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Two recent formulations of nuclear reaction theory have been based on the reactance operator E. Ex-
pressions given in these formulations for the reactance operator are identical in form with those that hold
for the transition operator T, except that the scattering Green's function is replaced by the standing-wave
Green's function. We have used formal scattering theory to 6nd the formal solutions to the Lippmann-
Schwinger equations for X and T. We find that the solution for E differs from that used in these two formula-
tions, The discrepancy appears to be signihcant for one of the formulations but not for the other.

I. INTRODUCTION

ECENTLY, Bloch and Gillet' (BG) have proposed
a formulation of nuclear reaction theory based on

the reactance operator E. An alternative formulation
of nuclear reaction theory in terms of E has been
suggested by MacDonald and Mekjians (MM). In
both of these treatments, the expressions given for E
are identical in form with corresponding expressions
which hold for the transition operator T when the
standing-wave Green's function is replaced by the
scattering Green's function. By using formal scattering
theory, suitably generalized for nuclear reactions, we
will show that the relationship between E and T is
somewhat more complicated than this. %e apply our
results to the simple solvable case of scattering by a
separable potential. It appears that the discrepancy we
have found is signi6cant for the BG treatment but not
for the MM treatment.

In Sec. II, we de6ne the reactance operator E and
transition operator T as solutions of their corresponding
I.ippmann-Schwinger equations. Formal solutions to
these equations are derived.

In Sec. III a generalized Heitler equation is derived.
This is used to provide a direct relationship between
E and T. It is also used. to provide formal solutions for
E and T in terms of reduced reactance and transition
operators X and T, respectively.

Section IV is devoted to a comparison of our formal
solutions for E with those used by BG and MM. Our
conclusions are illustrated by applying the formalism
to the simple solvable case of scattering by a separable
potential.

II. PORMAL SOLUTION I5' TERMS OP
THE INTERACTION

The Hamiltonian H for a given system of nucleons
can be decomposed into two parts

H=H +V„=Hp+Vp+
~ Supported by the U. S. Atomic Energy Commission.
'C. Bloch, Lectures of the Varenna Summer School, j.965

(unpublished). C. Bloch and V. Gillet, Phys. Letters 16, 62 (1965).
'%. MacDonald and A. Mekjian (to be published).

I'.(E)—G.(E)=s~a.(E),
S.(E)= ew-'P(E —H )s+esj-r

Ke note that

lim I' (E)=Princ. part
e s0 g jP

lim A, (E)=i&(E—H ).

(4)
(4b)

(5a)

The transition operator T and the reactance operator
E will now be defined as solutions of the Lippmann-
Schwinger (LS) integral equation. 4

T p&+&(E) —V +V Gp(E)Tpp&+&(E)

T.p&
—

& (E)= Vp+ T & &(E)G (L') Vp,
—

E p'+'(E)=V +V I'p(E)Kpp&+&(E),

E p' '(E)= Vp+Z & &I' (E)Vp.

(6a)

(6b)

Pa)

(7b)

'M. L. Goldberger and K. M. Watson, Collsssor& Theory Qohn
Wiley &k Sons, Inc. , New York, 1964); T. Wu and T. Ohmura,
Quantlm Theory of Scatter&sg (Prentice-HaH. Publishing Company,
Inc. , Englewood CliBs, New Jersey, 1962); Roger ¹wton,
Scattering Theory of Particles and lVaves (McGraw-Hill Book
Company, Inc. , New York, 1966).

s I&. A. Lippmann and i. Schwinger, Phys. Rev. 79, 469 (1NO}.

j.Oi i

in a diGerent way for each channel available to the
system. The channel Hamiltonian LI' is the kinetic
energy and the internal interactions for the nuclides
that constitute channel o. while the channel interaction
V„ is the sum of the mutual interactions of these
nuclides. Because of the necessity of dealing with
distinct channels we are forced to generalize somewhat
the standard formulation of formal scattering theory'
which applies only to elastic and inelastic scattering.

%e erst de6ne the scattering Green's function

G (E)=(E II +ie) '—

and the standing-wave Green's function

I.(E)=(E—H)L( E- H)' +"j-'. (3)

E is the energy of the system and e is a small positive
constant which will be allowed. to approach zero in the
6nal expressions. The difference between these two
Green's functions is just
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The transition operator is to be distinguished from
the elements of the T-matrix 1 which are in fact the
transition amplitudes for the various possible reactions.
The two are directly related:

where @, is an eigenstate of H with eigenvalue L&„

RIld @y ls Rn clgcnstRtc of Hp with eigenvalue Eg.
The E matrix is related to the reactance operator in
a similar fashion. Thus, solution of Eq. (6) provides a
determination of the transition amphtudes. Since, as
we shall see in Sec. III, the transition operator can be
written in terms of the reactance operator, solution of
Kq. (7) also determines the transition amplitudes.

To simplify notation we will suppress the argument
E in what follows.

The formal solution of Eqs. (6) and (7) can be
achieved by formally summing the inhnite series that
results from iterating these equations.

Green's function for the system Hamiltonian II, which
is given by

We s'tal t by obsel'vlllg tllat. flolll Eqs. (2) and (11)

6-i= 6„-i—V. .
It follows that

(17)

Now we use Eq. (4) to replace G and Eq. (16) to
replace G. Equating separately the Hermitian and anti-
Hermitian terms in the resulting equation gives the
following two relationships:

We will now present an alternative procedure for
constructing a formal solution for E p. This solution
will be in terms of V, Vp, I', and 6, where

A= —i~-'(r —G)
= er—'L(E—H)'+~'j '.

T-p'+'= V-(I —GpVp) '

=V+V GVp,

T p' '=(1—V G ) 'Vp

=Vp+V GVp,

(9a)

(19b)

Substituting Eq. (19a) into Eq. (7), the LS equation

(10 )
fol' E) glveS

It p& &=(1—V F ) 'Vp

=Vp+V F Vp. (1ob)

The operator G that appears in Kq. (9) has a simple
interpretation.

E p&+&= V„+V,FVp+m'V AVpdpEpp'+', (20a)

It, p1
—

& = Vp+ V.F Vp+~'E..' &A. V AV p. (20b)

By using Eqs. (19b) and (7) we can reduce the last
term on the right to the required form. We observe that

G= (1—GpVp) 'Gp=Gp(1 —VpGp) '

=(Gp ' Vp) '—
=(E H+t'p) '. —

ApEpp'+'=~(I Vpr p)Ic—pp'+' FVpApE—pp'+'

= (1+FVp) 'AVp, (21a)

It &
—

&A =E '—'(1—F,V,)A —E..& &A.V.F
=V.A(1+V I') ',The operator 6 is just the scattering Green's function

foI' thc system Hamiltonian H.
The operator r p that appears in Eq. (10),

Fp=(1—rpVp) 'rp=rp(1 Vprp)
E.p&+&= V.+V FVp+z'V. AVp(1+FVp) 'AUp, (22a)

E p&
—

& = V'p+V FVp+~'V A(1+ V I') 'V AVp. (22b)
cannot be simplified in the same way because th. e
inverse of I'p does not ex~st. However, we can simphfy
Eq. (12) somewhat by introducing the operator

vp=Gp 'rp=(I-' Hp)L& H—p ~~] ' — (13)
We note that the formal solution for E; Eq. (10) or

(22), cannot be gotten from the formal solution for T,
Eq. (9), by simply replacing the scattering Green's
function 6 by the standing-wave Green s function I.in terms of which we find

I p= (F' Hp rIpV p+ie) gp. — —(14)

which, when substituted into Eq. (20), yiekls the final

(12)

The operator qp is the "off-the-energy-shell" projection
operator for Hp. It gives 0 when operating on the
eigenstate of Hp having eigenvalue I', and it gives 1
when operating on any other eigenstate of Hp. The
interpretation of I'p remains somewhat obscure. One
thing, however, is clear; Pp is not the standing-wave

Comparing Eqs. (6) and (7), we see that T and E are
solutions of I.S equations having the same interactions
but different Green s functions, This carries the implica-
tion of a set of relationships connecting E and T which
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we will now derive. Solving Eq. (6) for V gives

V =T p&+&(1+GpTpp&+&) ', (23a)

Vp=(1+T & &G„)
—'T p&

—&. (23b)

This expression for V is now substituted into Eq. (10),
the formal solution for E.After a few algebraic manipu-

lations we arrive at the following result:

K-p'+'= T-p'+)I:I+(g p
—I'p)T p p&+)] ', (24a)

K p& )=I 1+T & &(G —I' )j 'T,p' &, (24b)

Eq. (24) is just the formal solution of the Heitler
equation'

T p&+)=K p&+) ivrK p—&+)hpTpp&+), (25a)

T p& &=K p& & krT &—)h,K p' ). (25b)

The inverse of this relationship results when we solve

Eq. (7) for V,

V.=K.p&+)(I+I'pKpp'+') ', (26a)

V,= (I+K..&-)1.)-'K.p(-), (26b)

s,nd substitute the result into Eq. (9), the formal s»u-
tion for T, namely,

T-p"'=K-p"'Ll+ (I'p gp)K —
p p"'r', (27a)

T.p& )=II+K & &(I' —G )j 'K, p& &. (27b)

This is just the formal solution to the equation

K p'+&=T p&+)+(7rT p&+)hpKpp&+& (28a)

E,p& '=T p& )+iwK & )6 T p&
—). (28b)

From Eqs. (25) and (28) we see that K and T are

related to each other by LS equations having Green's

functions equal to & (G —I" ).We will call the relation-

ships expressed by Eqs. (24), (25), (27), and (28) the
Heitler relation. These relations hold between any two
operators that satisfy I S equations with the same inter-

action but diferent Green's functions.
Note that our results depend on the existence of the

inverses that appear in Eqs. (9), (10), (23), and. (26).
Thus our results will be valid only for those values of
the energy E for which the operators I' V, (V I' )t,
(—I' K' &+'), and (—K & &I' )t do not have eigen-

value 1.
%e now introduce the reduced transition operator

f' and the reduced reactance operator K which are
dered by the following LS equations:

T p&+&=V +V GpPTpp&+&, (29a)

T p& &= Vp+T & &Pg —
Vp, (2-9b)

K p'+'= V +V I'pPKpp&+), (30a)'

K p& '=Vp+E '—)Pl' Vp. (30b)

The reduced operators X and T satisfy I S equations

'%. Heitler, Proc. Cambridge Phi. . Soc. 37, 291 (1941).

Q=1—P=Q'. (33)

The reduced operators provide us with the oppor-
tunity of 6nding a solution 2 or f' valid in one portion
of Hilbert space, and then on the basis of Eq. (31) or
(32) treating transitions between the two portions of
Hilbert space to low order in perturbation theory. ' '

The quantities G that appear in Eq. (31) are en-
hanced scattering Green's functions.

Gp(+) = (1-GpQTpp&+))-igp
= (~ Hp Q—Tpp"—)+i~) ', (3«)

g (-) g (1 T (—)Qg )
—i

= (E—H.—T &
—

&Q+ip) —'. (34b)

In applications Q is often chosen so that it commutes
with Hp or H and T is approximated by V+ VGPV so
that

Gp" e=ep H e-vpe-evpg-pPvpe) e-
=Qg (-) (35)

Then the real and imaginary parts of

QVpgpPVpQ=Qvpi'pPvpe Qv p~pP—Vpe (36)

can be interpreted as the level shift and level width
operators, respectively.

The quantities f' that appear in Eq. (32) are similar
to the I' we encountered in the previous section.

I'p'+'= (1—I'peKp p"') 'I'p

=(E Hp qpQKpp—+ +ip—) 'qp, (37a)

I' &-)=I' (1—E,&
—&Ql', )

—'
=q. (P- H K,&-)Qq.+—ip) —', '(37b)

where q is defined in Eq. (13).Again we note that the
Green's function I" is not the standing wave Green's
function associated with the scattering Green's function

'H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958); 19, 287
(1962); L. S. Rodberg, Phys. Rev. 124, 210 (1961); %. M.
MacDonald, Nucl. Phys. 54, 393 (1964); W. Tobocman, Phys.
Rev. 136, 81825 (1964).

identical to those for E and T except that the Green's
functions have been multiplied by a projection operator
I"=I'. The Heitler relation can be used to express E
and T in terms of 1' and f', respectively. The result is

T p(+) —T p(+)(1 gpe—f' (+))—i

—T p(+)+T p(+)Gp(+)QTpp(+) (31a)

T p(-) —(1 T (—)Qg )
—iT p(

—)

=T p(
—)+T (-)Qg (-)T p(

—) (31b)

E. &+& =X'. &+&(1—I'peX'pp&"))-'

=K p(+)+P p(+)f'p(+)QKpp(+) (32a)

K.p& &=(1—X' &-)Qi' )
—'E p&-&

=g p(-)+g' (—)QP (-)g' p(
—) (32b)

where Q is the projection operator complementary to P,
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p(+) —K p(+)+K p(+)PpQKpp(+)

K p(
—)=K p( )+K (——)QP K p(

—)

(40a)

(40b)

From Eqs. (2) and (34) we get

QKpp(+) —
Gp

—& Gp(+)-&

K. &
—&Q=G '—G ' ' '.

Operate with G and G, on both sides of Eq. (41).

G —G (+) G p
(+)QK p p

(+)Gp
=G p

(+)

GpgKpp(+)G p(+) (42a)

G —G (—) G (—)K (—)gG =G
—G K'. & 'QG. ' '. (42b)

(41a)

(41b)

G. We can express K in terms of K and i' and 5 where

Pp(+) = (jv Hp —QKpp(+))

X[(E—H p
—Q+p p(+))P+ pPj-& (38s)

f (-)=(E H K (-)Q)

X[(Z—Hp —K ' 'Q)'+p'j ' (38b)
and

+ = px 1[(E Hp QKpp(+))2+p2] —I (39a)

g (-)=, —[(E—H.—K..(-)Q)p+pp$-', (39b)

by following the procedure we used to derive Eq. (22).
This will now be done.

First we rewrite Eq. (32) in the form of an I.S
equation.

p
(+)A p

—g'
p

(+)g p
(+)—K p

(+)g pQK p p
(+)f p

(+)

=g' p(+)gp(+)(1+QKpp(+)I'p(+)) —&

Q K p(
—)=g (—)g' p(

—) P (—)K (—)Qg K p(—)

= (1+f' (—)K (—)Q)
—)g (—)K p(

—) (47b)

(47a)

Substituting Eq. (47) into Eq. (46) gives us the final
result.

K p(+) K p(+)+K p(+)I'p(+)QKpp(+)

+~2K (+)g (+) (1+QK (+)I' (+))—&

XQKpp(+)gp(+)QKpp(+) (48s)

p(
—) —K p(

—)+K (—)QP (—)K p(
—)

(—)QA (—)K (-)g
X(1+I'.(-)Z..(-)g)- ~.(-)K.,(-). (48b)

Equation (48) is the formal solution of the reactance-
operator LS equation in terms of the reduced reactance
operators. Equation (31) is the formal solution of the
transition-operator LS equation in terms of the reduced
transition operators.

IV. COMPARISON WITH PREVIOUS RESULTS

Both BG and MM use expressions for the reactance
operator K which are of the form of Eq. (48) with the
last term deleted. Let us restrict ourselves to the case
where only elastic and inelastic scattering are possible,
as do the above-mentioned authors. Then Eq. (1) will
be replaced by

Now we use Eq. (4) to replace G and we use H= Hp+ Vp (49)

G.~+& =r.(+)—i~i.(+),

t".&-& =r.(-)—z~i.&-), (43b)

to replace 6 . Equating the Hermitian and anti-

Hermitian parts separately yields

I'p= I'p(+) (1—QK»(+)r p)+~'~ p(+)QK p
p(+) ~p

—(1—P pQK p p
(+))i'

p
(+)+ g pQK (+)A p

(+) (44a)

= (1—I.K..(-)g)1.(-)g A.K..(-)QA. (-), (44b)

~p=A p(+)(1-QK p p(+)~ p)-4(+)QK p p(+» p

=(1—I,QK„+)i, + —~,QK„+ I, +

—(1 P K (—)Q)g (—)—g K (—)QP (—) (45b)

Equation (44) is now substituted into Eq. (40).

&+& K (+)+.K p(+) f p(+)QKpp(+)

y~PK (+)gpgKpp(+)gp(+)QKpp(+) (46a)

(—) —K (—)+K (—)QP (—)K p(
—)

&
—)Qh &

—)K &
—)QA.K.p(

—&. (46b)

The last term on the right of Eq. (46) is reduced with

the help of Eqs. (45) and (40).

and Eqs. (7) and (48) become

K= Vp+VpI'pK=K+Kp,

K,=K+KI"QK,

Kp= &r'Kh(1+QKI') 'QKAQK,

where now

K= Vp+VpI'pPK,

(50a)

(50b)

(50c)

(51a)

I"p= (E—Hp)[(E—Hp)'+p'j ', (51b)

i = (Z—H, —QK)[(E—H, —QK) +, j- (51c)

6= p)r '[(E—Hp —QK)'+ p'$ ' (51d)

Both BG and MM retain E~ and drop E2. We will
refer to E2 as the discrepancy between our result at
the results of these authors.

It would appear that the discrepancy E2 is not
signi6cant for the MM formalism but is non-negligible
for the BG formalism. In the MM treatment Q is
taken to be the projection operator onto the discrete
eigenstates of Hp. Thus the factors LQ that appear in
E2 will go to zero in the a=0 limit except at those
values of E which coincide with the eigenvalues of one
of the discrete eigenstates of Hp or of Hp+QK. A dis-

crepancy which is nonvanishing only at isolated energies
in the continuum will not aBect a practical calculation.
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The BG treatment, on the other hand, takes Q to
bc R projection operator onto thc cont1nuum clgcn"
states of Hp. For this choice of Q there does not seem to
be any reason for discarding K2.

To illustrate these conclusions let us apply our
forlTlallsDl to R slIIlplc Inodcl. Wc will consldcl R system
such that IJO has a discrete spectrum consisting of a

(Wp —Hp)
I 0)=0, (52)

and a continuous spectrum of states

(W—Hp)l W)=0.

The interaction will be taken to be separable.

i'p=
I y&6 I

.
The reactance operator is then just

K=
I v&b I

(1+1'oK)
=(1—&vlf'pie)) 'l'p.

(53)

(55)

w(E) =(~lr, (E)ZI»,
&E)=&yl'&E)QI»,

y«) =& I'(»Qly&,
s(E) =~&yIL(E)Qly).

Then we can write

(61c)

(61d)

Similarly, the reduced reactance operator is

K= I»&&I (1+r,~K)
=(1—&vlf" I'I») '1'. (56)

Having explicit expressions for both E and E, we can
immediately display their relationship.

E=Ek, (57a)

k=(1—&vlf'ppl~&) &1—6 ll'ply)) ' (57b)

Consider next the expression for Ej.
Kr X+Kf'QK =——Kkg, (58a)

k =(1-&vlf.~l.&+&yl~Qly&)
X(1-&if.f'I»)-', (58b)

and the expression for E2,

Kp =~'Kh(1+QKf') 'QK'8QK=Kk, (59a)

k.=~ (vl~QIy&'(1-611'ppl»+6 I
f'Ql»)-'

X(1-&ylf.~l»)-'. (»b)
Evidently, we expect the following relationship:

k= kg+kp.

For convenience let us introduce the following
abbreviations:

In the MM treatment we take

Q= lo&&ol,

dwl w&(wl.

This leads to

(63b)

dW(WI V,
l W)(E—W)[(E—W)'+ "]-', (64 )

s= (1 w)—Up[(E W—p U)—'+ p']-',

U=(oil'plo&(1 —w) '

Combining Eqs. (62) and (64) gives us

(64d)

k = [(E—Wp)'+ p']

X[(E—Wp —U) (E Wp—)+p'] ', (65a)

kr = [(E—Wp) (E—Wp —U)+ p']

X[(E—Wp —U)'+p'] '

kp ——p'U'[(E —Wp) (E—Wp —U)+p'] '

X[(E—Wp —U)'+ p'] '. (65c)

The relationship k =kg+ kp is readily verified. This
corroborates our claim that the expression used by BG
and MM is incomplete.

Ke note that in the limit as ~ approaches zero, k2

will vanish for all values of E except two. These are
E=8"0 for which

k(Wp) =1,

k, (w,)=o,

kp(wp) =1,

(66b)

k(Wp+U)=U'p '= ~

kg(wp+U) =1,

kp(wp+U)=U'p-'= ~. (67c)

Since k2 is nonvanishing only at isolated energies, it
will not have an observable CGect.

Now let us turn to the BG treatment in which

x= (1—w) U(E—Wp)[(E—Wp)'+ '] '

y= (1—w) U(E—Wp —U)[(E—Wp —U)'+p'] ', (64c)

k=(1—w)(1—w —x) ',
kg

——(1—w+y) (1—w)
—',

kp
——s'(1—w+y)-'(1 —w)-'

(62a)

(62b)

(62c)

Q= dwl w)(wl,

I'= lo&(ol (68b)



W. TOBOCMAN AND M. A. NAGARAJAN

This leads to

«= (0~ &o~0)(&—Wo)P(&—Wo)s+e'j ', (69a)

dW(W~ Vo~ W)(E—W)L(E—W) +osj (69b)

y= dU U voU —Uo 0voU z—U

XL(&—U)'+ e'j ', (69c)

s=~i (&( VolE) —(&~0)(oj Vo(Z)), (69d)

g denotes that a sum over the discrete eigenstates of
8o is to be added to the integral over the continuum.

We see that the expressions for m, x, y, and z become
more complicated in the BG treatment of this system
than the corresponding expressions for the MM treat-
ment. The relationship k = k&+As is not readily veri6ed.
However, it is apparent that s(1—w+y) ' will not in
general vanish, so that there is no justification for the
neglect of k2.
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Shell-Model Theory of Nuclear Reactions in Deformed Nuclei*f

IRAJ R. APNANf

Department of Physics and Laboratory of Euclear Science, Massachusetts Institute of 2'echnology,
Cambridge, 3fassachusetts

(Received 10 April 1967)

A theoretical study has been made of the intermediate-structure resonances observed in neutron scattering
and proton capture by F"in terms of simple excitations of the compound nucleus using Feshbach's formalism
for nuclear and photonuclear reactions. The simple excitations were taken to be particle-hole states in the
deformed-level scheme, including the excitation of rotational bands. The average resonance widths, and
spacing, and average total cross section (DE=0.5 MeV) observed for n+F" with neutron energy between
0.5 and 2.5 MeV is reasonably well reproduced by the model. In particular, the agreement with the average
total cross section indicates that an optical potential can be derived from the above model. In proton capture
by F", though the calculated widths of the resonances are of the correct order of magnitude, the relative
spacing of the resonances and magnitude of the cross sections is not in agreement with experiment.

I. INTRODUCTION

ECKNT neutron-scattering experiments' have re-
vealed resonances in average cross sections with

widths (=200 keV) that are too large to be due to com-
pound-nucleus formation, yet too small to be described
by an optical model. It has been suggested'~ that such
resonances might be due to the excitation of particularly
simple states of the compound system. In light nuclei,
we can hope to describe these simple excitations in
terms of single-particle excitations (e.g., particle-hole

~ This work is supported in part through funds provided by
the U. S. Atomic Energy Commission under Contract No.
AT (30-1) 2098.

f Based in part on the author's Ph.D. thesis, MIT, Cambridge,
Massachusetts, 1966 (unpublishedl.

f Present address: Physics Department, University of Minne-
sota, Minneapolis, Minnesota.

~ E. S. Elwyn, J. E. Monahan, R. Q. Lane, and F. P. Mooring,
Argonne National Laboratory Summer Report No. ANL 7081,
1965, p. 24 (unpublished).

~ A. K. Kerman, L. S. Rodberg, and J. E, Young, Phys. Rev.
I.etters 11, 422 (1963).

3 H. Feshbach, A. K. Kerman, and R. H. Lemmer, Ann. Phys.
(N. Y.) 41, 230 (1967}.

4 B.Block and H. Feshbach, Ann. Phys. (N. Y.) 23, 47 (1963).

states). Such calculations have already been performed
for neutron scatterin, g on N" and C",' ' using a particle-
hole description for the excited states of the compound
system. Widths of the order of 100—500 keV are ob-
tained, in good agreement with experiment.

Another possible example of such intermediate struc-
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