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For an N-fermion system in v hich each particle can occupy any one of k states, an irreducible 5-body
operator" is de6ned as an operator heionging to t 2e, 1~"1of SUs. It is shown that such an operator can
always be written as a 5-body operator multiplied by a function of n. A measure of the failure of a basis to
diagonalize the Hamiltonian is constructed. If the Hamiltonian is analyzed into irreducible $-body parts,
the measure of error for N particles can be calculated from two-particle parameters. An upper limit on the
error of a group theoretically de6ned basis can be found vrithout having to calculate any n-particle inter-
action matrix elements. A measure of the magnitude of an interaction is de6ned, and shown to depend
difterently on n for irreducible O-body, 1-body, and 2-body interactions. The eGect of the Pauli principle
on the formation of sheQ-model potentials is discussed from this point of vie~.

y. IgVRODUCTIOH

OUND-STATE N-body problems in quantum me-
chanics can be solved approximately by diagonaliz-

ing the Hamiltonian in a subspace of Hilbert space con-
structed as an n-fold product of a single-particle space
of 6nite dimensionality k. The nuclear shell model is an
example of this procedure, in which the total capacity
of the shells consldclcd ls k& and thc s-particle states arc
linear combinations of m-fold products of the k single-
particle states, Provided that the system is indeed
bound, this approximation can be made arbitrarily good
by increasing k suKciently. Kc shall assume henceforth
that k is large enough for the error due to its 6niteness
to be negligible.

In practice, the number of e-particle states which
must be included is often so large that the Hamiltonian
submatrix cannot be diagonalized exactly. Then some
approximation must be made. The validity of the ap-
proximation is usually checked (if at aH) by direct com-
parison with a more accurate calculation. In this spirit,
Elliott, ' for example, checked the accuracy of the SU3
approximation to the states of F"by comparing them.
with states obtained by diagonalizing an intermediate
coupling Hamiltonian.

This n1cthod of estimating thc cllol plcsupposcs thc
existence of a calculation more accurate than the one
being tested. In the important case where the calculation
to be tested is already the most accurate one practic-
able, this method does not apply. There is a need for
a method of estimating the error from quantities de6ned

by the calculation itself, without having to make any
better calculation.

The main object of this work is to show how to cal-
culate a measure of the error of an approximate diago-
nalization of a Hamiltonian including hvo-body interac-
tions. The important quantities turn out to be of the
form iA jA) „—= trAtA, the trace being a sum over all

n-particle states. It will be shown that (A ~
A}„can be

*Present address: Department of Physics, The W'eizmann In-
stitute of Science, Rehovoth, Israel.

' J. P. Elliott, Proc. Roy. Soc. (London) A245, 128 (1958).
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expressed in terms of 2-particle quantities, by using the
1eduction of a 2-body opcl atol lIlto pure 0-bodyq
j-body, and 2-body parts. An essential preliminary is
therefore to dehne the concept of a "pure" b-body opera-
tor. This will be done group theoretically by requiring
that a "pure" b-body operator belong to a certain irre-
ducible representation (abbreviated IR) of a certain
gl oup.

2. CLASSIFICATIO+ OP Mpgy pony
ZORCES SETWEEK PERMIO@S

Let a complete orthonormal set of single-particle
states be

i I) [nt) .
/
k) (I)

We denote the k-dimensional space spanned by these
states by Jq. Although k must be 6nite, it can be as large
as necessary to make the approximation good.

We consider the case of identical fermions. Then for
each basic state ~rn), an operator f t can be defined
which creates a fermion in that state. These operators
satisfy the anticommutation rules

Lf-' f- t3+= Lf- f- 3+=o,
ffmqfm' ]+ bmm' ~

A state of e-particles can be expressed in the form of
a homogeneous polynomial of degree e acting on the
vacuum state (0):

n-particle state=P (fit fi.') ~0}.

Consider a transformation on Ly defined by its cGect
on the int):

U)~& =P U..(~').

If U is a unitary matrix, the U ~nt) are a new ortho-
normal basis. The set of all such transformations is U~,
the unitary group in k dimensions. If we restrict our-
selves to transformatlons fol which U~ ~ has unit de-
terminant, the group ls SUy.

The creation operators transform as a vector under
SUg„ that is, they belong to the irreducible representa-
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tion (IR) labeled by the Young partition [1]:
Uf„tU '=-Q U..f.',

and
f-'-L1],

where the symbol means "belongs to."Therefore, a
product of u of the anticommuting f t belongs to the IR
of antisymmetric tensors of order rt, namely [1"].So
by (3) an es-particle state belongs to [1"].This condi-
tion is just an expression of the Pauli principle.

A general b-body operator is one expressible as a sum
of terms, each of which depends on the coordinates of a
diferent set of b particles; thus,

in the form of a b-body operators If not, the de6nition
(9) is inappropriate because then an "irreducible b-body
operator" need not necessarily be a b-body operator at
all. The answer is contained in the following theorem:

Theorem 1:If A is an operator belonging to [2b,1~"]
of SUb, then it can be written in b-body form (i.e., as a
b body-ope. rator times a function of rb).

Proof: Denote [2b,1~"]by D' for short.
Let A be a member of a space Lb of operators, provid-

ing an IR D' of SU~.
Since D' is one of the IR's contained in the reduction

of the representation to which a general b-body opera-
tor belongs, there will exist some b-bod. y operator be-
longing to D', say,

A (n) A (ir .ib), 8 D'.

Every operator symmetric in all particles can be ex-
panded in terms of creation and annihilation operators

f t and f The se.cond-quantization form of a general
b-body operator is

Let 8 belong to a space M~ of operators, providing an
IR D' of SUI, . Since D' is irreducible, any vector of M
can be expanded in terms of the vectors obtained by let-
ting the elements U of SU~ act on B.

There will be a vector A in M' belonging to the same
row of Db as A in I.b, and. A can be expanded in the form

where the sum is over all repeated indices.
Consider the SUb transformation properties of (7).

The product of b anticommuting creation operators is
a component of an antisymmetric tensor of order b,
and therefore belongs to [1']of SUb. The product of b

anticommuting annihilation operators belongs to the
complex conjugate representation [1']*which is equiva-
lent to [1~b].Therefore,

A-[Ib]X[l~b]
=1+[2,»-s]+[2s 1~']+".

+[2b bl sbb]-(b& P/2-) (ga)

1+[2 Ib—s]+[2s Ib-e]+. . .
+[2' 1~"](b& t't/2), (gb)

where I is the identity representation. The Kronecker
product has been reduced by the rules given for example

by Hamermesh. ' Since only small values of b are of in-
terest, we may suppose that t'e is large enough for (Sb)
to apply. Then the complexity of IR's appearing is
limited by b and not by k.

Are irreducible b body operator is n-ow defined as any
operator belonging to an IR of SU~ contained in the
reduction of the representation to which a general
b-body operator belongs, but not contained in the re-
duction of the representation to which a general (b 1)-—
body operator belongs.

Replacing b by b 1 in (Sb), it—follows that

irreducige $-Jody operator [2,1~"]of SUb. (9)

Can every operator belonging to [2b,1b 'b] be written

A= dU C(U)UBU '= dU C(U)UBUt,

where C(U) is a number depending on the element U.
8 is b-body, and U induces a linear transformation on

the f t and f„by (4).Therefore UBUt is also an expres-
sion of degree h in the f t and in the f, that is, by (7),
a b-body operator. Therefore A is a b-body operator.

Now A and A are both operators on the same irre-
ducible representation space for SU&, namely the space
of antisymmetric tensors of order e, belonging to [1"].
A and A belong to the same row of the same IR Db of
SUb. The Kronecker product Db)& [1"]is simply reduc-
ible, that is, it contains no IR more than once. In this
situation, the %igner-Eckart' theorem applies. It states
that A and A are equal up to a scalar numerical factor;

The factor u may depend on e.
Since A is b-body, this expresses A in b-body form, and

theorem 1 is proved.
It is worth noticing that the simple reducibility of

Db)& [1"] is essential to the argument. For this reason
the theory cannot be worked out without taking quan-
tum-mechanical symmetrization into account. Theorem
1 would go through for bosons, because DbX [re] is also
simply reducible.

As a simple illustration of theorem 1, consider a 1-
body operator belonging to the 0-body IR I of SV&. By
(7), it is a bilinear expression in the f and f, belong-
ing to I. Since f [1]and. f t [1]e,and the product

s M. Hamermesh, Group Theory (Pergamon Press, Ltd. , London,
1962).

~ E. P. signer, Z. Physik 43, 624 (j.927); C, Eckart, R|;y. Mod.
Phys. 2, 305 (1930).
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[1j)&[1)*contains I once only, there is one and only
one way to construct such a bilinear expression belong-
ing to I) namely

p f tf =22= number of particles.

But since this depends only on the number of particles,
and not at all on the states they occupy, it has been
written in 0-body form, in accordance with theorem j..
This also illustrates our convention that if A is a b-body
operator, then a(22)A is considered to be in b-body form,
for any function u of the number of particles.

In the evaluation of the trace of the square of an
operator for I particles, quantities like g A„2"occur,
where A is an irreducible 2-body operator and m is
summed over RB single-particle states. If one sets any
upper index equal to any lower index of a 6-body opera-
tor, and sums, the result is called a trace of the operator.
Then the following applies:

Theorem Z: Every trace of an irreducible t)-body opera-
tor vanishes for b»&1.

Proof: To avoid notational diKculties, we consider
the case of an irreducible 2-body operator, with matrix
3„„&',supposing that one of its traces, say

P A„2"—=3„'W0.

From this trace one can then construct a 1-body
OPCl R'tOI')

&=2 f'&n'f'
Since the matrix elements defining I' are obtained
by taking linear combinations of the matrix elements
dc6ning A, 8 belongs to a representation contained
in the representation to which A belongs. Since 2 is
ll 1cduclblc 2-body)

[22 14—4j
Therefore,

+~ [22 12-4j

But no j.-body operator can belong to this IR. The con-
tradiction shows that 8&0 is false. Therefore,

P A„2"=0.
Thc cxtcnslon to RI'bltI'I y 6 ls stl Rlghtforward. If

some trace of an irreducible b-body operator does not
vanish, one can construct a (b 1)-body op—erator be-
longing to a representation contained in [24, 11 24J and
therefore equivalent to it. But no (b 1)-body op—erator
can belong to this IR. The vanishing of the trace follows.
Conversely, every 0-body operator with all traces van-
ishing is an irreducible b-body operator.

4. ESTIMATING THE ACCURACY
OF A DIAGONALIZATION

Let H be the e-particle Hamiltonian, Rnd consider the
complete orthonormal set of P n-particle states ~2& as

approximations to the eigenstates of II. Let (H@) be
the representative matrix of H in this basis, so that

& l2&= Z»*If)

Denote the eigenvector of II nearest to
~
2) by ~2), so

that
H iS)=E;|2). (11)

First-order perturbation theory is vahd for the calcula-
tion of ~2)

—
~2) provided that this difference is small.

It gives

I
a2&—= 12&

—12&=2»' I 1'&l(E' E). —

The replacement of the energy denominator H;i—II;,
by ~i Ej introduces no erst ordcl clIol ~ Thc RvcIRgc
square of the error vector is

a'= P'2 (—a2la2)=P ' 2 I&' I'l(~" E;)'. (—12)

The summation is now over both i and j.
We replace (E—E )' by its average value

((E—E.)')= p 'P (E'+E' 2E E)—.

This expression is invariant under the addition of a con-
stant to B, so we may replace B by its traceless part
H~+~. Then

((E,—E;)2)=2p-1 tra„,',
which gives in (12)

It is interesting to sec that if wc de6nc an error vector

(X2',)=P)2)—H;;(2)

then a new measure of the total error results, namely

X2—=Q (X2(X2)=g(2[V')2)—P JI;,2=+ [8;;[2,

the numerator of (13).
Equation (13) was del 1ved uslIlg pelturbatlon theor y,

and is invalid if the sta. tes
~

2& are very different from the
states ~$). It also suffers from the replacement of
(E; E;)' by its average v—alue in the denominator.
These diKculties could be avoided by the use of x' as
a measure of error. However, x' cannot be simply inter-
preted in terms of mixture of basis states.

Since the trace of the square of JI plays such an im-
portant part in the theory, we dc6ne

(A ~a) =trAtjl.

This satisfies thc lcqullcIBcnts fol R scRlar product. JIl
this sense we can refer to (A ~A) as the "norm" of the
opcr4t tQI 2) Rnd regard lt Rs R mcRsuI'c of thc magnltndc
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of A. A similar measure has been used by Hoffmann4
in a general discussion of approximations in quantum
mechanics.

In the new notation, (13) becomes

e'=-', [(HIH}—Z H; ]//{Hi+oIHi+o). (13)

This result shows that given a basis
I i), one can estimate

how accurately it diagonalizes H by calculating (H I H),
P H;, and (Hi+olHi+o). It will be shown that it is
possible to calculate {HIH) and (Hi+olHi+o) quite
simply for n particles from parameters of H which can
be evaluated in the 2-particle case. Then it is only neces-
sary to calculate Q H;P, which involves only the diago-
nal elements. Thus it will be possible to estimate the
error of a diagonalization withoozt hnowing any of the

n Partict-e off diagon-al matrix etements. The fact tha, t all
the diagonal elements must be calculated is a drawback,
but even this difhculty can be removed if one is satis6ed
with an approximate upper limit on e2.

A common and convenient way of de6ning an ortho-
normal basis is to find a group G (a subgroup of SUi,)
under which II is abnost invariant. Elliott s SU3 is a
well-known example of this. ' Then H can be analyzed
into a part belonging to a sum of nonidentity IR's of G;
and an invariant part.

A-D- a-D~
Since by (14) (A I B}is constructed as a trace,

(A IB} I.

(20)

But by (14) and (20),

(A IB)-D-*XDe.

Therefore {A IB}vanishes unless D '&&De contains I,
that is

S. NORMS OF 2-BODY OPERATORS FOR
n-PARTICLE SYSTEMS

If A and 8 are operators on n-particle states, we de-
note their scalar product by {AIB)„.Neglecting the
possibility of 3-body interactions, the operators we deal
with are at most 2-body, and as such can be analyzed
into irreducible O-body, 1-body, and 2-body parts. This
process corresponds to the ordinary reduction of a repre-
sentation space for I+[2,1o ']+[2',1o '] of SVk to its
irreducible subspaces. Thus

A =Ao+Ai+Ao,

and similarly for 8.
We note the selection rule on (A I B), if A and B both

belong to IR's of SU~, or any subgroup:

where

H= Hz+H',

II~ I, II' sum of IR's&I.

(16a)

(16b)

(A IB}=0 unless D =De. (21)

Using the distributivity of the scalar product and (21),
we get

(A IB) =(AolBo) 1{Ail Bi)n+{AolBo), (22)
Then the basis Ii) can be chosen to diagonalize Hz.

(iIHzlg)=0 for i'.
From (16) and (17)

2 IH'zl'=2 l(ilH'I j)I'( 2 l(ilH'I j)I'=(H'IH')

Substituting this in (13), an upper limit on e' [as given
by (13)]results:

Ap ——A,

Ai=Z fn'An'fo

Ao=& fo'fo'A""'f f.

(23a)

(23b)

(23c)

so that the parts of di6erent b contribute independently
to the scalar product. We can therefore treat the parts
of different 6 separately.

Suppose that Ao and Bb (b=0, 1, 2) are irreducible
b-body operators, given by

e'(~o {H'IH')/(Hi+o IHi+o) .

The problem of estimating the error of the diagonaliza-
tion is now reduced to the calculation of the n-particle
norms of the traceless part of H and its G-noninvariant
part. It is not necessary to calculate any n-particle
matrix elements, diagonal or otherwise.

One caution should be applied to the use of this
method. This is that e' is only an average estimate of the
error in any given approximate eigenvector. The actual
error in a particular case may be much higher than its
average value, although we may hope "on statistical
grounds" that this is unlikely.

(AolBo} ="C A*B,

(Ail B,).='-'C, p A„o"B,o,

(Ail Bo}„=~'C o Q A,o""B~o"')&4,

(24a)

(24b)

(24c)
with

"C.=h!/[n! (h —n)!]. (25)

The proof of (24a) is trivial, depending only on the
fact that there are ~c„ independent n-particle states.

To prove (24b), we remark first that since Ai and. Bi
are irreducible 1-body operators, their traces vanish by
theorem 2. Therefore p A~o*B~& is the only bilinear
SUI, invariant which can be constructed from them. So
the bilinear invariant (Ail Bi)„ is proportional to this

4 T. A. Hoffmann, Phil. TranS. Roy. SoC. London 257A, 309
(1965).

(18) with similar equations for the Bo Then we shall . show
that
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for which

A&=Br= fa'fa, (26a)

g A„o*B;=1.
Then using (14) and (2),

{Aa ~ Ba}„=tr(fat frfat fa) = tr[(1—n&)iaaf,

quantity. The factor of proportionality must depend
only on k and e, and not at all on the detailed forms of
2 & and 8&. To calculate this factor of proportionality we
can replace 3& and 8& by any convenient irreducible
1-body operator. We take

fore using (28b),

{A,~B,}„=—C„,= —C„,4+ A„,-'B„,-,
which is (24c). The general result for arbitrary h is

{A,(B,} = g, &)aXo-»c

Xg (A„..."' ) (B„,..."' ). (»)

We now show how the Eq. (24) permits the calculation
of the quantities {H~H}, {H'~H'}, and {Ha+a~Ha+a},
which occur in (15) and (18). The Hamiltonian is as-
sumed to be the sum of a general 1-body and a general
2-body operator:

H —H (()+H (a) (30)

is the occupation number of state ~m), and. has eigen-
values 0 and 1. We evaluate the trace in the e-particle
basis

{Aa~B)}.= P (ma .m.
~
(1—na)ea ~&oar e.).

The matrix element is 1 if m2
——1 and m~=0, and zero

otherwise. The number of surviving terms is the number
of ways of selecting e numbers m~ nz from 1, 2, .
under the condition that one of them is 2 and none of
them is 1. Since 2 is certainly selected, only m —1 num-

bers remain to be chosen. Since none of these e—1 may
be either 1 or 2, they must be selected from 3, 4,
which can be done in ~ 'C„» ways. Therefore

Z An. "'*Bno"=4 ~(28b)

by (26b), proving (24b).
In the same way Q A„,""B„ is the only bilinear

SU~ invariant which can be constructed from the irre-
ducible 2-body operators A~ and 8~, where A„,"' and
B„~"' are antisymmetric in upper and lower indices
separately. Replacing A& and 82 by any simple irre-
ducible 2-body operators, we can again calculate the
universal proportionality factor between {Ao~Bo}„and
Q A„,""Boo"'.We take

Ao=Ba= fatfa'faf4=4(fi'fo'faf4 fa'fa'faf4-
+fat f)tf4fa fa fa f4fa), (—28a)

for which

Its irreducible O-body, 1-body, and 2-body parts are

Ho= Ho'"+Ho'"

Ha —Ha(&)+Ha(a)

B2——Llg&'),

(31)

where H~&') is the irreducible b-body part of the general
a-body operator B& '. We consider irreducible O-body,
1-body and 2-body parts in turn.

Irreducible 0-Body

(32)Ho(" = )ah(1),

H(&('& = a)a(44 —1)h(2),

where h(1) and h(2) are constants (independent of 4a)

since )a and ~a)a(n —1) are, respectively, the numbers of
terms in the expansion (6) of general 1-body and. 2-body
operators.

By (24a)

{H(&
~
H,}.= "C.

~
4ah(1)+-', )a()a—1)h(2)

~

'
= oC„[~a

~
h(1)

~
a+Re~a(e —1)h(1)*h(2)

+-'4~a(~ —1)a~h(2) ~aj. (33)

Applying (24a) to (32) for )4=2,

{Ho('&
i
H(&('&}a——2k(k —1) i h(1) i

',
{Ho("

~

Ho") }a=k(k —1)h(1)*h(2), (34)

{H, iH, },=-'k(k —1)ih(2) i'.
Substituting these in (33),

{H(&
~
Ho}„="C„[aaa{Ho ("

~

Ho(" }a

+Re2na(44 —1){Ho('&
~

Ho('&}o

+aaa(N —1)'{Ho'"~Ho"'}a]/[2k(k —1)]. (35)

{Aa I Ba}-=«(f4'fa'fafafa'f"faf4)
= tr[(1—N, )(1—Na)eae43,
=g ((oa) na„~ (1 aa&) (1 rt—)naN4o( a—aaa m„)

Irreducible 1-Body

H, (')=g f,th(i);f„ (36a)

The matrix element is 1 if e~= e2= 0 and eg= e4——1, and
zero otherwise. In the same way as before, the number
of surviving terms is the number of ways of choosing
e—2 numbers from 5, 6, ~ ~ k, that is ~4C„~. There- = (aa-1)P f,th(2);f, . (36b)

H, ('&= P [H(a)+H(j)j=()a 1) P H(a)—
n&i) j&1 i=1
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Here use has been made of the fact that H&&') can be
written in 1-body form. The h's are again independent of
n. By (24b) and (36),

{Hgl H1}.= ~'C.
& p I h(1)„o+(n —1)h(2),ol '

='-'C LP Ih(1), I
'+2(n —1)

XRep h(1)„o'h(2),o+(n —1)'p lh(2)„ I'7.

Applying (24b) to 36a) and (36b) for n= 2,

{H, IH, },=(k—2)P lh(1), I,
{Hg(»

I
H&(')) o

——(k—2)p h(1),o*h(2)„o, (37)
(H]('& IH(('&)s ——(k—2)plb(2)gaol'.

Substituting (37) in the expression for {H~ I H~) ~,

{HglHg)„=s—'C g(k —2) 'I {H&&')IH&('))s

+ 2(n —1) Re{H,&» IH, (»}s
+(n—1)'{Hg(')

I
H&(») s7. (38)

Suppose the matrix A „,"' of a general 2-body operator
has been constructed explicitly. Then the matrices of
1-body and 0-body operators can be constructed:

A(1)no"'=Z L~-."*4.+A-o'""o~.

+A, "'8„+A, '"&o.7,
A (0)~o"=Q A(~™l8„,bo,—o~,oo,7.

Like A„,", these are antisymmetric in pq and rs Th. e
irreducible 2-body part of A then has the matrix

A (2)„,"'=A „"—A (1)„,"'/(k —2)

+A(0)-"/L(k —1)(k-2)7.

The fact that this is irreducible 2-body follows from the
vanishing of its traces, which can be verified.

The irreducible 1-body and 0-body parts of A can be
found in the same way.

In cases where the interaction has been analyzed into
parts belonging to IR's of a subgroup of SUg„ this
analysis can often be used to facilitate the SU~ analysis.

Irreducib1e 2-Body

Putting Hs(') for As and Bs in (24c) and comparing
with the result for m= 2,

{H.IH.)-= {H."'IH.'"}.
—s-4C {H (2) IH (2))

39
6. NORM OF A GENERAL 2-BODY INTERACTION

Considering now the quantities {HIH}„,(H'IH')„,
and {H~s IH~s) „occurring in the formulas for the mea-
sure of error e', we have first

{HIH) ={HolHo).+{HilHx).+{HslHs}o, (4o)

where the quantities on the right-hand side are given
by (35), (38), and. (39). The traceless part of

ls

Consider a general 2-body interaction:

V= Q V(ij) = Vo+ V&+ Vs,
n&i&j&1

(44)

where Vb is the irreducible b-body part of the interac-
tion. {VlV)„can be calculated by the techniques of the
last section. One puts H~&') =0 and H~&') = Vb for b=0,
1, 2 in (35), (38), and (39). Applying (22) to the result
gives

H&+.——H&+Ho, (41) (k—4)!

since Ho is a scalar and H~ and Hs are traceless by (21).
So

{H~sl Hu) ~= {HxlHi) o+ {HeiHo) ~ (42)

and the right-hand side is evaluated by (38) and (39).
Lastly, H' is the part of H which belongs to a sum of
IR's of a subgroup 6 of SU~ other than I.Let

H'=H, '+H, ',
where H~' is the pure b-body part of H'. Ho' is neces-
sarily zero, because H' is traceless by (21), since it be-
longs to IR's of 6 other than I. Then

(H'IH')-= {H 'IH ')-+{H 'IH. ')- (43)

and the separate parts can again be determined from
(38) and (39).

The prescription for calculating the measure of error
e for m-particle systems in terms of 2-particle quantities
is now complete. The reduction of the 2-particle opera-
tors to irreducible b-body parts is the only step which
may involve appreciable computation,

(k—n —2)!(n—2)!

(k —2) (k —3) n(n —1)
X {Vol Vo)s

(k—n)(k —n —1) 2

k —3
+ (n 1){V/I Vg}Q+( Vs

I Vs}s (45)
4—e—1

Frencho has given a result resembling (45). In our
notation it essentially expresses {VlV)„ in terms of
{VIV}s-&, {VIV)~, and {VIV)s Fo. pu. e 0-body,
1-body, and 2-body interactions French's result is con-
sistent with (45). Special cases of French's result have
been given by Moszkowski' and Layzer. ~

The result (45) can be used to suggest a reason for the
validity of shell models for bound states of many-
fermion systems. Consider a system of e fermions in-

~ J. B.French, Phys. Letters 23, 248 (1966).
~ S. A. Moszkowski, Progr. Theoret. Phys. (Kyoto) 28, 1 (1962).
'& D. Layzer, Phys. Rev. 132, 2125 (1963).



teracting through the 2-body potential V, so that

&=Z &(~)+ Z V(V)
n&~&jh j.

(46)

V=+ U(i), (4&)

so that

P'(~)+ V(~)3

The eigenstates of this independent-particle Hamil-
tonian will simply be Slater determinants.

This dlscussloIl suggests that independent pRrtlclc
motion shouM always be a good approximation for large
enough g, provided only that the irreducible 1-body
part of the interaction does not vanish. But the situa-
tion is not really so simple. For example, (45) predicts

where T(i) is the kinetic energy of the ith particle. For
the lowest bound states of the system we assume that:

(a) The system can be placed at the center of an im-

penetrable sphere of large radius, without appreciably
changing its properties. Then the eigenstates of a free
particle in the sphere can be used as a single-particle
bRSls.

(b) The probability of occupation of single-particle
sta, tes above a certain kinetic energy is negligible. Then
the inhnite discrete set of sphere eigenstates can be re-
placed by a finite set of k states.

The theory leading to (45) now applies. Assume that
V has a nonvanishing irreducible j.-body part. Because
of the different ii dependence of the factors in (45), when

e is large the 1-body and 0-body parts of V soon swamp
the irreducible 2-body part, and dominate V.

For e large enough, the interaction will be effectively
a mixture of irreducible 0-body and 1-body parts. Hy
theorem 1 it can be written in the form

that V(i) varies in strength with ii, but its form must be
independent of e, as can be seen from (36b). But in the
nuclear shell model, for instance, the potential has to be
almost constant in depth, but increasing in range as n'~'.

This paradox arises because {V
~
V}„is an aerage meas-

ure of the magnitude of the interaction, averaged over
all states of the system. Now k is much greater than e
for some relevant values of &z. Then most of the states
do not resemble the nuclear ground state at all, but are
more like states of many particles moving almost freely
inside the sphere. So the V(i) of (48) cannot be expected
to resemble the shell-model potential for the ground
state.

The derivation of (48) uses the Pauli principle at two
critical points. Theoreni 1 cannot be proved without

quantum statistics, and the relations (24) would be
quite different for bosons. The Brueckner' approach to
the justi6cation of the shell model also relies on the
Pauli principle to prohibit many scattering processes.
It would be interesting to derive (24) for bosons, and
see if the argument leading to (48) breaks down for this
case.

In discussing general questions the need to truncate
the single-particle con6guration space is irksome. Pos-
sibly a mathematical method can be developed for ex-

tending the definition of irreducible b-body operators to
the infinite-dimensional conhguration space. Then the
reduction of an operator will not depend on the way the
con6guration space is truncated.
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