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the experimental ones. One of the reasons for this
difference may be the fact that the relation connecting
impact parameter, scattering angle, and incident energy
is unsatisfactory, inasmuch as it fails to take account
of the influence of the particular electronic state on the
trajectory.

In Table III we present our results for the cross
sections of capture in the ground state and the excited
states of the He* ion, in the energy range 1.6-32.4 keV.
In Fig. 3 we compare our results of total cross section
with the experimental findings of Fite, Smith, and
Stebbings.? Here we have found a very good agreement.
The general tendency of our theoretical results ap-
proaching zero in the zero-velocity limit of the «
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particle is a characteristic feature of accidentally
resonant reactions, as has been remarked by Bates
et al.3 It seems clear that the predominantly large cross
section for the capture into the 2s or 2p states compared
with that in the ground state is due to the accidental
resonance of the two states with the ground state of the
hydrogen atom.
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Real and virtual absorption of weak monochromatic light is analyzed with semiclassical radiation theory.
The influence of the light on the atoms is described by an effective ground-state Hamiltonian operator, and
the effect of the atoms on the light is described by a dielectric susceptibility operator. These operators are ex-
pressed explicitly in terms of familiar ground-state observables, angular factors, oscillator strengths, and
plasma dispersion functions. The theory gives a comprehensive description of optical pumping, light shifts,
and light modulation due to real and virtual absorption of light, and several new effects are predicted. Re-

population of the atomic ground state from a polarized excited state is not considered in this paper.

I. INTRODUCTION

FORMAL theory of optical pumping was first
developed by Barrat and Cohen-Tannoudji.!
They show that for normal light intensities the pumping
of the atomic ground state is due to two distinct pro-
cesses: absorption by the ground-state atoms of light
which is not completely isotropic or whose spectral in-
tensity varies strongly in the region of the atomic
absorption lines, and repopulation of the ground state
by spontaneous emission from a polarized excited state.
In their work the atoms are treated with the density
matrix formalism while the light is represented by a
many-photon state of the radiation field. Although this
approach yields a detailed description of the evolution
of the atoms, the corresponding influence of the po-
larized atoms on the light is treated only superficially.
In this paper we consider the effects due to the real
and virtual absorption of light by atoms. We shall not
be concerned with the repopulation of the atomic

* This work was supported wholly by the Joint Services Elec-
tronics Program (U. S. Army, U. S. Navy, and U. S. Air Force)
under Contract DA-28-043 AMC -00099(E). .

T Alfred P. Sloan Research Fellow.

P. Barrat and C. Cohen-Tannoudji, J. Phys. Radium 22,
329 (1961) 22, 443 (1961).

ground state by spontaneous emission from a polarized
excited state. The interaction of the atoms with the
light is treated semiclassically. The electric field of the
incident light is represented by a quasimonochromatic
wave?

E(r,t) = (Eo/2)ei —w0fc.c., (L.1)

where the amplitude E, is a slowly varying function of
space and time and c.c. denotes complex conjugate. We
shall assume that the incident light intensity is weak
enough so that spontaneous emission from the excited
state is much more probable than stimulated emission.
We shall also assume that any external magnetic field
which may be present is small enough that the Zeeman
splittings of the atom are much less than the Doppler
widths of the optical absorption lines or than the hfs
splittings of the atomic states. Under these loose re-
strictions we show that the effect of real and virtual
absorption of light by the atoms can be represented by
an effective ground-state Hamiltonian operator 83C;
i.e., as if the evolution of the atomic ground state were
determined by a Schrodinger equation of the form

() dt) = (3Co+83C). 1.2)

2 This formalism has been extended to the case where several
monochromatic light waves are present simultaneously.
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The ground-state Hamiltonian of the atoms. in the
absence of light is represented by 3Co. The effective
Hamiltonian 83C is in general not Hermitian, but it can
be expressed as a linear combination of a Hermitian
light-shift operator 68 and a Hermitian light-absorption
operator 8T, i.e., o

s50= 66— i(/2)oT. (L3)

The light shift operator 88 has exactly the same effect on
the atoms as a small Hermitian perturbation of the
zeroth-order Hamiltonian 3Co. The diagonal matrix
elements of 88 represent a shift of the energy levels of
the atom.! If the light is modulated?® at some ground-
state transition frequency, then the off-diagonal matrix
elements of 88 can induce real transitions between
ground-state sublevels.*

The light-absorption operator 8I' gives rise to a dis-
sipative term in the effective Hamiltonian, and it is
responsible for the relaxation and optical pumping of
atomic vapors due to absorption of light. If the ground
state of the atoms is described with the density matrix
p, then the rate of disappearance of atoms due to absorp-
tion of light is

— (d/dt) Tr[p]=Tr[pdT]=(5T". (1.4)

The diagonal matrix elements of 8I' cause a longi-
tudinal pumping of the atomic sublevels, and the off-
diagonal matrix elements of 6T can produce ground-
state coherence® if the light is modulated near some
ground-state transition frequency.®

The macroscopic dielectric polarization vector P of
the vapor is related to the electric field E of the light by
a susceptibility dyadic (X)

P=(X)(Eo/2)eit® w4 c.c. (L.5)

The susceptibility dyadic (X) is the expectation value
of a susceptibility dyadic operator X which depends only
on the observables of the atomic ground state. The
absorptive components of (X) describe the attenuation
of a beam of light by a polarized vapor, while the dis-
persive components describe the anisotropic index of
refraction. The susceptibility dyadic is, of course,
closely related to the light-shift operator and to the light-
absorption operator.?

3 When the light is modulated at frequencies which are large
compared to the Doppler widths of the optical absorption lines
(hfs frequencies), it is necessary to consider the sideband structure
of the light in detail.
a ;(;N'D Happer and B. S. Mathur, Phys. Rev. Letters 18, 727

®In problems associated with optical pumping and optical
double resonance, the term “coherence” is used to describe the
off-diagonal, oscillating components of the density matrix, which
can be induced, for instance, by a small periodic perturbation on
an atomic system in which population differences exist.

¢ W. E. Bell and A. L. Bloom, Phys. Rev. Letters 6, 280 (1961).

7 The light absorption operator and the light-shift operator were
first derived in Ref. 1 for light with a broad spectral profile.
Naturally, the dielectric susceptibility dyadic was not considered
since it has significance only for monochromatic light. The results
of the present paper can be applied to light with a broad spectral
profile in the usual way by representing the light with many
monochromatic waves of random phase.
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Fic. 1. Different types of light shifts.

The basic form of (I.1) through (L.5) is valid for any
atom. However, the effective ground-state operators
take on a particularly simple form for atoms with a
single Zeeman multiplet in the ground state, i.e., atoms
with the nuclear spin equal to zero or with the ground-
state electronic spin equal to zero. Then the light-shift
operator is

88=080—u-0H—}1Q :5VE. (1.6)

Here 68, is a common shift of all the sublevels of the
ground-state multiplet (a shift of the center of gravity),
8H is an effective magnetic field which interacts with
the magnetic dipole moment @ of the atom, and §VE
is an effective electric-field gradient which interacts
with the electric quadrupole moment Q of the atom.
The type of light shift which is caused by each term in
(1.6) is illustrated in Fig. 1.

The light absorption operator for atoms with a single
Zeeman multiplet in the ground state has the form

ST'= 8Tty 0T+ Q T, €n
so that the rate of absorption is (1.4)
(8Ty=8To+ () ST 1+ (Q) :0T .. (1.8)

Thus, the absorption rate depends on the expectation
value of the magnetic dipole moment and on the ex-
pectation value of the electric quadrupole moment of
the atom. Explicit expressions for the scalar damping
constant 6T, for the vector damping constant &I,
and for the tensor demping constant 6I'; are derived
in Sec. IV.

Finally, for atoms with only one Zeeman multiplet
in the ground state, the dielectric susceptibility dyadic
is®

(=Xt X1{p) X +X(Q). 1.9)
The scalar part X is responsible for the absorptive and
dispersive components of the scalar index of refraction.
The vector part X;{u)X is responsible for the orienta-
tion-dependent absorption of light and for the para-
magnetic Faraday effect. The tensor part, Xo{(Q)-, is
responsible for the alignment-dependent absorption of
light by the vapor and for refractive effects similar to
those in an optically active crystal. If coherence exists
in the atomic vapor, both (u) and (Q) will contain

8 The dyadic (x) is expressed as the sum of a scalar, vector,
and tensor part so that the product of (x) with a vector E is an-
other vector (x)E whose Cartesian components are ({x)E);
=XoEi+X1(WXE)i+X2 225 Qi E;. : :
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oscillating terms which give rise to the modulated
absorption of resonant light? and to the modulation of
the polarization of transmitted off-resonant light.l® A
detailed discussion of atoms with a single Zeeman
multiplet in the ground state can be found in Sec. IV.

The alkali atoms present a special problem because
of the presence of hyperfine structure in both the ground
state and in the excited state. Neglecting the excited-
state hfs separations,!’ one finds that the light-shift
operator has the form

58= 088+ hsAL-J—y-oH. (1.10)

A common shift of all of the sublevels of the ground
state is described by 88,. This shift of the center of
gravity of the ground state cannot, of course, be de-
tected as a shift in some ground-state transition fre-
quency. The term %#841-J in (1.10) represents an effec-
tive shift of the magnetic dipole coupling constant of
the atom. This term will not affect the Zeeman fre-
quencies of the atom, but it will shift the resonant
frequencies of the hfs transitions. The term —u-6H in
(1.10) represents the interaction of the magnetic dipole
moment of the atom with an effective magnetic field
SH. This term will shift the Zeeman frequencies of the
alkali atom. The effective field 6H is present only if the
light is circularly polarized, and in this case 6H is
directed parallel or antiparallel to the direction of the
light beam.

Because of the large hfs separations in the ground
states of alkali atoms, it is convenient to write a
ground-state operator, O, as the sum of two Zeeman
components Oy and a hfs component Oy, i.e.,

I+41/2
O= Z 044Ohss (I.11)
f=I—1/2
where
Or=% | fulful O] fw)fu'l, 1.12)
and

Onts= 2 | fuw){fulO| fu'Xfw'|. (L.13)
1=y

The expectation value (O;) will contain static terms,
and, if Zeeman coherence exists, terms which oscillate
near the Zeeman frequencies of the atom. The expecta-
tion value (Onts) will be zero unless hfs coherence exists
and then it will oscillate near the hfs frequencies of the
atom.

Neglecting the excited-state hfs separations one finds
that the Zeeman susceptibilities of an alkali vapor have
the form
- X)=Xot+X:{up)X. 1.14)

9 H. G. Dehmelt, Phys. Rev. 105, 1924 (1957); W. E. Bell and
A. L. Bloom, ¢bid. 107, 1559 (1957).

10 J. Manuel and C. Cohen-Tannoudji, Compt. Rend. 257, 413
(196%; W. Happer and B. S. Mathur, Phys. Rev. Letters 18, 577
(1967).

11 When the hfs separations of the excited state are taken into
account, it is necessary to add a small term which transforms like

a quadrupole moment to the effective operators for the alkali
atoms (see Sec. III).
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If a microwave field of frequency w, has induced hfs co-
herence in the atomic vapor, the hfs component of the
magnetic dipole moment can be expressed as

(unts) =g omt 4y ¥eiomt, (L.15)

One finds that the hfs susceptibility of the vapor can
be written in the form

(ass)=3[X1(@me '+ X1 (D)ur*e*m]X . (1.16)

The functions X1(e) and X1(b) depend on the frequency
of the incident light wave and in general X:(a) X1(b)
so that the hfs susceptibility will generate asymmetric
sidebands from a monochromatic light wave. Several
interesting experimental consequences of the hfs sus-
ceptibility are discussed in Sec. ITI. The amplitude and
phase of the hfs modulation of the pumping light are
closely related to the magnitude and sign of the hfs
light shift, so that observation of the light modulation
signals from optically pumped frequency standards
could provide a means for monitoring and eliminating
the light shifts.

The algebra of spherical tensors is used to carry out
the computations in this paper. All optical reduced
matrix elements are expressed in terms of oscillator
strengths for the transition, and whenever possible the
effective operators are written in terms of familiar
ground-state operators such as J, I-J, etc. The optical
absorption and dispersion profiles are expressed in terms
of plama dispersion functions.?

II. SEMICLASSICAL THEORY OF THE
ABSORPTION OF LIGHT BY
ATOMIC VAPORS

Let the electric field of a monochromatic light wave
be represented by

E(r,8) = (Eo/2)[ e€?=r—w+c.c.]. (Ir.1)

Here e, the complex polarization vector of the light, is
normalized so that

(I1.2)

and E, is a slowly varying function of space and time.
The Hamiltonian operator of the atom can be written
in the form

Sc=3copt+gchis+3cz-' P E+"}Cc .

These terms have the following significance :

(a) 3Copt describes the optical energy levels of the
atom, excluding the hyperfine structure. 3Cop¢ is a
multiple of the unit operator within the subspace
characterized by the electronic angular momentum J
and by any other quantum numbers necessary to dis-
tinguish multiplets with the same J.

(b) 3Chss describes the hyperfine structure of the
optical energy levels.

(c) 3¢, describes the interaction of the atom with
any static external magnetic field which may be present.

e-e¥=¢*.e=1,

(IL3)
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(d) —p-E describes the interaction of the electric
dipole moment p of the atom with the electric field E
of the light.

(e) 3¢, describes collisions of the atom with other
atoms or molecules or with the walls of the container.
It also describes the effects of radiation trapping.

We shall only be interested in the JC, insofar as it
modifies the absorption of light by the atoms. Extensive
work on collisional relaxation effects in the ground
state!® and in the excited state of the atom can be
found in the literature.

The quantum numbers used to designate the eigen-
states of the atom are indicated in Fig. 2. The nuclear
spin I is coupled to the ground-state atomic spin J,
to form the ground-state hfs levels F, F,/, etc. A similar
situation holds in the excited state.

Let us represent the state of the atom by the wave
function

YO =Y ame  EntD | )43 q, e Etin |y, (I14)
m »

The basis functions |m) and |u) represent the excited
states and ground states of the atom. They are eigen-
functions of the basic Hamiltonian

Sco=xopt+3chfs+scz- (IIS)

In this interaction picture the amplitudes a., and a,
change continuously under the influence of the light
and in discontinuous jumps as a result of collisions.
During the time between collisions, the excited-state
amplitude @, obeys the Schrodinger equation

T ‘p ]
ilm=—i—am— 2 {m|—|u)aeemt,  (IL.6)
2 u %

where
fiwmp=En—E,. Ir.7)

The damping of the excited-state amplitude due to
spontaneous radiation has been accounted for’® by
adding the term —i(I'/2)an to (IL6). The radiative
lifetime of the excited state is 7=1/T. If the center of
mass of the atom is located at the position R(¢) =Ro+vi,
then one can use (IL.1) to write (IL.6) in the form

Eoeik-Ro
i_ame(rlz) [ZES—
dt 24

~+rapidly oscillating terms}.

Z {e . pmﬂei[wm,d—k-v—w—i (r/2)1 td“
»

(I1.8)

For ordinary light intensities the coefficients g, will be

12 B, D. Fried and S. D. Conte, Tke Plasma Dispersion Function
(Academic Press Inc., New York, 1961). .

13F A, Franz, Phys. Rev. 139, A603 (1965); H. M. Gibbs and
R. J. Hull, bid. 153, 132 (1967); M. A. Bouchiat and J. Brossel,
ibid. 147, 41 (1966). .

147, P. Barrat, J. Phys. Radium 20, 541 (1959); 20, 633 (1959);
F. W. Byron, M. N. McDermott, and R..Novmk, Phys. Rev. 134,
A615 (1964); A. Omont, J. Phys. (Paris) 26, 26 (1965); J. P.
Barrat, D. Casalta, J. L. Cojan, and J. Hamel, J. Phys. (Paris) 27,
608 (1966). . . . .

15 A more rigorous justification for the introduction of the
damping constant can be found in Ref. 1.
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slowly varying!® with respect to the excited-state decay
rate T, so that (I1.8) may be integrated to give

E,
1am(l) = tam()e~ TP () ——gilk-R—ot) 3~ giwmpte.p,. q,
2% B
1 — gilomutk-v—o—i (T/2)] (¢—t)

Lomtk-v—o—i(T/2)] |

The physical meaning of (I1.9) is that the last collision
occurred at the time ¢ leaving an excited-state ampli-
tude an(?). At a later time ¢, the original amplitude has
decayed by the factor e (T/2(=t) and an additional
amplitude, coherent with the monochromatic light, has
built up. Equation (I1.9) may now be used to compute
two important physical parameters: the dielectric sus-
ceptibility of the vapor, which describes the influence
of the atoms on the light, and the effective ground-state
Hamiltonian, which describes the effect of the light on
the atoms.

(I1.9)

A. The Dielectric Susceptibility

The dielectric susceptibility (X) is a dyadic (tensor)
which relates the macroscopic polarization vector P of
the vapor to the electric field of the exciting light ;

Eq
2

P (X)—girenfce.=N(py.  (IL10)

In anticipation of a result which we will obtain presently,
the susceptibility has been written in the form of an
expectation value of a certain operator X. The macro-
scopic polarization P must be equal to the atomic
density NV times the ensemble averaged electric dipole
moment operator {p) of an individual atom. The en-

16 If weak rf magnetic fields have coupled the ground-state sub-
levels there will be additional slow variations of the amplitudes
a,. However, the flipping frequencies involved are normally much
smaller than the excited-state decay rate I', and the evolution of
the atomic ground state caused by the rf magnetic field can be
considered separately from the evolution caused by the absorp-
tion of light.
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semble average should include all possible collisional
histories of the atoms and a Maxwellian velocity
distribution.

The expectation value of p for a single atom is [see

(IL.4)]

Wlpl¥)=X are“mippamtcc.  (IL11)

Substituting a,, from (11.9), we obtain
<¢Ipl¢>=z lly*ei“’”"tpymdm(t’)e”<1‘/2) (t—t")

vm

0 .
et (k-R—wt) Z eiwwtanau*pympm“ .e
2hi mm
1 — gt lomptk-v—w—i(I'/2)] (t—t’)

.C. 11.12
% i[wm,+k-v—w—¢(r/z)]}+° (.12

We may now perform an ensemble average of (¢|p|¢)
over the collisional histories and over the velocity dis-
tribution of the atoms. Suppose that the probability
P(7)dr that the last collision occurred at a time between
t—7 and {—7-+dr is given by

P(r)dr=e7y dr. (I1.13)

Let us further assume that the atoms have a Maxwellian
velocity distribution so that the probability of finding
an atom with the velocity v is

M \?3 M?
N(v)d¥= ( ) exp(— >d3v . (I1.14)
27RT 2RT.

Here M is the gram molecular weight of the atoms, T
is the absolute temperature, and R is the gas constant.
Thus, neglecting any correlations between the velocity
of the atoms and the collisional histories, one can write
the statistical average of (¥|p|y) as

(p)= / P(t—t)dt / NW)ds|ple). (IL.15)

The first term of (I1.12) will average to zero when sub-
stituted into (I1.15) because the amplitudes a,(¢") will
be randomized by hard, velocity changing collisions.
The collisional history average over the second term of
(11.12) gives

N(v)d%
Omptk-v—w—i[(T/2)+7v.]

)= T Db /

; ympu
. Eo o
X <d,,a,,*>,,,ve“’w“7eez Er—odtcc, (11.16)

Note that the denominator of the line-shape term now
contains the damping factor I'/24v., where 1/T is the
natural radiative lifetime of the excited state, and v, is
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the frequency of optical dephasing collisions [see
(I1.13)]. The result of the average over velocities can
be expressed in terms of a plasma-dispersion function.!?

20 1 redue™ (1L17)
~\/ﬂ'v[—w u*g‘ ‘ .
One obtains
/‘ N(v)d3
Omut k- v—w—i[(T/2)+7.]
1/, M \12
=———) Z[x(Fan; Fou)+iy], (11.18
() 2 Furti], L1s)

where the arguments of the plasma-dispersion function
(profile factor) are

17 M \12
w(Fam; Fou) =—<~—> [o—w(Fem; Fou)], (11.19a)

E\2RT
1, M \Y2,T
y:~(_> (—+'Yc> .
E\2RT 2
Since we shall only be concerned with situations where
the Zeeman splittings of the hfs states are small with

respect to the Doppler widths of the optical absorption
lines, it will always be true that

%(F om; Fou)—x(Fem’; Fou/ )1,

(I1.19b)

(11.20)

so that we can neglect the dependence of Z on the mag-
netic quantum numbers. It is convenient to express the
profile factors as the matrix elements of a diagonal
ground-state operator z(F.,).

Z[x(Fem; Fop)+iy]=Z(FFo)=(F,|2(Fo)|F,), (IL21)

where

s(F)= L pENLEL,). (11.22)

Here p(F,) is the projection operator for the ground-
state hfs multiplet F,.

P(Fa)=z |Fﬂl‘><Faﬂ| . (11-23)

It is also convenient to define the effective ground-
state operator k(F,).

k(Fo)=2 p|Fem)Fom|p. (11.24)

If we now introduce the polarizability operator «

N/ M \12
a=2, a(F e)=—<——> k(Foz(Fe), (IL.25)
Fe E\2RT.
and the ground-state density matrix _
p= Z l”)(y l <ayav*>aveiw"“ 5 (1126)
1"
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we find that (I1.16) may be written in the compact form

Eoe
(p)= (a)-—z—ei“" R—wt) {c.c. (T1.27)

Here (o) is the expectation value of the polarizability

operator
{@y="Trleap]. (I1.28)

Then from (I1.27) and (IL.10), we find that the sus-
ceptibility dyadic operator is

X=Na. (11.29)
The dielectric tensor operator is then

e=14+4rX=14+4wNa. (I1.30)

B. The Effective Ground-State Hamiltonian

The effect of the light on the evolution of the atomic
ground state can be represented by adding a small
effective Hamiltonian 83C to the zeroth-order Hamil-
tonian 3Cy (ILS) of the system. To show this we note
that the ground-state amplitudes @, obey the Schréd-
inger equation!®;

Ep
'I:d;': —Z <Vl7‘m>a'meiw"mt . (II-31)
m 73

Substituting E from (I1.1) and a., from (I1.9), we obtain
E-p
ia,= — Z <y {— [ m)am([')g~(l'/2) (t=t") giwymt
m #

| Eo|?
4%
1_ —1 [wmptk - v—w—1i(I'/2)] (t—¢')
{ [wmptk-v—w—i(T/2)] |
Now from (I1:26)

Z e*- PomPmp- eaneiwwt

(11.32)

;l—t(eiw‘w tplll') = <dﬂav* >a.v+ <audv* >av . (II -33)

Thus, in order to compute the rate of change of the
density matrix, we must perform the same sort of statis-
tical average over the ground-state amplitudes in (I1.33)
as was performed in obtaining (I1.16) from (II.12).
Substituting (I1.32) into (I1.33) and carrying out the
average, we find

i—(e*mtp,,) lE0122< |e*-a-e|o)eiont
— 3 ,)=— “a- o etenr oy
a am S0
| Eo| _
+ Y puslo| (e*-a-e)t[pheiomt.  (11.34)

4n

Equation (I1.34) may be rewritten in operator form to
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give the Liouville equation
i#(d/dt)p=[3Co,0 ]+ (83Co— pd3C") . (IL35)

The evolution of the density matrix in the absence of
light is determined by 3¢, (IL.5), and the additional
evolution due to the light can be described by the
effective Hamiltonian 83C;

850=— (| Eo|2/4)e*-a-e. (11.36)

In general, 3¢ will not be Hermitian since it must
describe the disappearance of ground-state atoms due
to the absorption of light. However, we may write 83C
as a linear combination of the Hermitian operators §8
and oT,

5350= 68— ih(5T/2) (I11.37)
where the light-shift operator 88 is defined as
ssetosct | Eo|?
66= =— (e*-a-et-e-at-e*), (I1.38)

2 8

and the light absorption operator 6T is defined as

1| Eo|?
(e*-a-e—e-af-e¥). (I1.39)

i
ar=z(asc—ach)= -

Using these definitions, we may rewrite (I11.35) as

dp ik
”‘;ﬁ [(3co+88), p]—‘2‘(5PP+P5P) . (IL40)

From (I1.40) we see that 68 may be regarded as a small
perturbation of the zeroth-order Hamiltonian 3Co
(I1.5). Thus the diagonal matrix elements of §8 will
cause small shifts in the energy levels of the atomic
ground state, while the off-diagonal matrix elements of
88 may cause transitions between the different sublevels
of the atomic ground state.

The rate of disappearance of atoms from the ground
state due to the absorption of light is just —Tr[4]. From
(I1.40), one obtains

—Trlp]=Tr[6Tp]=(oT). (IL.41)

Thus, the light-absorption rate is just equal to the ex-
pectation value of the light-absorption operator (8T').

Finally, we should point out that a simple relation-
ship exists between (SI') and the energy dissipated by
the light wave as it drives the macroscopic polarization
of the vapor. Using (IL.1), (I1.10), (I1.29), and
(I1.39), one can verify that

(B-(dP/df) Yay=whN Tr[pdT7], (11.42)

where the average in (I1.42) is taken over many optical
cycles. The left-hand side of (IL.42) is the average
macroscopic energy dissipation of the medium per unit
volume, and the right-hand side of (I1.42) is the rate
of disappearance of atoms per unit volume times the
energy of an optical photon.
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III. THE ALKALI ATOMS

The hyperfine structure of the 251/; ground state of
the alkali atoms is always much larger than the hyper-
fine structure of any of the ?P; excited states. Con-
sequently, the optical absorption frequencies of the
alkali atoms fall into two groups: frequencies involving
absorption from the upper ground-state hfs level
a=I+% and a corresponding set of frequencies involv-
ing absorption from the lower ground-state hfs level
b=TI—3. The excited-state hfs splittings of most of the
alkali atoms are small compared to the Doppler widths
of the atomic absorption lines. The only exceptions are
the first excited states of rubidium and cesium (see
Table I).

All of the effective operators are expressed in terms of
the polarizability operator a (II.25), which may be
written as [see (A25)]

a=y ak
L

= % EL(ff's F) (= D)MQ_p ET 2 L(ff)z.  (II1.1)

F.LM

The multipole components e may be written in the
more convenient form

al= 3 AMfI(—D)YQ_p LTa“(ff"). (I11.2)
M

The coefficients AZ(ff’) are

AL(ff’)=}); EL(ff s F)Z(Fof),  (II13)

and the profile factors Z(F.f) are defined in (IL.21).

A. Alkali Atoms with Negligible Excited-State
Hyperfine Structure

We shall first consider the more common case where
the hfs separations of the excited state are small com-
pared to the Doppler widths of the optical-absorption
lines. Then we may neglect the dependence of Z(F,.f)
on F, and write

ZFN)=Z(F =2,

Thus the profile factors can be removed from the sum-
mation (IT1.3) and we can use (A28) to write

A ff)=Ef) 2.

The triangle condition for the arguments (3 § L) of
the second Racah coefficient in (A28) implies that only
the multipolarities L=0 and L=1 are allowed. A
quadrupole component (L=2) which is present in the
general case is identically zero as long as the hfs separa-
tions of the excited state are neglected (see Sec. IIIB).
Substituting the appropriate angular momenta into
(A28) and using (II1.5) and (ITL.2), one finds that the

(I11.4)

(I1L.5)

AND B. S.
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scalar polarizability operator a® becomes

=G Zf: (NZ;, (I1L.6)

where the factor G is defined in (A27) and the p(f) are
the ground-state projection operators defined in (I1.23).

It will also prove useful to express a® in terms of the
ground-state operator I-J. Using (A35) and (A36), we

obtain
VA 4GZ—
o= G(Z++ )-l—-———I-J 5 (IIL.7)
2I+1/ 2141
where
Za+Zb
Zt= ;) (I11.82)
and
Zo—2s
Z—= , (I11.8b)

The dipole polarizability can be evaluated in like
manner. From (IIL.5) and (II1.2), we obtain

G
al= —71—[11——419(Je+1)] /Zf’ [@2f+1)2f+1)]2

XWQAS L3 )2 (=D)MQu' T2 (ff)Zy . (111.9)

We may use (A34) to express o in terms of the familiar
magnetic dipole moment operator, u=—gsuJ, of the
alkali atom ground state. One obtains

GV2

ol=

[11—47.(JA41)] 2 (—D¥Qp!
4g 1o M

X {§ pNrap(f)Z+ nyé,f,P(f)uMP(f')Zf'} (I111.10)

Thus, the scalar polarizability ¢ contains only Zeeman
components, but the dipole polarizability «' contains
both Zeeman and hfs components [see (1.12) and (1.13)].

1. The Light-Shift Operator 68

The scalar part of the light-shift operator 88, is
[see Eq. (11.38)]

| Eo|? ,
$80= ——»—g——(e*u"- ete-adf-e¥). (IIL11)
Using (II1.7) for a°, one obtains
58y=068.,+hoAI-J, (IIL.12)

where a shift in the center of gravity of the ground
state is given by

| Eol? -

08cg=— . GRe<Z+-I-

) . (IIL13)
2I+1
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and an effective shift in the magnetic dipole hfs constant
is given by
|Eo|*G
—ReZ-.
2I+1h
The vector part of the light-shift operator 68, is
[see Eq. (11.38)]

081=—

(II1.14)

| Eo|?
(e*-al-e+te-alf-e*).

(II1.15)

Substituting (II1.10) into (IIL.15), we obtain

i| Eo| %G
[11—47T(J41)]

581=
168 su0

X{Zfl p(Nup(f) ReZ,+3 E/' p(N)vat2tuIp(f)}
X(e*Xe). (IIL.16)

The diagonal matrix elements of 88, give the vector
light shift for alkali atoms. The off-diagonal matrix
elements of 88; cause transitions between the ground-
state sublevels. For a steady monochromatic light wave
these will be virtual transitions which result in negligibly
small second-order light shifts. However, this analysis
remains valid if the light is amplitude modulated at
frequencies which are small compared to the Doppler
width of the optical absorption lines, so that modulated
off-diagonal components of 8§8; can cause real Zeeman
transitions. For higher modulation frequencies of the
light a more detailed analysis of the problem is required,
so that we shall only consider the off-diagonal matrix
elements of 88, within a given Zeeman sublevel. Then
the hfs components of §8; can be neglected and the
dipole light-shift operator may be written in the form

386:=—3oH -y, (I11.17)

where we have introduced an effective magnetic field
operator defined by

| Eol*G
(11—47(JADIZ p()

(e*Xe)
XReZi———. (IIL18)
7

dH=

16gsu0

Note that since the effective magnetic field is an
operator, it may have different values within the two
different Zeeman multiplets of the alkali ground state.

In summary, the light-shift operator can be expressed
in the simple physical form

38=5880,+hdA1-J—H y. (IT1.19)

2. Evaluation of the Light-Absorption Operator

The scalar part of the light-absorption operator is
[see Eq. (11.39)]
i| Eol?
6Fo= -

(e*-a’-e—e-a’f-e*). (II1.20)

OPTICAL PUMPING 19

Using (II1.6) for o one obtains
| Eo| %G
24

5Po=

Zj? p(f) ImZ;. (II1.21)

The vector part of the light-absorption operator is

i| Eo|?
5I‘1=—~

{e*-al-e—e-alf-e¥}. (111.22)

Substituting (II1.10) into (IIL.22) and collecting terms,
we find

| Eo|*GL11—4T(Jo+1)]
8hg suo

e* X
> p(f)[vz—z*vlp(f’)}-< :
I#ESf! 7

1

{§ p(Nup(f) ImZ;

€

> . (JII.23)

Note that in contrast to 68; both the Zeeman and hfs
components of 8T'; are of potential physical significance
since there is the experimental possibility of detecting
light which is modulated near the hfs frequencies of the
atom.?

3. Evaluation of the Susceptibility Dyadic

The scalar susceptibility is [see (IL.29) and (IIL.6)]
(Xo)=N{a")=NG 3 n(f)Z;, (II1.24)
I

where 7(f) is the probability that an atom is in the
ground-state hfs level f.

n(f)=TrLp(f)e]- (II1.25)

The Zeeman components of the dipole susceptibility
are [see (11.29) and (I11.10)]

(X17)=N{es*)
GNTU—47.041)]

Z{us)X . (IIL.26)

4g 7m0

The Zeeman susceptibilities are responsible for the
paramagnetic Faraday effect and for the orientation-
dependent attenuation of light by a polarized alkali
vapor.

The hfs component of the dipole susceptibility is
[see (11.29) and (I11.10)]

(X1 1n5s)= Nonss")
iGNTIL—4T,(J +1)]
B 4g suo
X (o' |p|au)Zo+(bu' | u| an)

Xap|p|bu')Za} X . (II1.27)

( u A) H. Firester and T. R. Carver, Phys. Rev. Letters 17, 947
1966).

2 {(auly|ow)
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Fic. 3. Hfs paramagnetic Faraday effect.

If microwave coherence has been produced by a micro-
wave field of frequency wnm, then the hfs component of
the magnetic dipole moment will have the form

() =Luseiont- Ly Feiont (I11.28)
where
swe =3 (bu'|u|au)(anlp|bn’), (II1.29a)
uu'
and
(III.29b)

Furfelont=3" {au|u|bu' )by |p|an).
'

Substituting (IT1.29a) and (TIL. 29b) into (I11.27), we
obtain

iGN
[1—4T,(J41)]

<X1 h fs) =
8g .t

X (Zavle—mmt_{_Zbgl*emmt) X . ([II.3())

When (II1.30) is substituted into (I1.10), one finds that
components of the polarization proportional to Z,u:
X Eq exp[—t(w+wm)t] and Zyu*X Eg exp[ — i(w—wm){]
are generated. Thus, to lowest order, two coherent side-
bands will be generated from a monochromatic wave
propagating along the direction of wi. The sidebands
will not, in general, have equal amplitudes since the

TasLE I. Doppler widths and excited-state hyperfine structure of
the first resonance lines of the alkali atoms.

Hyperfine
Hyperfine separation Doppler
First constant of of first width of
reso- first excited excited first
Nuclear nance state, state, resonance
Atomic  spin  line A (n2P1y9), Avwnts, line, Ayvp,
Atom weight I in A in MHz in mK in mK
Lis 6.017 1 17.48 +0.152 0.874
Li? 7.018 ;} 6708 46174035«  3o078f 10793
Naz 22.989 3 5895 94.454-0.5> 6.297 43.784
K3 39.102 3 7699 28.85+0.3¢ 1.923 25.642
Rbss 84.939 5 120.7 +1d 12.070
RbST  86.937 g} 948 000 was 2767 16811
Cst32 132,905  7/2 8944 279.75 47 37.3 11.997

a G. J. Ritter, Can. J. Phys. 43, 770 (1965).

b M. L. Perl, I I. Rabi, and B. Senitzky, Phys. Rev. 98, 611 (1955).

¢ P, Buck and I. I. Rabi, Phys. Rev. 107, 1201 (1957)

d B, Senitzky and I. I. Rabl Phys. Rev. 103 315 (1956)

¢ Landolt-Bornstein, Zahlenwerle und Funktzomn (Springer-Verlag,
Berlin, 1952), Vol. 1, Part 5. p. 37.
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polarization component oscillating at the irequency
(w+wn) is proportional to the profile factor Z,, while
the polarization component oscillating at the frequency
(w—wm) is proportional to the profile factor Z,. Further-
more, if the carrier light is linearly polarized, the side-
band will be linearly polarized perpendicular to the
carrier polarization.

The main qualitative features of the hfs paramagnetic
Faraday effect are illustrated in Fig. 3. When a linearly
polarized optical carrier frequency is significantly
closer to one atomic absorption frequency than to the
other [Fig. 3(a)], the sidebands have markedly dif-
ferent amplitudes and the light is alternately left
elliptically polarized and right elliptically polarized.
When the optical carrier frequency is well removed
from both atomic absorption lines [Fig. 3(b)],”the
sidebands have approximately equal amplitudes and
the plane of polarization rocks back and forth as in the
normal paramagnetic Faraday effect.’® Straightforward
solutions for the propagation of light through an alkali
vapor with hfs coherence may be obtained by using
(IT1.30) for the susceptibility and applying the methods
used to analyze parametric transmission lines.!8

B. Alkali Atoms with Large Excited-State
Hyperfine Structure

When the excited-state hfs separations are appreciable
compared to the Doppler widths of the atomic absorp-
tion lines, (I11.5) is no longer valid and we must use the
more general expression (IIL.3) for the coefficients
AX(ff"). However, for the multipolarities L=0 and
and L=1, £&(ff")#0 [see (A28)], and we can write

AXf)=E M1, (I11.31)

which is of the same form as (IIL.5) except that the
simple profile factor Z, has been replaced by the linear
combination

2ore EX(ff F)Z(Fef')
EX(f1)
Then all of the expressions derived earlier in this sec-
tion remain valid if the simple profile factors Z» are

replaced by appropriate linear combinations {Z(ff’). In
particular, the scalar polarizability (II1.6) becomes

SE(ff)= (111.32)

=G ; p(NETS), (IT1.33)
and the dipole polarizability becomes
[11 —4J, (J+1)] Z (—1)MQ_s!
4g1ﬂ0
X{Zf: pDwarp(NS(fS)
(I11.34)

+ 2 p(Nuacp(FS1)} -
7517

18 B. A. Auld and R. L. Comstock, Proc. IEEE 55, 532 (1967).
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Consequently, the general form of the scalar and dipole
effective operators is unchanged for large excited-state
hfs separations, but the dependence of these operators
on the frequency of the exciting light is somewhat more
complicated, reflecting the detailed structure of the
optically resolved hfs of the excited state.

One significant qualitative feature is different when
the excited-state hyperfine structure is resolved. A
quadrupole-like contribution (L=2) is present in the
effective operators since a2 is no longer identically zero.
However, since the coefficients A%(ff’) change sign
rapidly as a function of frequency in the vicinity of an
optical absorption line, the quadrupole-like terms will
not be important for light with a broad spectral profile.

As an illustrative example we list the coefficients
AL(ff") for an alkali atom with nuclear spin I=3%,
illuminated by light whose frequency is close to the
optical transition frequency between the ground state
and one of the 2Py,» excited states:

G
A°(11)=;ESZ(21)+Z(11)];

G(\/15)

A49(22)= [Z(22)+Z(12)].

G
A1(11)=Z[5Z(21)—~Z(11)];

A1(22) = — (Vj)G[SZ(12)+Z(22)] .
A1(21)=<-\£§2€[Z(11)+3Z(21)];

‘i/ o (ITL.35)
A1(12)= —(—%[2(12)+3Z(22)].

G
A2(11)=Z[Z(21)—Z(11)];

216G

A2(22)= [Z(12)—Z(22)].

3G
A1) =— {221 =2(11);

3G
A2(12) =—[2(19)~2(2)].

Note that the coefficients A%(ff’) are zero when
Z(F.f)=Z(F./f), ie., when the excited-state hfs is
negligible.

IV. ATOMS WITH ONE ZEEMAN MULTIPLET
IN THE GROUND STATE

In this section we present explicit formulas for the
effective Hamiltonian operators and for the dielectric
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susceptibility operators for atoms with only one Zeeman
multiplet in the ground state. Such atoms fall into two
classes: atoms with no nuclear spin such as the meta-
stable 3S; state of He4,'® and atoms with no electronic
angular momentum such as the 1S, ground states of the
odd mercury,?® cadmium,?' and zinc?? isotopes. The
derivation of these results will be omitted since it in-
volves the same sort of tensor algebra as was used in
Sec. III, and the ensuing formulas can be verified easily
using the material of Appendix A.

A. Atoms with No Nuclear Spin
The scalar light shift is

| Eol?

550"—' ‘—TG ReZ ’ (IV].)

where G is defined in (A27) and the profile factor
Z=27(J.J,) is defined by (IL.21) and (I1.19).
The dipole light-shift operator is

386:=—3H -y , (IV.2)

where u= — gsuoJ is the magnetic dipole operator of the
atomic ground state and the effective magnetic field is
given by

3| Eo|2G ReZ
gJ,Uoléju(Jg""l)

[]e(Je+1)“]g(Ja+1)—2]

x[ei_e*] . (IV.3)

The quadrupole light-shift operator is
88:=—%Q ¥VE, (Iv.4)

where the quadrupole moment operator is defined in
(A33) and the effective electric-field gradient is

3 | Eo|*G ReZ
SVE=Y (—1D)ME_»?Qp>~ ————
L 2 eQ

307 ,(27,— 1) (27 )+ 1)1/
[ ( &t )] W27 J;17,) . (IV.5)

(Jo+1)(27443)
The scalar light-absorption operator is
| Eo| %G ImZ
= (1v.6)
2%
The dipole light-absorption operator is
6T1=u-0I, av.mn

BF, D. Colegrove and P. A. Franken, Phys. Rev. 119, 680

(1960).
20 B, Cagnac, Ann. Phys. (N. Y.), 6, 467 (1961). )
21 J, Lehmann and J. Brossel, Compt. Rend. 258, 869 (1964).
22 P. W. Spence and M. N. McDermott, Phys. Letters 24A, 430
(1967).
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where the vector damping constant is
3| Eo|*G ImZ

= m—————— ]e(]6+1)‘~~] (Jﬂ+1)_2
ST D) ’ !

eXe*
Xl: - ] (IV.8)
1

The quadrupole light-absorption operator is

oTy=Q 0T, 1v.9)
where the tensor damping constant is
\ | Eo| %G ImZ

2heQ

307,(27 ;—1)(27 ,+1)742
[ ] W(127:J 4317 ). (IV.10)
o+ 1)(27,+3)

0= (—1DME_32Qx

The scalar susceptibility operator is
Xo=Xo=NGZ, (Iv.11)

where N is the atomic density. The dipole suscepti-
bility operator is

13NGZ
4gJﬂ0Ja(Ja+1)
X[Je(Jet1)—To(Jo+1)—2]JuX.

X1=XwuX=—

(IV.12)

The quadrupole susceptibility operator is
NGZ|”3OJ,,(2]{,——1)(2.I‘,+1) 1z
0L (UtD)(@I+3) ]
XW(12T.J4;17,)Q- .

Xo=X,Q- =

(Iv.i3)

B. Atoms with No Ground-State Electronic Spin

The effective operators will be sums of terms due to
real and virtual absorption to different hfs levels F, of
the excited state. For instance, the light-shift operator
may be represented in the form

88=2_23 88.(F.).

L Fe

(IV.14)

The light-absorption operator and the dielectric sus-
ceptibility operator are composed of analogous terms.
The scalar light-shift operators are

| Eo|2G (2F 41)

880(Fe)=— ReZ. (IV.15)
12 (21+1)
The dipole light-shiit operators are
38, (F.)=—6H"y, (Iv.16)
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where y=+I is the nuclear dipole moment operator and
the effective magnetic field is

| Eo|2G ReZ(2F +1)

sH(F.)
16vI(I+1)(2141)
eXxe*
X[241(1+ 1)—Fe(Fe+1)][ - :I . (@van
i
The quadrupole light-shift operator is
882(Fo)=—%Q 8VE(F,), (Iv.18)

where the nuclear quadrupole dyadic Q is defined ac-
cording to (A33) and the effective electric-field gradient
is

3| Eo|*G ReZ
SVE(F)=X (—1)ME_p?Qp'——
M

2Qe
XQFA1)W(A2F.I;11)
[ 101(21—-1)
32I+1)I+1)(21+3)

1/2
:| . (Iv.19)

The scalar light-absorption operators are

| Eo| %G ImZ (2F.+1)

STo(Fo)= . (IV.20)
’ 6n  (2I+1)
The dipole light-absorption operators are
6P1(F3)=y-51‘1, (IVZ].)
where the vector damping constants are
| Eo|2G ImZ(2F .+-1)
or(F.)=
8ayI(I+1)(21+1)
exe*
X[2+I(I+1)—Fo(F A+ 1)][ - :l . (Iv.22)
i
The quadrupole light-absorption operators are
0T (Fo)=Q :6T9(F.), (Iv.23)

where the tensor damping constants are
\ | Eo|2G ImZ(2F ++1)

T(Fo)=Y.(—1DME_32Qy
2#Qe

[ 101(27—1)

1/2
X ] W(2F.I;11). (IV.24)
3I+1)(I+1)(214-3)

The scalar susceptibility operators are
NGZ(2F +-1)

Xo(Fe)=Xo(Fe)= 32+

(IV.25)
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The dipole susceptibility operators are

()= XA JyX = — iNGZ(2F 1)
HI(I4+1)(2141)
XR2HI(I+1)—F(FA41)JuX. (IV.26)
The quadrupole susceptibility operators are
Xo(Fo)=X2(Feo) Q-
 NGZQFAD[  101QI-1) 12
o L3(21+1)(I+1)(21+3)]
XW12F.I;1)Q. (IV.27)

The arguments of the profile factor Z=Z(F.I) [see
(I1.21)] have been suppressed in (IV.15) through
av.zmn.
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APPENDIX A

The numerical computations in this work were carried
out with the aid of spherical tensor algebra. Since we are
interested in situations where the Zeeman splitting of
the hfs levels of the atom is small compared to the
Doppler widths of the optical absorption lines, it is
convenient to express all wave functions of the atom in
terms of the coupled basis states |IJFu)=|Fu). The
corresponding hfs basis operators (spherical tensors)
will be defined as?

Ty"(FF) =2 |Fu)F'p—M|(—1)rM-"

XCEFF'Lyu, M—p). (A1)
The inverse relationship is
|Fu)(F'v| =2 Tprs"(F,F") (= 1)
’ XC(FF'L;u, —v). (A2)

The Hermitian conjugate of a hfs tensor operator is
[Tu™(FF)Jt=(—1)F"F—MT_,L(F' F). (A3)

The hfs tensors form an orthonormal basis set of opera-
tors since

Tr{Ta“(FF )T (ff) ]} =000 umbrsdr .  (A4)
Consequently any ground-state operator O can be ex-
2 The notation used in this paper is that of M. E. Rose,

Elementary Theory of Angular Momentum (John Wiley & Sons,
Inc., New York, 1957).
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panded in terms of the hfs basis tensors

0= Ou™(FF')Tyx“(FF), (A5)
54
where
Ou™(FF)=Tr[OT»™ (FF')]. (A6)

Spatial vectors will be expanded in terms of the unit
vectors in spherical coordinates

I
= ) (A7a)
f=1,, (A7b)
iz— 'iiy
i_.1= (A7C)
V2

The orthogonality relations for the basis vectors are

(1)* 1,=0,. (A8)
Note that

()%= (—1)+i,.
Any vector A may be expanded as
A=Y (—Dr4,i = (—)*A i)iu. (A9)
» I

Since we shall have occasion to deal with spatial tensors
such as the dielectric susceptibility of the vapor, we
shall introduce a set of basis dyadics Qa~.

Qul=% 1u(a)*(— 1) MIC(11 L5, M—p). (A10)
»
The inverse relationship is
Li,=—2 Quu, YC(11L; vy). (A11)
L
The basis dyadics are orthogonal since
QuZ :Qup ¥ =3 1* QuP-1,(1)* Qar V-1,
"
= (—’ 1)M3LLI5M,_MI. (A12)
The complex conjugate of a basis dyadic is
[Qar"J*= (= 1) FHMQ_y ™. (A13)

The commutation relation for the product of QaZ with
any vector A is

A-Qul=(—1)LQuT-A. (A14)
Several special relationships involving the basis dyadics
are noteworthy. The unit dyadic is just

V3Q=Y_ i,(i,)*=fodst+ i, +i.1s. (A15)

The cross product of any pair of vectors A and B may
be expressed as

AXB= -2 Y (—1)¥4_»Qx'-B. (A16)
M
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The polarization of the incident light is described by
the complex polarization vectors e and e* [see (IL.1) and
(I1.2)7]. Since the expressions for the light-shift operator
and for the light-absorption operator always involve
quadratic forms of the polarization vectors [see (I1.38)
and (I1.39)], it is convenient to introduce bilinear
spherical tensor products E,” of the components of e.

Ext=3 elepn)*(— 1)+ M- 1C(11L; u, M—p). (A1T)

We shall call the quantities £, the polarization tensors.
Note that
(Eu*)*=(—1)ME_u". (A18)

All electric dipole matrix elements between different
optical levels can be expressed in terms of oscillator
strengths and angular factors. To do this we note that
the total transition rate from the excited electronic
state J, to the ground state J, is (see Fig. 2 and 743
of Ref. 24)

647t

P(Je—Jo)=

> !(Je'mll’zl]aﬂ>|2~ (A19)

2T 41 AN m

"

From the Wigner-Eckart theorem and from the sum
rule for Clebsch-Gordan coefficients, this becomes

64t 2T 4177172
T(Jo~ Jg)= [ ] (—1)77s
: 3ANL2T 41

X{Tellpll o) ollpll 7o) (A20)

The spontaneous transition probability is related to the
oscillator strength for the transition by the expression?®

2¢%w? (27 ,+1) p
met 2T+

One can now use (A20) and (A21) together with (6.25)
of Ref. 23 to obtain

(IT oF g||pl[IT F )L T oFol|p|| 1T oF )
3he?fge

T(J.—J,)=

(A21)

(=D)F o [(2F A1) (2F /+ 1) J3(2T 1)

2wm

XW (T oF oJ Fo; INVW(JFoJ Fy'5 11).  (A22)

The important dyadic operator x (IL.25) can be ex-
pressed in terms of the basis dyadics (A11) and the
basis tensors (A1). From (I1.25) and (A10), we obtain

K(Fe)=2 p|Fem)(Fem|p

= Z ("1)H"ipiv[FyiL)(I"ai‘lP—*p‘Fem)
h
X(Fem|p_o| Fdu'YF/uw'|. (A23)

2 E. U. Condon and G. H. Shortley, The Theory of Atomic
Sp;;t)m (Cambridge University Press, Cambridge, England,
19,

% . W. Foster, Rept. Progr. Phys. 27, 469 (1964).
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The inverse relations (A2) and (A11) and the Wigner-
Eckart theorem can be used to express the right-hand
side of (A23) as

(=)t =Fd QLT o (FF ) (F| B[ Fe)
X{Fe|lpl|F,YCULL; p,0)C(F F oA 1, — 1)
XC(FAF g5 m, —p, p)C(F1F o5 1y — 0, m).
The sum over the four Clebsch-Gordan coefficients

can be expressed as a standard Racah relationship
[see Ref. 23, Eq. (6.6b)] and we obtain

k(Fo)= 2 (=) MQ_p 2Ty X(F,Fy))
bty
X[QF+1)(2F A1) J2W (11F ,F, ; LF.)
X(E Pl EFollpl| F4') -

Substituting (A22) for the reduced matrix elements of p
into (A24), we obtain

(A24)

h/2RT\1/?
/‘(Fe)z_(_— 2 EL(F By Fo)(—1)M
N\ M ML,
X Q~MLTML(F{1F11,) ) (AZS)
where the coefficient £ is

EH(F By Fo)=3G(—1)F /1L QF +1)(2F ' +1) ]2
X (2T +1)2F A-1)W(11F ,F,; LF.)
XW(IJFoJ oF o3 INW(J FoJ Fy'; I1), (A26)

and the factor G is
N2e2f, o[ Mc? V2
B [ZRT] '

8w2mc? (A27)

A sum rule for the Racah coefficients [see (6.15) of
Ref. 237 can be used to sum ¢ (A26) over all of the hfs
levels F. of the excited state. One obtains

EL(F F, )= %: EL(F,F,'; Fe)

=(—1)L3G(2J ,+1DLQF+1)(2F/+1) ]2
XW(F,LIT 3 B TOWALT T o3 17,) . (A28)

An important special case is when the atom has no hfs
(I=0). Then (A28) reduces to

o= (—1)E3GQT A+ V)W (LT Jg;17,). (A29)

Another important special case is when the ground state
of the atom has no electronic angular momentum
(J,=0). Then one must have J,=1, and (A26) becomes

EX(Fo)=(—1)*GQF A 1)WALF.I;1I). (A30)

In order to give a more physical appearance to our
final equations, we shall make use of (AS) to express
the spherical tensor operators in terms of more familiar
ground-state operators such as the magnetic moment
operator u, the electric quadrupole moment operator
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Q, etc. The total angular-momentum operator F=14-J
is
F= 3 (—1)MiyTu'(F,F,)
M,Fy
Fo(Fgt+1)(2F ¢+1)
X 3

]m . (A31)

The electronic angular momentum operator can be ex-
pressed as

J=% (—OML Ty (FFYWQTFI; TFS)
Foty
ToT ot 1) 2T 4+ 1) (2F 4 1) (2F +1) 2
LA iy S

For atoms with only a single Zeeman multiplet in the
ground state (J,=0 or I=0), the nuclear (or atomic)
quadrupole moment operator is?6

Q=%
1(2I—1)
3QI+3)(I+1)(21+1)qv2 .

=e[ 101(2I—1) } 2 (=1

H{I+AD}-1.1]

XTu*(I1)Q-s?. (A33)

26 C. H. Townes and A. L. Schawlow, Microwave Spectroscopy
(McGraw-Hill Book Company, Inc., New York, 1955).
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The alkali atoms are of special concern in this paper
and we will write down several operator identities
which apply to an atom with a ground-state electronic
spin J,=% and with ground-state hfs levels a=I-+3%
and b=I—%. From (A32) the electronic angular-
momentum operator is

J=2% (=DM yTy*(F,FYWQASFI;% FJ)
M

FyFy'

2F 1) (2F /+1)71/2
X[( +1)( -l—):l  (asd)
2

The projection operator for the hfs level a is

I+1+21-)
pl@)=Q2e+1)"*T(ea)=—————, (A35)
2I+1

and the corresponding projection operator for the level
bis

p(6)= (2b+1)1*T(bb) = (A36)
The operator I-J is then
I (I+1)
I J=—(2a+1)12T*(aa)—
2 2
X Qb+ 1)V2TO(Bb) . (A3T)



