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This leads to

«= (0~ &o~0)(&—Wo)P(&—Wo)s+e'j ', (69a)

dW(W~ Vo~ W)(E—W)L(E—W) +osj (69b)

y= dU U voU —Uo 0voU z—U

XL(&—U)'+ e'j ', (69c)

s=~i (&( VolE) —(&~0)(oj Vo(Z)), (69d)

g denotes that a sum over the discrete eigenstates of
8o is to be added to the integral over the continuum.

We see that the expressions for m, x, y, and z become
more complicated in the BG treatment of this system
than the corresponding expressions for the MM treat-
ment. The relationship k = k&+As is not readily veri6ed.
However, it is apparent that s(1—w+y) ' will not in
general vanish, so that there is no justification for the
neglect of k2.
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A theoretical study has been made of the intermediate-structure resonances observed in neutron scattering
and proton capture by F"in terms of simple excitations of the compound nucleus using Feshbach's formalism
for nuclear and photonuclear reactions. The simple excitations were taken to be particle-hole states in the
deformed-level scheme, including the excitation of rotational bands. The average resonance widths, and
spacing, and average total cross section (DE=0.5 MeV) observed for n+F" with neutron energy between
0.5 and 2.5 MeV is reasonably well reproduced by the model. In particular, the agreement with the average
total cross section indicates that an optical potential can be derived from the above model. In proton capture
by F", though the calculated widths of the resonances are of the correct order of magnitude, the relative
spacing of the resonances and magnitude of the cross sections is not in agreement with experiment.

I. INTRODUCTION

ECKNT neutron-scattering experiments' have re-
vealed resonances in average cross sections with

widths (=200 keV) that are too large to be due to com-
pound-nucleus formation, yet too small to be described
by an optical model. It has been suggested'~ that such
resonances might be due to the excitation of particularly
simple states of the compound system. In light nuclei,
we can hope to describe these simple excitations in
terms of single-particle excitations (e.g., particle-hole
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states). Such calculations have already been performed
for neutron scatterin, g on N" and C",' ' using a particle-
hole description for the excited states of the compound
system. Widths of the order of 100—500 keV are ob-
tained, in good agreement with experiment.

Another possible example of such intermediate struc-
tures, as these resonances have now been called, has
been observed in neutron scattering on F".7 In the
same energy region above the ground state of Ne'0

(16—20 MeV) the cross section for F"(p,y)Ne" is
known' and manifests resonances of a similar nature to
the observed structure in m+I'". We take the point of
view that the appearance of similar resonance structure
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NUCLEAR REACTIONS I N DEFORM E D NUCLEI

in different reaction channels (here e+F&9 and y+Ne")
leading to compound states of the 2 =20 system is an
indication that this structure does not have a statistical
origin.

The present investigation is thus a theoretical study
of the cross section for the above two reactions, using a
suitable nuclear model for the A =20 compound system.
The interest in such a calculation is to see if the me-
chanism of simple excitations (in this case particle-hole
excitations), give the correct number of resonances, and
nucleon and y-ray widths that are in agreement with
experimental widths.

In Sec. II we summarize some results of Feshbach's
formalism for nuclear reactions, which will be used
throughout the investigation. %e then proceed in Sec.
III to discuss the structure of the target nucleus F'9,
and the compound system 3=20, in the light of the
nuclear model we will be using. Since the low-energy
spectrum of both Ne' and F" indicates that these
nuclei are probably deformed, we will have to incorpor-
ate this deformation into our model. Section IV presents
the numerical results and their comparison with experi-
mental results. Comparison of the calculated results
with the experiment indicates:

1. In the reaction e+F'~, the calculated particle
widths, and average spacing of levels is in agreement
with the experimental results. This suggests that the
model we have used has the right number of degrees of
freedom, and the mechanism of excitation used to
evaluate the neutron widths gives a rather good de-
scription of the physical process.

2. The calculated average neutron cross section, using
an averaging interval of 0.5 MeV, agrees very well with
the observed average cross section, showing that the
model is capable of giving a good estimate of the strength
function (I')/(D). This also means that we can calculate
an optical potential from the model that will correctly
reproduce the average experimental cross section over
the energy range under consideration (0 to 2.5 MeV
neutron energy).

3. The calculated differential cross section for F"-
(p,y)Ne'0 is in poor agreement with experiment, indi-
cating that the model fails to reproduce the more de-
tailed properties of the system when interference sects
between different partial waves became important.

Il. REACTION THEORY

There are a number of different formalisms for nuclear
reactions. We have found Feshbach's version the most
convenient for our particular problem. In this section
we will briefly present the main results we need of that
formalism for nuclear reactions. For details refer to the
original papers of Feshbach. "

9 R. E. Segel, Z. Vager, L. Meyer-Schiitzmeister, P. P. Singh,
and R. G. Alias, Nucl. Phys. A93, 33 (1967)."H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958); 19, 287
(1962); H. Feshbach and I . Estrada, ibid. 23, 123 (1963).

Introducing the projection operators I' and Q on the
open and closed channels, respectively, we get a set of
coupled equations for the closed and open channels.
These coupled equations can be solved to give a transi-
tion amplitude for going from an initial state P to a final
state n of the form

T p= T t&(pot)

+(4-' 'I&pq Ifq IA'+') (1)~—&qq —~'oc

where T»(pot) is the transition amplitude for potential
scattering. The states P &+& are the scattering solutions
to the average field the incident nucleon observes in
channel n. The interaction H@P and HPq connect the
open and closed channels. The operator 8'@g is given
by

~"Ce=&OP
Z&+&—BPP

=eqp — Hpq i~eqpb(E —app)Hpq, —(2)
IIPP

where 6' is the Cauchy principal value. The operator Hqq
is an (A+1) particle Hamiltonian for the closed chan-
nels. In the case of one isolated resonance Kq. (1) re-
duces to

(4-' '
I &pq I c'-)(~- I &q pl A'+')

T s T t&(pot)+—— , (3)
(z—z.—~„)+-,'ir„

where

6 =(c.lIIqp Hpqle„),
E—I/PP

r„=2~(e„laqpg(Z happ)apqI e„—), (4b)

BgqC „=E„C„.
The second term in (3) is the standard one-level Breit-
%igner transition amplitude. In the case of overlapping
resonances, since 8'gg is complex and not diagonal in
the eigenstates of Bgg, we have to solve a complex
eigenvalue problem. However, when the separation D
between the eigenstates of H@@is large compared to the
widths I" of these states, the transition amplitude can
be approximated by

(0 -' '
I &pq I c-)(c'- I &qply"')

T s T»(pot)+Q-—
(E E„d)+-,'il"„——

(6)

where A„and I'„are given by (4a) and (4b), respec-
tively. We write the scattering state g &+& in an angular
momentum representation as

V&;(r)
p&;r~&+&=e'"~ -I (ls)jI; JM'),
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nel quantum numbers (I,j) U.sing Eqs. (8) and (10) we
obtain the average total cross section in an energy in-
terval AE, in terms of the strength function (F.s&/&Ds&,
as

2n. (2I+1)
0'p

h;2 s (2s~+1)(2I;+1)

(F- »XP 1—cos28, 1—m.— —
I

. (11)
ai (Ds& I

Since we will be evaluating the strength function and
the average cross section for neutron energy between 0.5
and 2.5 MeV, we have dehned the strength functions for
a given channel o. and total angular momentum J as

IO-

N
20

FIG, 1. The energy of all the nuclei and the threshold of the
channels we are dealing with relative to the ground state of Ne20.
The ground state of F'0 and e+F'9 threshold has been pushed up
so that the eigenstates of FIqg with T=1, T3=1 are at the same
energy as the states with T=1, T&=0. This way all the eigen-
value of Egg can be referred to the ground state of Ne' .In Ne" we
have indicated the eigenstates of Bgq with J =1 . In F" we
have indicated the region in which the calculated eigenstates of
FIT@ with J =0, 1,2 are presented. We have also indicated
the low-lying spectrum of F'.

&F-') 1
P F

&Ds) AE ~
(12)

The transition amplitude for photoproduction is de-
rived in the same manner as Eq. (8) to get

I'.
, i,i'= g. I

II"'IA, r "+')

&4-III 'IC'-'&&C'-'IIIo~l4~, r'"'&
(13)

(E—E —6 s)+-'iF ~

=CD c

after removing the contribution coming from center-of-
mass motion. The symbols are: C= ie(27rho&)'—~', e is
the polarization of the photon, and ~3, is the third com-
ponent of isotopic spin. Introducing an operator T„' as

T),I,. ) „g ~=—e'"& sinb), 8)) 8;,'big
'r

e""ea'(~)g~ ~'(~)e""'
(g)

(E E„A„s)+,'iF —s—-
where

T 1—D 1++
(E E„—D„s)+',i F.s—-F„s=2 (e„sla, S(E II,)II,Ie„s)—

where we have coupled the total angular momentum of
the incident particle j, to the target spin Z to get the where H is the diPole oPerator and is given by
total angular momentum J. In (7), 8~, is the phase shift

A Z
due to the potential the incident particle feels. Taking II~"= ie(27rh—u&)'~2 P -' —r3 ——e r
T e(pot) to be the transition amplitude for potential A
scattering we get, for the total transition amplitude,

= 2~ & 1&C'.'IIIo~ I4 vr') I'

=2m P Ig(;rs(e) I'=g F(,rs".
i'

In the above, all scattering states f~;rs must be energy-
normalized. The total cross section is given in terms of
the transition amplitude as"

we can then write the diGerential cross section for
proton capture as

da (2m)'(ho))'e'—(P,v) =- P Br,I'r, (lr, e),
dQ hc(235„c')E„r.

where s; and I; are the spins of the incident particle and
target nucleus, respectively, and 0, stands for the chan-

4&3 1
(»+1)IT;- I', (») 24 (»;+1) =s, -s

h, m (2s;+1)(2I~+1) ~ ~f.fs'
I

il—I( 1)ey+I; 1'([~II 1I)— .
I j

XZ(171J'; IrI.), (17)
"See, for example, R. H. I.emmer, Rept. Progr. Phys. 39, 131

(1966). where Puu is the energy of the photon, 3I& and E„are
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the reduced mass and energy of the incident proton, and
I; and If are the spins of the target and final nucleus, re-
spectively. In the above, the proton wave functions are
again energy-normalized; the function Z(abed; ef) is de-
fined by Siedenharm et al."as

Z(abed; ef) =ir +'L(2a+1) (2b+1) (2c+1)(2d+1)j'~'

)& W(abed; ef)(aOcO~ acfO).

III. THE 5'UCLEAR MODEL
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As seen in the last section the calculation of the transi-
tion amplitude requires the knowledge of the states
4 „.The states C „are the eigenstates of the Hamiltonian

Hoo, which is an (2+1) particle Hamiltonian. To get
the complete spectrum of II@@ is an impossible task.
We therefore, have to resort to a nuclear model that will

give us an approximate wave function C . It is in terms
of this nuclear model that the simple excitations are
described. Actually, we are not interested in the com-
plete spectrum of the (2+1)-particle Hamiltonian, but
that part of the spectrum that is connected to the open
channels via II@I.It is this part of the spectrum of II@@
that gives by definition the simple excitations of the
compound nucleus. Since the C „we use in the calcula-
tion are model wave functions which depend on the
nucleus we are dealing with, it means that the simple
excitation depends on that. In the case we will be deal-
ing with, both collective and particle-hole excitations
are included in simple configurations of the compound
system. In this section we will discuss the model to be
employed for the target system F" and the compound
system of A =20.

The Ii" target: The low-lying spectrum of F" is pre-
sented in Fig. 1.The positive parity states indicate that
F" is deformed in its ground state, since the two states
of —,'+ and ~+ can be described as part of the rotational
band on top of the ground state. In discussing F" as
a deformed nucleus we must look at the Nilsson scheme
(Fig. 2). At large deformation, we observe a large gs,p
=5 MeV between the lowest ~+ and the next state of

—,+. This immediately indicates that we can describe
F", which has two neutrons and one proton outside
the 0"core, as a hole in the -',+ level. The negative parity
state of ~ in F"can be described as an excitation of the
hole into the -', . Though the Nilsson scheme gives the
right spin for the -', as a hole in the p shell, it does not
give the right energy. However, we do not expect the
Nilsson scheme to give us very good single-particle en-
ergies. Taking the-,' to be a hole in the p shell, we then
evaluate, using the rotational model, the energies of
the -', and -', . We 6nd that the agreement between the
calculated and observed energies is very good. However,
there is a disagreement in the energies of the positive
parity band. This can be due to the coupling of these
states with a positive parity rotational band at higher

"I.C. Biedenharm and J. M. Blatt, Rev. Mod. Phys. 24, 249
(1952),
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DEFORMATION 8

FIG. 2. The Nilsson scheme for 1p and 2s-1d shell.

where Pr~(r) is in the space-fixed coordinates, while

Pr~ (r') is in the body-fixed coordinates. X&, is the in-
trinsic wave function of the system in the body-fixed
coordinates. In the case of F", XI,~ is the state of the
hole in either the -', + or the -', Nilsson levels. On proper
symmetrization of the above wave function, we get for
the target state

2Ii,+1)'"
II&~&Ie&p&)=

I (D~i&i X &wa-
16n'

+( 1)EL+ah Q) rhX )
—

(19)

where m& is the parity of the state X&„which is given by

where a~»„r,„ is the destruction operator for a particle
in state (li„jz,ki,) and C~»„q& "& are the coefficients of
the Nilsson expansion. Thus the target state is described
as a hole in either the lowest ~+ state in the 2s-1d shell
or the highest ~~ state in 1p shell, with the rotational
bands on top of these intrinsic states.

The A =20 system: We turn now to the discussion of
the compound system which is formed when a proton

energy via the Coriolis coupling. Since we will be in-
terested in the cross section for I+F" up to neutron
energies of 2 MeV, we will have to consider the six
states of F" in Fig. 1 as open channels. Thus, the open
channels can be defined as a hole in either the lowest
~+ state in the 2s-1d shell or the highest ~ state in the
p shell plus the rotational bands on top of these intrin-
sic states. Using the above model for F", we can write
the wave function of the target nucleus as D A, X~„
where D ~~ is the representation of the rotation group
and is de6ned by

fr~(r) =P D~~'(aPy)gr~ (r'),
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or neutron is scattered by F". If we have a nucleon
incident on P', the incident nucleon will interact with
nucleons in the target via a two-body interaction. This
two-body interaction can cause the incident nucleon to
drop into a bound state while one of the nucleons in
the p shell will gain the energy lost by the incident
nucleon and fill the ~~+ hole, i.e., particle-hole excitations
are produced. We may expect the average Geld in
which these particle-hole states are made to be de-
formed also. The ground state of the 3=20 system is
Ne~ . Ne" has a rotational band on top of the ground
state with E=0,"where E is the projection of the total
angular momentum along the axis of symmetry. The
existence of rotational bands in the low-lying spectrum
of Ne" indicates that Ne" is deformed in its ground
state. However, we are going one step further in assum-

ing that the average Geld that the particle-hole states
feel is also deformed. This is a strong assumption, for
it is dificult to say that the average nuclear Geld will

keep the same deformation when we excite states with

energy of 20 MeV. However, because of the lack of. any
better nuclear model, we keep the same deformation for
the excited states as in the ground state. Furthermore,
taking diAerent deformation for the excited states, and
ground state introduces complications in the orthog-
onality of the projection operators I' and Q. Thus, the
simple excitations that we are considering are particle-
hole states in a deformed scheme. To write the state
4 „in terms of the above nuclear model, we have to de-
fine that part of the space spanned by the particle-hole
state that will contribute to 4„.4„ is an eigenstate of
H@@ and thus should not have any open channel com-

ponent in it. We defined the open channels by a hole in

the lowest 0= —,'+ state in the 2s-id shell and the highest
0=—', state in the p shell. Thus, the particle-hole states
we will consider should have the hole in any of the p-
shell states with the exception of the highest 0=-,'—,
while the particle is in any of the unoccupied states in

the 2s-1d shell. This assures the orthogonality of the
projection operators I' and Q, which was made use of in

formulating the reaction theory presented in Sec. II.
The Hamiltonian Hgg has two parts. The Grst is the un-

perturbed diagonal particle-hole energies. The second

part is a residual two-body interaction which is taken
to be the same as the two-body interaction used by
Brown et ul. '4 It is given by

V,,= —Vo[u+be; o,]5(r; r)—
where a=0.865, b=0.135, Vo=4vrp'X8. 5 MeV, where

p= 1.76 F.
Having defined the Hamiltonian H@q, we diago-

nalize this Hamiltonian in the particle-hole basis
defined above, to get the states ~,8. Taking the eigen-

states of Pqq to have good total isotopic spin (T,TS),

H. C. Evans ~~ al. , Can. I. Phys. 43, 83 (1965)."G. E. Brown, L. Castillejo, and J. A. Evans, Nucl. Phys. 22,
1 (1961).

+( ] )J+wph+1D rr
J „~sTT3j (23)

where D~~~ is the representation of the rotation group,
and x~h is the parity of the particle-hole states, which are

negative in our case. The states ~,8~~3 are defined as

~sTTs — Q A Ics

~yqy, ~aea

Thus the eigenstates of H@q consist of linear combina-

tions of particle-hole states, with rotational bands on

top of these intrinsic states. We will find later that the
extra collective degrees of freedom are necessary to get
the right density of states. In the above, we have

ignored the coupling due to the Coriolis force between

states of different E.
To be able to evaluate the widths I',~, we have to

know the spectrum of eigenstates of II~~. To obtain

these states we have to use the model we described for
the target nucleus, and introduce an average field that
the incident particle sees. Since our target nucleus is de-

formed, we take this deformation into consideration,
and wilt, e

for H~~, where T is the kinetic energy of the incident
nucleon. U is the average field of the target seen by the
incident nucleon, and H~ is the Hamiltonian of the
target nucleus. Since the target nucleus is deformed, we

take U to be a deformed well. This deformation will

couple different partial waves so that Eq. (7) becomes

P(;r ~= g -V),r., ( p g
~

l
(l's)j 'J'; JÃ) . (26)

The lretl (ls)jl; JM) consists of coupling the incident

="res'"= g A a a
q~Qp, qgOA,

XLa„a„"a,„a,]r,'l0), (22)

where u,„g,
"' and a,„g„are the creation and annihilation

operators for a nucleon, respectively, and the bracket
indicates the coupling of the particle-hole state to a
total isotopic spin (T,T3). The coefficients A,,a„,„a„~s

are obtained from the diagonalization of Hgq in the
particle-hole basis. Because of the fact that our average
field is deformed, there is a collective degree of freedom
that we have not taken into consideration. Thus H@g
has to include a part that defines this collective motion.
We therefore, add to H@g, the Hamiltonian for a rotor,
and the eigenstates of Bg@ are now written as D~E~
X +~q ~. Thus the normalized and symmetrized eigen-

states of H@@ are written as
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particle's total angular momentum j with the target
spin I to get the total angular momentum (JM).

The radial function V&;z, &.; z is obtained by solving
a set of coupled equations, where the coupling is due to
the deformation of the average deld U. The deformatio~
couples partial waves of the same parity, e.g., the s and
d waves will be coupled. In the energy region we are
in.terested in, the dominant partial waves are the s, p,
and d waves. Since our states C have negative parity,
only p waves feed the eigenstates of IIoo. However,
these states C „can decay, leaving the nucleus in an ex-
cited negative parity state and the important partial
waves in this case are the s and d waves. For the present
calculation, we ignore the coupling between the s and
d wave. This allows us to write (26) as

P~;rs=-V~, r (sr)
~
(ls)jI; JiV).

Introducing the isotopic spin of the incident particle
and the target nucleus and coupling these to a total
isotopic spin (T,2'3), we get for the scattering eigenstates
of HI I

P& rl,sr= Vt;rsvp(—r) P (jm;Im~ J3E)
fn'sruti

X(D~Ir'& a '"+(—1)'+ 'D ~'&~ '") (2&)

where we have used the target wave function as given
by Kq. (19).F&,„,. is the angular part of the incident par-
ticle wave function and g, is the isotopic spinor for the
incident nucleon.

Having developed a nuclear model for the target
nucleus and the compound system of A =20, and ob-
taining explicit expressions for the eigenstates of Bqg
and H~~, we can proceed to evaluate the transition am-
plitudes and cross sections for the reaction. The particu-
lar case we are considering is the scattering of a nucleon
by F'. We see that the incident nucleon can go, via
the deformation and two-body interaction, either to
a state that is a linear combination of particle-hole states
without any rotation of the system, or to a linear
combination of the particle-hole states and rotate the
system at the same time. If we look at the decay of
the eigenstates of H qq, and if the system is not rota, ting,
it can decay by emission of a nucleon, leaving the
target either rotating or not rotating. If the system is
rotating when in the compound state, then it can decay
by particle emission, leaving the target nucleus either
rotating or in its ground state.

So far, we have been discussing the formation of the
eigenstates of Hqq, from the open channels and their
final decay back into the open channels. We notice that

we can get to all the eigenstates of H@g from the open
channels, provided angular-momentum selection rules
do not prohibit the transition. Our approach ignores
any effects coming from the coupling of the 4 „to more
complicated modes of excitation in the compound sys-
tem. We know, for example, that in deformed nuclei,
the Coriolis force can play a very important role, as in
the case of the ground-state band of F".The Coriolis
force in this case couples states that diGer by AE= &1.
This means that the diferent rotational bands that
have hE=+1 are connected. Thus, if the Coriolis
coupling is strong, we can come in from the open chan-
nels into the states say, J=1, E=O. This state will
either go into a state of 5=1,X=1,through the Coriolis
coupling, or decay into the open channels, depending on
the lifetime of the state and the strength of the cou-
pling. We have not taken such efFects into considera-
tion. Another process that we have ignored that can
efFect the width is the decay of the particle-hole state
to two-particle two-hole (2p-2h) states and more com-
plicated configurations.

IV. NUMERICAL CALCULATIOÃ AND RESULTS

Having described a formalism for nuclear reactions
and the model for the nuclei we will be dealing with, we
proceed to evaluate the cross section for neutron scat-
tering by F" and proton capture by F".Both of these
reactions lead to compound states in the A =20 system.
The states that we reach from the open channels are
negative parity states, "since these states were taken as
linear combinations of particle-hole states with the par-
ticle in the 2s-1d shell and the hole in the p shell. The
states in the A = 20 system that we get via e+F"have
a total isotopic spin 7=1, Ta +1.These w——e consider
to be the analog states to the states we get in proton
capture, which have an isotopic spin 7= 1, Ta ——0 (see
Fig. 1).

The spectrum of these T=1 negative parity states
are obtained by diagonalizing the intrinsic part of H@g
in the particle-hole basis, and then adding rotational
bands on top of these intrinsic states. The intrinsic part
of H@g consists of two parts. The first part, which is
diagonal in the particle-hole basis, is the unperturbed
energy of the particle-hole states. These diagonal terms
are usually taken from the experimental spectrum of
the adjoining nuclei, because these energies can be ob-
tained theoretically, only by solving the many-body
problem. In the nuclei we are dealing with, these ener-
gies cannot be extracted from experiments and we have
obtained them from our nuclear model. We will 6nd

"We have not considered the even-parity 2p-2h states with two
holes in the lowest $+ level of the 2s-id shell, and two particles in
any of the other states of the 2s-1d shell, even though these states
are connected to the open channel via II'gI. The reasons for not
taking these states into consideration are: First, these states do
not couple to the negative parity states; second, when we adjust
the diagonal particle-hole energies these even-parity states will
probably be bound.



later on that these energies obtained from the model
have to be modi6ed slightly to get agreement with ex-
periments. But this is expected, for we know that the
nuclear model we have chosen will not give us particle-
hole energies that agree with experiments. The second

part of JISM@, which is not d.iagonal in the particle-hole
basis, is the residual particle-hole interaction given by
Eq. (21). To diagonalize IIqo, we have to evaluate the
matrix elements of V;j between particle-hole states, and
that is given by

((A Q„q )(E$Q egg) T=1, T
~
U~(nt„Q„q„)(IVI, QJ, 'q„)T=1, T )= p p (—1) "+

iy&y, ~y'I~' jI 4.jI'4'

XC(„;„~"""Cq,-;;&~'"~'Ci„.,„.«' "&'VO—F,((2j„+1)(2j&+1)(2j„'+1)(2j~'+1)]'~'(—1)"~'-a&'

/ ~ /

even

0 I

+2b( —1)""' "" & (»+1)l
Q„~ k—

Qg,
' Q„'—Q„' Q„'

where
00

Fp ———
4Vr p

dr
~Xglg~X@' lg'~Ã& l&~X&' l&'""r2'

28-
26—

24—

22-
20—
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~ 16

Z 14-
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FIG. 3. Single-particle levels in Hartree-Pock scheme, and the
Nilsson scheme vrith deformation 5 =0.4.

with E~~ the radial harmonic-oscillator wave functions.
The C~, &" are the coefficients involved in the expansion

Xaq=g Ce XlgQp'
lj

where X~~ are the single-particle states in an average
deformed well and these states are not eigenstates of
total angular momentum but are eigenstates of the pro-
jection of angular momentum along the axis of symme-
try of the system. X&j& are states of good total angular
momentum and its projection along the symmetry axis,
and are the single-particle states in a spherical average
field.

Having evaluated the matrix elements of H@g in the
particle-hole basis, we diagonalize that matrix to get

the spectrum of the intrinsic part of IJ@q. However,
before we can perform this diagonalization we have to
get the coeS.cients C~,-~". These coe%cients can be ob-
tained in one of two ways. The 6rst is by taking them as
Nilsson coeScients, which involves taking an aniso-
tropic harmonic oscillator as the deformed well and ex-
panding its eigenstates in terms of spherical harmonic-
oscillator states. The second method is to take these
coeKcients from a restricted Hartree-Fock" (HF) calcu-
lation, where C~, &" are used as variational parameters
to minimize the energy. In Fig. 3 we have the single-
particle spectrums from both the HF and Nilsson
scheme. The parameters used in the Nilsson scheme for
the harmonic oscillator are the same as the ones used
by Nilsson" i.e. , coo ——41/A'"=15 1 MeV for 2=20.
The strength of the spin-orbit interaction was taken as
c=—2.4 MeV, and the strength of the P term was taken
to be zero. The deformation of 8=0.4 was taken. This
deformation was obtained from the experimental 8 (E2)
transition to the ground state of Ne" on the basis of
a rotational model.

We see in Fig. 3 that there is a gap betw'een the oc-
cupied and unoccupied states. This justi6es our taking
particle-hole states. However, this gap is larger in the
HF scheme than in the Nilsson scheme. Actually, this

gap remains in the HF scheme as we go to other even-
even nuclei, while in the Nilsson scheme this gap disap-
pears. We also know that the HF method is a self-
consistent method, while the Nilsson scheme chooses
a phenomenological potential. We then proceed to get
the spectrum of H@@ in both of these schemes. We find
that the HF states are all above threshold for m+F",
"I.Kelson, Phys. Rev. 132, 2189 (1963);I. Kelson and C. A.

Levinson, ibid. 134, B269 (1964);W. H. Bassichis, C. A. Levinson,
and I. Kelson, ibid. 136, B380 (1964); W. H. Bassichis, and I'.
Schick (to be published)."S.G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. -I'ys,
Medd. 29, No. 16 (1955).
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which is 16.815 MeV with respect to the ground state
of Ne". The Nilsson states, on the other hand, have
states below threshold. We also observe that when the
channels in which the residual nucleus has negative
parity are opened, the states with lowest energy in the
HF disappear from the spectrum, while this is not the
case in the Nilsson scheme. We therefore, have decided
to choose the HF for the rest of the calculation. Adding
the rotational band to the intrinsic states, we get the
complete spectrum of Hqq, which is presented in Fig.
4. Since the intrinsic part of the Hamiltonian Bqq, is
invariant under the group ZRq (i.e., rotation about the
intrinsic s axis and reflections in the intrinsic x-s plane),
there the intrinsic states ~ transform irreducebly
under ER2. For E=O there are two representations of
the group RR~.'8 The first representation has states
that are odd under reQection through the intrinsic x-s

plRxle and have rotational bRnds with RngulRl" momen-
tum J =6 2 3— . Thus in Fig. 4, though there
are eight E=0 states, only four states have even angular
momentum while the other four states have odd angular
momentum. The energy scale in Fig. 4 is chosen such
that the zero of the energy is the threshoM for the reac-
tion I+F".We have not included states with J)2,
since we cannot get to these states through the entrance
channel because of angular-momentum selection rules.

Having obtained the spectrum of LI'@@, we turn our
attention to the evaluation of the widths. From Eq.
(9) we have for the partial width I')~r y" ~

=2qr( gi rl (qq) ('. (3O)

Making use of Kqs. (21) and (25), we can evaluate the
above matrix element to get, for T= j,,

(C' '~&oI'~A;r~ )= g &,„n„,,„a„
&&j~4ia, 4' ja'

( ])iI oa+q'a'+&—CE, qq&qc'&, qa Dng„,, —qq'I

&&(—1)' 'Vqp~L(21+1)(2j.+1)(2j.+1)(2j~'+1)(2j+1)j'" (~—&)Z(2~'+1)qf1+(—1)'"+'+'&
l'

(
j. ~' j

~+ ( 1)~'a'+& , ..'a .j,)( I,-I. ..)(qua —, z)
$l

' ' I 1l '
P

+2b( —1)&+on P(2/+1) & {1+(—1)&&+v+&a}(1y{ 1 tq'+v+&)
~

O —,'
—; 0 ——,

' —n„ lt a,

~ -E E-k E-~ ~ -E -/, -E E k E k -~ -E
00

Il
4'

I&
&&4 &I4 &a &a 4

r2
(32)

To evaluate the above integral we have to choose a po-
tential well to get V~;(q). The potential we have taken
is a Woods-Saxon potential of the form

h )'1dp(r)
V()= —V"()+V —

I

— ('1), (»)
M.c) r dr

where
r—E-'

p(r)= 1+exp

a=0.7 F, 8=3.32 F,
V,„=6.85 MeV, Vo ——50.5 MeV.

The depth of 50.5 MeV was determined so that the
potential scattering cross section agreed with the meas-

'8 I am grateful to Professor B.Bayman for drawing my atten-
tion to this point.

ured cross section for n+F" at low energy" and in re-
gions where the cross section does not manifest any
resonances.

In the case when the projectile is a proton, we add
to the above potential the Coulomb potential due to
a uniform charge sphere of radius R. To get the proton
width, we use the same procedure as for a neutron
width, with the exception that the continuum radial
wave function V»(r) is given by a Woods-Saxon ph&s
Coulomb potential.

If we look at the phase shifts for both protons and
neutrons in the above potential we find that the d3~2

proton partial wave goes through resonances at 3.0
MeV, while the neutron d3~2 state is bound. Actually,
none of the neutron partial waves resonate below an
energy of 3.0 MeV, which is the region of interest.
"C. T. Hibdon, Phys. Rev. 133, B353 (1964).
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target nucleus. From Fig. 1 we see that at an incident
neutron energy of 0.5 there are 3 open channels, while
at an energy of 2.5, we have six open channels.

From Kq. (8) we have for the real part and the imagi-
nary part of the transition amplitude

Re(T ~,~ r) = ——sinb„cosb, b„„r

g- "(~)g-;"(~)
+g — ——— .{(E—E„) cos(b,+b I)

(E E )2+ (Lp») 2

+2I'„~"sin(b, +b f)}, (34')

I m(T, „,~') = ——(sinb, .)'b

5D—

4,0-
K=l

K= I

K=O K=2

2.0— ——K=O

FIG. 4. Calculated eigenstates of Bqg with J =0, |,2 . The
energy is measured with respect to the threshold of n+F".

Though the proton d3~~ partial wave resonates, in the re-
gion where the experiment is performed, which is 4.0-8.0
MeV proton incident energy, there is no potential scat-
tering resonance. The reason for stressing the lack of
potential scattering resonances is because in the region
of potential scattering resonance, the widths I'„~ are
strongly enhanced and the approximation we made to
get Kq. (6) fails.

Having obtained the spectrum of Bgq and the widths
of the eigenstates of JISM@ to the continuum, we turn our
attention to the evaluation of the total cross section for
e+F". In Fig. 5 we show the measured cross section
between 0.5 and 2.5 MeV with a resolution of 15—20
keV. ' This cross section has been averaged with difer-
ent averaging intervals up to dE=380 keV. We see
that with AE 95 keV there are four resonances in the
cross section with widths between 100—200 keV. We
want to see if our mechanism of excitation of the com-
pound system will produce the same number of reso-
nances with widths and average spacing of the same
order of magnitude.

As we increase the energy of the incident neutrons
from 0.5 to 2.5 MeV the number of open channels is in-
creased. The open channels are dered by the energy,
spin, parity, and the partial waves for each state of the

g-&"(~)g-;"(~)
— -{(E—E„)sin(b, +b z)

n (E—E„)'+(-',I'„)'
—-', I.» cos(b.,yb.,)), (34")

F NEUTRON TOTAL CROSS SECTION.
I I f I I I j
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Fze. 5. Measured F'e neutron total cross section {Refs. 1 and 7).

where u; and of de6ne the incident channel and exit
channels. 8,. and 8 f are the phase shifts due to BpJ for
the partial waves in the incident and exit channels, re-
spectively. The F„~~ is the total width for a given state
4„,while E„is the corresponding eigenvalue.

If we look at the spectrum of Boo (Fig. 4), we see that
there are no states below 2 MeV, while the experimental
cross section manifests resonances below 2 MeV. The
calculated 1 states are centered around an energy of 25
MeV above the ground state of Ne20, while the proton
capture cross section (Fig. 6)' indicates that the giant
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TasLE IL Experimental (I9) and calculated spins, and energies
of resonances in n+P' in the energy region between 0.5 and 2.5
MeV neutron energy.
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signer-type transition amplitude for an isolated reso-
nance. The total resonance cross section has then the
following energy dependence:

.JT(~)P zT

(&—~-)'+(s I"-'")'

dipole resonance is centered at an excitation energy of
20 MeV. This indicates that the calculated spectrum of
Bgg should be lowered by =5 MeV in order that the
center of the giant dipole resonance will coincide with
the center of the 1 states. This is equivalent to the ad-
justment of the diagonal particle-hole energies, which in
most calculations of this kind are from experiments.
Unfortunately, in our case the experimental particle-
hole energies are not available. Using Eqs. (34') and
(34") and (10),we can evaluate the total cross section
for e+F". In Fig. 7 we present the calculated and ex-
perimental neutron total cross section for n+F". The
eigenvalues of Bg@were lowered by 5.35 MeV to 6t the
resonance at 0.8 MeV. In evaluating the neutron cross
section, the matrix elements g ~r(s) and 8 were cal-
culated at energy intervals of 0.25 between zero and 2.5
MeV. A linear extrapolation was then set up for both
g ~r(s) and 8„ to get the energy dependence of both
quantities into the cross section.

In Table I we present all the eigenstates of H@q, their
quantum number, and their elastic and total width. To
see why only Ave of the states in Table I show up as
resonances in the total cross section, consider a Sreit-

Thus, for a state (J,e,,T) to appear as a resonance, the
above quantity must be large. This is expected, for
I',sr(e) is a measure of the probability of populating
that state through the entrance channel. Thus, if I';sr (e)
is small, that state is weakly excited. Now, if we corn
pare the states in Table I with the cross section in Fig.
8, we see that the states that show up as resonances are
the ones which have a large I';sr(e)/I'„sr The o. nly
exception is the state at 1.369-MeV incident neutron
energy, but this state shows up very weakly because it
is in the region where the resonance part of the state at
1.2376 interferes destructively with the potential
scattering.

There has been some experimental spin assignment"
for the resonances observed with a resolution 68=125
keV. To make any correspondence between the experi-
mental spin assignment and the spins predicted by the

NEUTRON TOTAL CROSS- SECTION ON F

p I I I

3 4 5 6 7 8 9 IO I I 12 13

E, (Mev)

Fro. 6. The measured differential cross section for F»(p, yo)Ne" where I .JT(N) 1s the width for the elastic channel for
and F"(p pI}Ne"*at 90' (Ref. 8}.

the state (J,T,e), while I'„~r is the total width for that
state. At resonance, the above expression reduces to

8, (MeV)

0.6219
0.8466
1.1524
1.2376
1.369
1.85
2.083
2.0966
2.4024
2.7096

r» (l eV)
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202
158
174.5

124.5

r,~* ( ev)

10.6
52.5
23.5
33

129.5
83
14
4.2
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12

ALE I. Energy, spin, total widths, and elastic widths of the
states calculated in n+F" between 0.5 and 3.0 MeV neutron
energy.

7.0-
6.0, [

lo 50
40- )

F JI

c )I r
3.0 a

2.0-
1.0-

——cALcuLAr Eo

E XPER I NIE NTAL

050
I I

1.00
I I I I

1,50 2.00 2.50
K in Mev

I I

3.00

Fre. 7. Calculated and measured total neutron
cross section on F".

'o A. J. Elwyn (private communication).



TABLE III. Calculated strength function (I'~;~}j(D~}.

0.0
0.0262
0.0

P3i2

0.0
0.0855
0.1,386

AvERAGE xEUTRow cRoss sEcTtox ox FI~

EXPERIMENTAL (crT) WITH hE-38O keV
—-—CALCULATED POTENTIAI SCATTERING

CROSS SECTION

---CALCULATED AVERAGE CROSS SECTION
h, E=500 KeV

o &cr & CALCUI ATED FROM &D/{D)

eo — & BEST' OPTICAL MODEL FIT 0/"-1,8418
MeV

model, vre have averaged our cross section with the
same energy interval.

In Table II we have the experimental spin assign-
ment and the spins predicted by the model. Ke immedi-
ately observe that only in some cases do the predicted
and measured spins agree. This disagreement could be
due to one of two things. First, the single-particle en-
ergies we started vrith were not reliable and if vre vary
these, we can very easily change the position of the reso-
nances. The only variation we have done is to lovrer the
whole spectrum by 5.35 MCV, which means that the
diagonal particle-hole energies were decreased by 5.35
MeV. We did not make any changes in the relative
position of the eigenstates Hgg. The second reason for
disagreement can be due to the two-particle interaction.
We have taken the interaction used by Brown for 0".
By varying the two-body interaction, we might be able
to change the relative position of these states. However,
we do not expect any large change in the position of
these states due to changes in the tvro-body interaction.

The main purpose of this investigation has been to
see if the mechanism of simple excitation, in this case
particle-hole excitation with rotation, can give us widths
of the same order of magnitude as the experimental
widths and the right number of resonances. The fact
that vre have obtained widths of the right magnitude
indicates that intermediate-structure resonances can be
described in terms of the simple excitations we have
chosen. To vary the diRerent parameters in order to
try for a hetter 6t to the experiment might be desirable
but it is not in the spirit of this investigation.

If we now increase our averaging interval to 0.5 MeV,
we see that the resonances disappear and what vre get is

a Qat curve (Fig. 8). However, experimentally, one gets
a rather Oat curve when the averaging interval is taken
to be 0.38 MeV. Comparing our average cross section
with the experimental average cross section, vre 6nd
that the agreement is very good. This agreement be-
tween the calculated and observed average cross sec-
tion lndlcates that the strength function (1 I )/(D ) ob-
tained from the model vrould agree very vrell with the
strength function measured experimentally. In Table
III, we present the strength-function evaluated, using
Eq. (12) with AX=2.0 Mev. Unfortunately, we do not
know of any strength-function measurement for this
reaction. To get this agreement in the average cross
section we must have the right number of resonances,
or the right number of degrees of freedom in the system,
and the average sparing between the resonances should
also be right. The fact that the model has the right nurn-

ber of degrees of freedom indicates that vre have to in-
clude the collective degrees of freedom into the model.
If we try to 6t the calculated average cross section vrith

an optical-model potential of the form

g ——I

V(r) =
L
—Vo—iIV] 1+exp—

plus R spin olblt terms wc 6nd thRt wc can gct vcI'y good
6t with the same parameters Vo, R, and u, used previ-
ously, by varying lV. The best 6t was obtained with
8'= j..85 MeV. This is a very reasonable number for the
imaginary part of the optical potential. It indicates that
we can get the optical potential, at least the imaginary
part of the optical potential, from the shell model we

have used, and that this optical potential can reproduce
the average observed cross section very well.

Having obtained a rather good agreement in the
average neutron cross section, we now turn our atten-
tion to the states whose analog states are observed in
n+F". These states are T= 1, T3=0, and are observed
in the reaction F"(p,y,)Ne20 and F"(p,yq)Ne'0, and can
be reached for example in proton scattering from F".
These T= 1, T3——0 states can however decay by particle
emission to both F"and Ne" (see Fig. 1).The width of
these 1'= 1, Ts——0 states is then the sum of neutron and
proton width, i,e.,

z.r=r. r3=0 2~(x p ~
(@ burrs

~
~

ljlk

X f4'ljlk ' ' )iprotcn }~ (~5)

} I

0.5 0.75
I I I I I I

I,O I.25 I.5 I75 2,0 2.2 5

E„ in MeV

l'.&G. 8. Calculated average neutron cross section with ZA"=0.5
MeV as compared to the experimental average cross section.

The factor of —,'comes from the isotopic spin coupling.
The di6erence betvreen the neutron and proton vridths

is the continuum wave function V~;(r) which appears in

the integral F~.
Bcfolc wc plocccd to cvRhlatc thc dl6erentlal cI'oss

section fol proton capture~ lct us 100k Rt thc rclat1vc
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B(E1)strength to the ground state of Ne'0. Taking the use of Eqs. (23) and (24), we get for the reduced matrix
ground state of Ne'0 to be a closed shell, and making element of the dipole operator

&,C.x» ~~tD )~I,E,=O)= P a„..,. .„.„x- P C,»,"a C, -" (—1)'-"
Q&q2)Og ~, l~j&le g

(2I +2)(2J+1)(2j„+1)(2jz,+1)3 '"
X ( 1)7+K+Op+)

4m.

0

(—EEo& n„E— n. &-; o —',

where C is the strength of the dipole int. eraction and I;
is the spin of Ne", which for the ground state is zero.
Since the ground state has zero spin, the only eigen-

states of JISM@ that decay to the ground state of Ne'0 are
the 7=1 states. Due to the fact that our system is de-

formed, the states J= 1 can be divided into two classes,
one with E=O, the other with E=1. (E is the projec-
tion of the total angular momentum along the axis of
symmetry. ) In Fig. 9, we have the relative B(EI)
strength to the ground state of Ne". The energy is
measured relative to the ground state of Ne". If we

look at the E=1 and E=O states, we 6nd that the
E=0 states are at a lower energy than the E= 1 states.
This is in agreement with the hydrodynamic modeP'

for a deformed nucleus with positive deformation. How-

ever, our microscopic model gives us a strength that is
shared among several states.

Ke now proceed to evaluate the differential cross sec-

tion for the reactions F"(p,yo)Ne" and F"(p,y~)Ne20~.

The real and imaginary part of the transition amplitude
for the above reactions is

g-"(~)v""(~)
He(T, zz r) =D,z~r cos8,+P-

(F E )2+(LP JT)2

X{(E—E„) cos8 +&i' » sing ), (37a)

zr(»z)~ zr
Im(T, z~r}=D z~~ sinB +g

n (E—F )'+PI' »}'

X f(E—E ) sin8 —21'„» cosB }, (37b)

where yz»(»z) are the reduced matrix elements given

by Eq. (36). The g ~~(N) are the same as the g ~~(»z)

that are used in (34') for neutrons, except in this case
they are for protons, which means that the proton con-
tinuum wave function is used to evaluate F~. 8 are the
proton phase shifts for the incident channel. The matrix
elements D,J~~ are the reduced matrix elements for

2'M. Danos and E. G. Fuller, Ann. Rev. Nucl. Sci. IS, 29
(1965).

direct reaction and are given by

Czar F&i 4zza
4', y

(2I;+1)(2j+1}(2jz,+I)
X (-1)~3

2g

tz1

o —p (p —l -.'-p&
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FIG. 9. Relative 8 I',Ei) strength in Ne".

The total widths I'„» are given by (35). To evaluate
the width, vie have to know the open channels. %e have
taken the six open channels for proton decay, which are
de6ned by the states in I'~ and used previously in

neutron scattering. %e also have taken the six states
dehned by the state of Ne", which are the analog states
to the"ones in F" Ke thus have a maximum of twelve
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FIG. 10. Calculated differential cross section for
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B(E1; 1 —+ 0+)
———;forE —0

B(L~'1; 1 —+ 2+)

=2 for E= i.
This explains the reason for some resonances having
o»/o. ») 1, while others have o~,/o~, (1.The reason for
having the resonances at the same energy is because
they are due to the same eigenstate of IIQQ. Comparing
the calculated and observed cross section (Fig. 11), we

Tmr, E IV. Energy, spin, elastic width, total width, and B(81)
strength for states in proton capture between 4 and 10 MeV
proton energy.
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open channels. As we increase the energy of the incident
proton the number of open channels increases up to
a maximum of twelve open channels.

Knowing the transition amplitude given by (37a)
and (37b), we can evaluate the diGerential cross section,
using Eqs. (16) and (17). This has been done for both
P'(p y )Ne" and F"(p,yr)Ne"", and the results are
presented in Fig. 10. In evaluating the above cross sec-
tion we have shif", ed the eigenstates of HQQ down by
5.35 MeV as we did with the neutron cross section. We
immediately observe that the resonances observed in
the pp and )/I cross section are at the same energy. This
is due to the fact that the only difference in the two proc-
esses is the dipole matrix elements. Since Ne" is de-
formed in the ground state, the first excited state of 2+

is a rotational band on top of the ground state. There-
fore, we have
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I'Io. 11.Calculated and measured differential cross
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see that the agreement in the position of resonances and
the magnitude of the cross section is poor. The reason
for the large cross section can be due to the fact that
the average held observed by the particle-hole states is
not of the same deformation as the ground state. This
decreases the overlap between the eigenstates of IIQQ
and the ground state of Ne20, and thus reduces the mag-
nitude of the cross section. As for the position of the
resonances, this could be due to the fact that the single-
particle energies we started with were not very good.
In Table IV we have the total and elastic widths for all
the states between 4.0 and 10.0 MeV incident proton
energy, and the relative B(E1)strength for these states.
Many of the states in Table IV do not show up as
resonances. This is either because I' z/I'z is small or
because the relative B(E1) strength is small. Actually,
the number of resonances that appears in the calculated
cross section is the same as the number of resonances
observed experimentally.

Recently, ' the angular distribution for P'(P,po)Ne'o
and F"(p,vq)Ne"" has been measured. In Fig. 12 we
have the observed and calculated angular distribution.
We can see that the calculated angular distribution
varies as the energy is increased, while the observed
angular distribution remains constant. The constancy
in the angular distribution could be due to the fact that
one partial wave is feeding the resonances. In that case
the angular distribution becomes constant as a function
of energy. We have two partial waves feeding the eigen-
states of Hqq. They are the p&~2 and p3~2 partial waves.
The only way one of them can dominate is by a coupling
through the deformation with the f7~~ partial wave.
However, the f7~2 is weak, until we get to a proton
energy of 6 MeV. But his change in the angular distri-
bution with energy is also present below 5-MeV proton
energy. This means that the constancy in the angular
distribution is not due to coupling through the deforma-
tion. H we vary yz (n) in the transition amplitude, we
notice a remarkable change in the angular distribution.
If we assume that g zr(rz) and I' z" are constant and
use the pzzr(zz) from experiments, we get an angular
distribution such that the cross section at 90' is always
larger than the cross section at O'. However, the ratio
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(do/dQ)(8=90')/(do/dQ)(0=0') varies as the energy
changes. This all seems to indicate that the constancy
in the angular distribution depends very critically on
the choice of the proper prier(n), g~~r(n), 1'„~r, and on
their relative magnitude.

The fact that the observed and calculated widths are
of the same magnitude indicates that the particle widths
have been described reasonably well in our model.
Finally, we evaluate the integrated cross section over
the energy interval between 3.0 and 10.0 MeV. The ex-
perimental integrated cross section comes out to be 41.28
pb MeU/sr, while the calculated integrated cross sec-
tion is 118pb MeV/sr. The fact that the calculated in-
tegrated cross section is large indicates that the photon
widths are too large. This disagreement in the integrated
cross section can be due to the assumption that the
average Geld observed by the particle-hole states has
the same deformation as the ground state. Taking this
deformation to be diGerent will lead to a smaller over-
lap between the ground state of Ne" and the giant di-

pole state. This smaller overlap will lead to a smaller
y-ray width, and thus a smaller integrated cross section.
Actually, one would expect a change in the deformation
of the nucleus at such high excitation. The experimental
cross sections for F"(p,ps)Ne' and F"(p,p&)Ne"* in-
dicate that do/dQ(y~)/do/dQ(y, ) increases with increas-
ing energy, indicating that on the basis of the rotational
model, E=O states are at a higher energy than the X=1
state. This tends to indicate that the giant dipole state
might have a negative deformation as compared to the
positive deformation of the ground state.

V. CO5'CLUSION

Our investigation indicates the possibility of under-
standing the average properties of the intermediate-
structure resonances in the A =20 system in terms of
simple excitation of the compound system. Thus we are
able to reproduce the experimental average widths and
spacings of the resonances by describing the simple ex-
citation of the compound system in terms of particle-
hole states plus rotational bands. The extra degrees of
freedom obtained from the rotational motion are essen-
tial to give us a reasonable strength function (1' ~)/(D~)
and thus the right order of magnitude in the average
total cross section (Fig. 8). The success of the model in

reproducing the average neutron total cross section
(DE=0.S MeV) indicates the feasibility of obtaining a
reasonable optical potential from the model, and thus
explains from the point of view' of dynamics the optical
potential in terms of the shell model. The agreement in

the widths of the resonances with the experimental
widths indicates the smallness of the contribution of
more complicated excitations of the compound system
(e.g. , two-particle-two-hole) to the total widths.

In our model we have assumed that the ground state
and excited state (excitation energy of 20 MeV) of Ne'e

have the same deformation. This can be the reason for
obtaining such a large differential cross section for
F"(p,y)Ne". Had we taken into consideration the
change in deformation with excitation, the overlap be-
tween the ground state and excited states would be
much smaller. This would lead to smaller y-ray widths
and thus a smaller cross section.

%e have observed that the same modes of excitation
(i.e., particle-hole plus rotation) gives rise to the ob-
served resonances in the two channels e+F" and
p+Ne" that feed the compound system of A = 20. This
stresses the importance of the simple excitation of the
compound 2 = 20 system, and points to the probability
that these resonances are not random fluctuations.
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