimension.
Since, in addition, the function pg(r —r„) in a slowly
varying function of r„—r~ (=r ' exp( —r/4. 3 F) while

N(r„,r~)=N(r„, r,r—„—r) is an oscillatory function of r,
canccllatloDs alc expected ln the integral contalDc(j In
Eq. (A2). Such cancellations are not present in the in-
tegral which leads to Eq. (A3) and hence /de I) is
expected to be larger than QgP„VN&. As it stands, this
is not, as remarked in the text, a very compelling
arguIQcnt.

APPENIHX 8
The presence of charge-exchange cGccts veil/ now bc

lncolpolatcd into thc coupled strlpplng-deuteron equa-
tions. The application in mind is that of the reaction
"Zr(d,p)"Zr which can also proceed erst via the strip-
ping to the analog channel ooZr(d, N)("Nb)", and then
via charge exchange (oINb)~(n p)"Zr. Here ("Nb)"
denotes the analog state of 9'Zr, A state vtith a good
isotopic spin T and Z component Ts is denoted

I T,Ts&.
The target-nucleus lsotoplc-spin @rave function
T,, To), and those of the proton and neutron are

—',, ——,') and I-'„-',), respectively. The deuteron is given

by I00&=Llo —
o&I&& Io o&o

—Io o)II-' —o&os'o
The derivation of the coupled equations LEqs. (28)j is

novt repeated after inserting the isotopic-spin functions
for the various channels. As a guide, the 6rst step is to
obtain the isotopic-spin extension of Eq. (11).The com-

plete WRvc fllllctloll 'Ip($, 1 2) ls takcll Rs

4(U, 2)=f-(2)4 ($1)I )+f (2)4.(t,1)IP&

+f~(~)@~(r)A(t) Iv) (B1)

l~&= ITo+o, To—o&o.lion&o (B2)

describes the isotopic-spin function of the situation
vherc particle 1 ls a pIoton bound to thc COIc into an
analog state of

I To—-'„To——,'), and where particle 2 is
a neutron. The spatial v ave functions are, respectively,

~.(&,1) d f-(2).
SIIQ11R1'ly, s'tate

I p& describes thc Isotopic spill wave of
the normal stripping channel

IP)= I
To+-:, To+o&o.llo, —k&. , (»)

and. Iy) describes the deuteron channel

Iv&= I To, To&II00&l.o (B4)

The states y, (P,1) I
To+-,', To——,') and P.(&,1) I

To+-'„
To+ ', ) are eigenstates of t-he Hsmiltonian ICI+ 0'(1,&)

+HO($) with elgenvalues o~ and o„, respectively, where
8'c is the Hamiltonian of the target nucleus and g'(1, t)
is the interaction of particle 1 vtith all the target nu-
cleons. Since these thoro states are analogs of each other,
e„ is more negative than e„by approximately the Cou-
lomb energy 6 of one proton in the core nucleus. State
@o(&) I To, To) is an eigcnstate of Bc(&) corresponding
to the eigenvalue et.-. The other excited states vthich
should also appear in Eq. (B1) have already been left
out anth the understanding that the various potentials
vthich appear in the Schrodinger equation are complex.
In the isotopic-spin notation the nucleon-nucleus po-
tentials become

1(2,$)=Z Lvo(»4)+ vI(»&')to. to;j (Bs)

and the Hamiltonian Pc in the Schrodinger equation,
(8—X)/=0, is given by

&=I:I+&o+ffo(t)+~~(1,5)+~~(2,k)+ V(1,2).

Inserting Eq. (B1) into the Schrodinger equation
given above and carrying out the operations Q„I(oI
and Q I+I, one obtains

No+"—Z(~4. I 0&=-( ~.l(~(2.~)+ ~(1,~))~),

L&o+o- ~j&o4-I4) (B6)
=-Q~. l(V(2, ~)+ 17(1,~))a&.

The expressions (a&„I&& and (p&„III) are replaced by
f„(2) and f„(2), respectively.

The matrix elements on the right-hand side of Eq.
(B6) are evaluated employing Eq. (BS) and by defining
new potentials Uo(2) and Ul(2) as follows:

wllCI'C
I +)=

I TI+o~ Tl ~&&& Tl= To+o~ Rnd Tl
= (2TI+1)'", one obtains

(nUa)= Uo+(Tl —1)U'I,

(PUP&= Uo TIUI, —
(oUP) = (2T,)I&IUI.

(B9)

y,*((,1)L P vo(2, z)+ vl(2, z)tI t,gy„(P,1)d(g)d(1)

=U(2) = Uo(2)+2UI(2)TI to (B.7).
Here Tl is the isotopic spin operator for the system
2+1.Assuming that the wave functions P„and p„are
suScicntly similar to each other, then the nuclear part
of potential Uo and Ul have the same value if @„is re-
placed by P„ in Eq. (87). Also, making use of the iso-
topic spin identities

—I-&+(».& I I+&
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Insertion of Eqs. (39) into Eq. (86) leads to the custom-
ary Lane equations for the parts of IP) involving the
functions f„ln) and f~I p).

The evaluation of the matrix element in Eq. (36) in-
volving Iy) will now be discussed. The spatial part of
this matrix element contains terms of the form

M..(2) = ~.*(~,1)[Z V(~;,2)+V(1,2)j

&&~ (e~.{)f(Wd(ed(1) {310)

This expression is similar to the matrix element usually
encountered in stripping calculations. The function

$),($,1) is replaced by (8)'iogo{$)qo„(1), where 5 is a
suitable spectroscopic factor and q „is a single-particle
bound-state wave function. The integration over $ can
now be performed. The potential g; V(g;,2) which
would give rise to core excitations is frequently neglected
and the potential V(1,2) which remains is made respon-
sible for the stripping process. It may be interesting to
note that if P; V(f;,2) is kept, even in the absence of
core excitations, then after integration over $ it leads
to a potential U'(2) which is a function of (2) alone and
which does not inhuence the subsequent integration
over (1).The latter gives rise to an overlap integral of
the stripping and the continuum-continuum channels
described in the text, which are orthogonal to each other
if the projection-operator technique is used.

Keeping only V(1,2) in Eq. (310), and further ne-
glecting the isotopic spin dependence of V(1,2), one
obtains

Ã,+Uo+(2,—1)U,—~.jf.(2)+(»,) lioUf, ( )2
= —M,.(2)/(2r, +1)lio, (811a)

[Eo+U()—7lUl —E„jf„(2)+(2Tl) '"
XUlf~(2) =+Ma,{2), (311b)

where E„=E—e„,E„=E—e„.
The factors multiplying the quantities Mq„and 3fq„

on the right-hand sides are obtained by carrying out the
isotopic-spin matrix elements (alp) and (ply), which
are equal to (2) 'I'(2To+1) '~o and —(2) "', respec-
tively. The factor (2) '~' is dropped because it repre-
sents the antisymmetrization carried out between par-
ticles 1 and 2 ln thc deuteron which however hRS not
been carried out in the stripping channels. The function

Mg (2) has been defined in Eq. (810). The counter-
part Mq„ is obtained from Eq. {310) by replacing
~.*(W) by ~.(W).

In order to obtain the third of the coupled equations,
the projection-operator technique discussed in the text
must RgRln bc used. Thc cquRtlon obtRlned from Eq.
(18c) by including the isotopic spin dependence of the
potential and wave functions is now multiplied to the
left by (p&o&&(r) I «pi«ing 6yoy. l Q.Q.N) by «(~)
and neglecting matrix elements similar to those dis-
cussed in Appendix A, one obtains the desired equation.
The three coupled equations are

(&a+Un —&~)fn= (&~l «-fn)
—(4a I Vo y )/~o, (312)

(I) 2+Uo+(2 l 1)U1 +s)ye+ ~OUlfy
= —«~l V&~f~&/2'o, (313)

(Ko+Uo—TlU) E„)f,+—f'oU, y„=(qo„l vygfr)&, (814)

where f'o —(2To+1)—'io.

The single-particle bound-neutron and bound-proton
functions are q and q„, respectively. These should be
multiplied by spectroscopic factors, which however have
been left out for simplicity.

The functions y„and f~ have asymptotically only
outgoing waves, while fl) has an incident plane wave
plus an outgoing wave. The asymptotic amplitude'for
f„which results from the three equations above leads
t t 'ti ti 1 t T itt d by
Zaidi and Brentano, '4'~

2'..=(x.' )s.
l V{1,2)&~fn&

-(x-(-".
I V{1,2)~.f.)/2;. (»5)

Here X„& )* and X„& )' are the solution of the charge-
exchange equations

[Eo+Uo+(2"l—1)Ul—8 jx ( )'

+2'oUlx„( '=0, (816)
[Eo+Uo—TlUl —E~jx„( )"+f'oUlx„(-)'=0,

wltll 'tile bolllldal y colldltlolls 'tllat Xy( ) asyxllptotlcaiiy
has an incident plane wave plus an outgoing wave,
while X„&—)' has only an outgoing wave. In order to see
how Eq. (815) follows from the coupled Eqs. (312)—
(814) it is sufficient to apply the operation (x„(-)

I
t

Eq. (313) and (x„(-)
I to Eq. (814). The sum of both

operations gives

y.[(Z,+Uo+(rl —1)Ul —Z.)x.(-)*+2oUlx, (-)'jd'r+ f,[{Zo+U.—T,U,—Z,)x„( )'+Z;U, x„( )'jdor--
+ [x&( ) Eoy~ —y~EoX~( ) jd r+ [Xy( ) Eof~—f~oXy( ) jdor
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The first two lines vanish on account of Kqs. (Ii16), the third line vanishes because the asymptotic behavior of
both X —' and y„ is outgoing, and the fourth line gives rise to a surface term rvhich is equal to the transition
matrix elements Tq„.39

If the feedback of the stripping mechanism upon the deuteron channel is negligible, then the right-hand side
of Kq. (312) can be set equal to zero and the functions fq can be obtained from a conventional optical-model deu-
teron potential. However, the case where the analog state has a spectroscopic factor close to unity is interesting
because then the coupling term in Kq. (812) cannot be neglected. In this case, as the incident deuteron
energy is varied near the threshold of the analog channel, the opening of the latter should introduce a particular
energy dependence in fn. The energy dependence might in turn reflect itself in the stripping cross section to other
channels which are not related to the neutron channel via charge exchange, and the results may diGer from those
obtained by TaIIlura and Watson. is

"A. Messiah, Qlontem Mechoescs Qohn Wiley & Sons, Inc., New York, 1962), Eq. (XIX.9).
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Study of the Low Levels of Si"
M. B. Lmvls mo N. R. RosERsoN

Duke University, Nuclear Structure Laboratory, Durham, North Carolina

D. R. TILL'
%orth Carolina State University, Raleigh, North Carolina

and
Duke University, nuclear Structure Laboratory, Durharl, cnorth Carolina~

(Received 7 July 1967)

The low-lying excited levels of Si'~ have been studied by the Si"(He', ny)Si'7 reaction. The particle-y
angular-correlation method of Litherland and Ferguson was used. Most probable spin assignments for the
0.96-, 2.17-, and 2.65-Mev levels were determined as s, i, and -'„respectively. Transitions from the 3.54-
and 4.13-MeV levels appeared to have isotropic p-ray angular correlations, and decayed primarily through
the well established J=-,' level at 0.78 MeV. A spin assignment of —,

' is likely for these two levels, although a
J= -', assignment cannot be rigorously ruled out. The branching scheme for the decay of the 3.80-MeV level
suggests a spin of + for this level although an angular correlation was not carried out. The levels at 2.87 and
2.91 MeV were not resolved, and an angular correlation for these levels was not carried out. The y-ray spectra
for the doublet indicate a strong ground-state transition for both levels. Mixing ratios and branching ratios
for many of the y-ray decays were measured for the first nine levels. Strong- and weak-coupling model
calculations were carried out, and the results indicate signi6cant evidence for Si"core-excitation con6gura-
tion in the Si" levels below 3.00 MeV. Many transition properties predicted by the strong-coupling (rota-
tional) model are in conQict with measured values.

I. INTRODUCTIOH

~ ~HE gd2s shell is now a well established mass region
in which nuclei manifest collective excitation

properties. In particular, the sequence of spins and some
of the spectroscopic properties of low-lying levels in
many of the odd-A nuclei show a rotational behavior
which is at least approximately accounted for by the
coupling of a single particle to a statically deformed core
as in the Nilsson model. ' 4 In some cases, particularly

* This work was supported in part by the U. S. Atomic Energy
Commission.' A. Bohr and B.R. Mottelson, Kgl. Danske Videnskab, Selskab,
Mat. Fys. Medd. 27, No. 16 (1953).

~ H, K. Gove, in I'roceedings in International Conference on Nu-
clear Structure, edited by D. A. Bromley and E.W. Vogt (The Uni-
versity of Toronto Press, Toronto, Canada, 1960).

~ J. M. Lacambra, D. R. Tilley„and N. R. Roberson, Nucl.
Phys. A92, 30 (1967).

those in which there is not a large energy gap between
the lowest two odd particle levels, the nucleus may be
better described in terms of coupling of an odd particle
to two or more different states of the core rather than
to a statically deformed one. The diGerent states of the
core are due to one or more of the core nucleons occupy-
ing one of the excited, but low-lying, single-particle
states. As Shatt4 has pointed out, such a situation
might occur in the id2s shell near the crossing of the 5th
and 9th Nilsson orbits. There is some experimental
evidence that Ne", Al25, Mg", and Al2' have their erst
excited states (orbit 9) separated about 1 MeV or less
from their ground state (orbit 5). For example, Than-
kappan' has described some of the properties of the
low-lying levels of Al2~ in terms of a proton hole coupled

4 Kumar H. Bhatt, Nucl. Phys. 39, 375 (1962).' V. K. Thankappan, Phys. Rev. 141, 957 (1966).


