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The theory of collective correlations in nuclei is formulated for giant resonances interacting with surface
vibrations. The giant dipole states are treated in the particle-hole framework, while the surface vibrations
are described by the collective model. Consequently, this treatment of nuclear structure goes beyond both
the common particle-hole model (including its various improvements which take ground-state correlations
into account) and the pure collective model. The interaction between giant resonances and surface degrees
of freedom as known from the dynamic collective theory is formulated in the particle-hole language. There-
fore, the theory contains the particle-hole structures and the most important "collective intermediate"
structures of giant resonances. Detailed calculations are performed for "C, Si, and "Ni. A good detailed
agreement between theory and experiment is obtained for all these nuclei, although only 6'Ni is in the
region where one would expect the theory to work well (50(A (110).

I. INTRODUCTION'

~COLLECTIVE nuclear states have been investigated
&& quite extensively during the past ten years within

the framework of the collective model, as well as in
terms of various microscopic approaches. ' While the
former model has the advantage of being lucid, the
latter has the advantage of being more d.etailed in that
special shell-model features are more fully described
microscopically.

However, in the comparison of the theoretical results
with the experimental y-absorption cross sections,
evid, ently neither of these approaches is complete. In
fact, the particle-hole calculations for light and, heavy
magic nuclei explain only gross features of giant reso-
nances, such as the existence of one or two states shifted
up in energy which carry an appreciable part of the di-
pole strength. We may call this the doorway structure.
For nearly all nuclei, however, it is k.nown that the giant
resonances show much additional structure. Such struc-
ture may be divided into two groups: (a) the main
substructure, which we call collective intermediate
structur"- --by this we mean that the giant resonance
splits into three, four, or more main distinct resonances
because of their interaction with other collective degrees
of freedom such as the surface vibrations; (b) on top
of this collective structure, we may find, a small sub-
structure which we call noncollective structure.

In "0, for example, the two main resonances at 22
and 24.0 MeV (see Fig. 1) are in this sense doorway
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structures, because both levels correspond to diGerent
1p-1k configurations. Their main substructure, i.e., the
peak. at 22 MeV and, the resonance at 23 MeV, as well
as the three peaks between 24.0 and. 26.5 MeV, are
collective intermediate structures. The remaining non-
collective fine structure is small for the total y-absorp-
tion cross section but stand, s out more clearly in re-
actions like (p,y).

One may summarize the success of the various theo-
retical approaches as follows: The particle-hole mod, el
has been successful in explaining the doorway structure.
The calculations of Elliot and, Flowers and, others' '
exp/ained just this kind, of giant-resonance structure.
The d,ynamic collective theory, ' ' on the other hand, ,
explains the collective intermediate structure for
med, ium and, heavy nuclei. This has been shown in an
exciting development, both in theory and experiment,
during the last few years. "—"

It therefore seems to be worthwhile and, in fact,

' J.P. Elliot and B.H. Flowers, Proc. Roy. Soc. (London) A242,
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(1965).
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Medd. 34, 11 (1965).
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FIG. 3. The interaction of a collective 1p-1h state (giant dipole
resonance) with a collective more-particle —more-hole state L(giant
dipole)+(surface quadrupole phonon)).

necessary to combine the collective and the particle-hole
approach in ord, er to describe both the doorway and, the
collective structure. The main purpose of this paper is
to develop such a theory.

A few words should be said, to answer the question
W ic lIHh h immediately comes to mind at this stage: Wou

11not a particle-hole calculation, if performed. in the fu
Hilbert space, i.e., a diagonalization in the basis o
many-particle —many-hole condgurations, contain every-
thing? Of course, it would, . In the first place, however,
it is not satisfying to obtain results from the diagona i-
zation of a giant matrix, and. a more physical approach
seems necessary to get insight into the structure and
the dynamics of the nucleus. Secondly, even if one
would like to do so, it is impossible to carry out such
calculations because of the tremendous number of
many-particle —many-hole configurations that would
have to be included. (See, for example, the work of
8oeker '4)

W now come to the specific contents of this paper.e now
~ ~ ~ ~

In Sec. II we give a microscopic outline of the idea o
the collective correlations. The various structures
introduced, above in a somewhat phenomenological way
are d,epicted by graphs. Also, an interpretation of the
interaction of the giant resonances with other collective
d,egrees of freedom in terms of the many-particle —many-
hole configuration matrix is given there. Section III con-
tains a brief review of the dynamic collective theory,
which is necessary for the understand, ing and explicit
formulation of the id,ea of collective correlations, pre-
sented in Sec. IU. The complete Harniltonian containing
collective correlations is discussed in Sec. V, which also

FIG. 2. 1p-ik con6guration.

'4 E. Rocker, W. M. De Mujnick, and C. C. Jonker, in Comptes
Rendls dg Congres International de I'hysigge NNcleaire, edited by
P. Gungenberger (Centre National de la Recherche Scientifique,
Paris, 1964), Vol. II, p. 405.

con ainsntains the classi6cation of the basis states and the
~ ~ ~ ~

setup of the configuration matrix. Finally, in Sec. V,
we compare detailed calculations with experiments and
discuss the various results.

II. MICROSCOPIC DESCRIPTIO5 OF
COLLECTIVE CORRELATION S

All collective mod. es contain a large amount of single-
particle excitation, i.e., they are pred, ominantly linear
combinations of states which differ from the ground.
state in the state of one particle only. In other word, s,
the are essentially 1p-1h excitation s. This mustey
necessarily be so because they have large electro-
magnetic transition probabilities to the ground, state
and. the transition operator is a sum of one-body
operators. In terms of graphs these 1p-1h components
of collective states are thus represented, by single
"sausages" which may go backward as well as forward
(Fig. 2). In such chains each particle and its hole
partner are coupled to the spin and parity of the collec-
tive state, e.g., 1 for the dipole state, 2+ for surface
oscillations. It has been shown earlier' —"that giant

led. .resonance states and. surface states are strong y coup e .
The reason for this is the coherent structure of the
collective states. Assuming that the matrix elements
between the various p-h states have the same sign (e.g. ,
as in a schematic model), one immediately gets the
strong correlations which are pred, icted, by the collective
theory. "Such a state would be depicted in graphs like
Fi . 3. The sausages at the right-hand, side represent
the surface vibration consisting of 1p-1h, 2p-2h, etc. ,
components which is coupled with a particle-hole
excitation to 1 . The strong wave lines in Fig. 3 repre-
sent the strong coupling between these particular 1—
collective states. The configurations corresponding to
the region of Fig. 3, where two sausages are present, do
not have multipole moments to the ground. state. The
t tion strength of such a state is thus decrease dransi ion

11and, reappears at the state which, in the limit of sma

'5 We are very grateful to C. A. Levinson for bringing this to
our attention.
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FIG. 6. The total configuration matrix of the
particle-hole Hamiltonian.
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F&G. 5. Schematic representation of doorway 1P-1h, collective
intermediate, and noncollective structure.

coupling, consists of a surface quantum in addition to
the d,ipole state.

The graph of Fig. 3 has to be distinguished from a
graph as shown in Fig. 4. The latter represents the
coupling of the giant resonance to a noncollective 2+
state, which is indicated simply by d.ashed connections
between the coupled (2+-1 ) bubbles and the pure 1
chain.

Since the matrix elements between the 1 and the
collective (2+-1 ) states of Fig. 3 are very strong, such
graphs lead to the main structure of the giant resonances
(the collective intermediate structure), while graphs as
shown in Fig. 4 give only noncollective fine structure.
As mentioned earlier, the latter shows up in experiments
as small ad, ditional substructure of the main collective
structure. The 1p-1h or doorway structure is given by
diferent graphs of the type shown in Fig. 2. We are
therefore led to the hierarchy shown in Fig. 5. The
strong matrix elements between the two (or in general
more) collective chains in Fig. 3 represent the collective
correlations. The two collective states interact strongly,
and. these correlations lead. to the collective intermediate
structure.

Note that this hierarchy of essentially three diBerent
types of structure is different from the usual one where
the classification is according to 1p-1h, 2p-2h, etc.,
configurations. The first of these, the p-h configurations,
are identical with the doorway structure. The collective
and noncollective configurations, however, are compli-

cated, superpositions of 1p-lh, 2p-2h, 3p-3h, etc., con-
figurations. They are only classified accord, ing to the
magnitude of their coupling strength to the doorway
1p-1h structure.

Now let us look at the complete configuration matrix
of the particle-hole Hamiltonian and interpret the
hierarchy of Fig. 5 in terms of the configuration matrix.
In Fig. 6 the total configuration matrix is shown
schematically. In ordinary p-h calculations, only the
1p-1h submatrix is considered. The higher configura-
tions are completely neglected, . In fact, taking all the
higher configurations into account increases extremely
the size of the matrix. For "0,Boeker" estimated, about
500 2p-2h states up to 3~ excitation energy. Neverthe-
less, we can perform the following Gedankenexperiment:
Suppose we prediagonalize the 2p-2h, 3p-3h, etc. , part
of the matrix and denote the resulting states by p&, p&,

ya, etc. The q, 's are complicated superpositions of
many-particle —many-hole configurations, and, the total
configuration matrix is shown schematically in Fig. 7.
There now occur only ma, trix elements between the
states q; and the 1p-1h states and, of course, within the
1p-1h submatrix. Some of these matrix elements are
very strong and. are ind, icated, by large crosses in Fig. 7.
Such states y, (in Fig. 7 they are p2 and &p4) are identi-
fied with collective states which correspond, for example,
to the region in Fig. 3 where two bubble chains exist.
The other states yi, qa, qq in Fig. 7) correspond to the
same region in Fig. 4. The only difference is that the
former are collective ones with strong matrix elements
to the 1p-1h states giving the main structure of the
giant resonance, while the latter are of noncollective
type and have only weak coupling with the 1p-1h sub-
space. Therefore, we are interested, mainly in the
collective states (Fig. 3). We can not treat them with
all their microscopic structure. This would, imply that
we are able to prediagonalize the 2p-2h, 3p-3h, etc. ,
subspace. We will describe these states in the collective
model, i.e., as states where 1p-1h configurations are
coupled. to surface phonons. Of course, there arises

immediately the difficulty of finding the strong matrix
elements of these states to the 1p-1h submatrix (Fig. 7).
This problem wil, l be solved in Sec. IV, where we
"translate" the interaction between d,ipole states and
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where the coupling constants E~, E2p, and. K~2 have
been calculated, in the hyd, rod, ynamic mod, el":

Er= —1.588C2 ~ Eoo= —0.708C2, E22= —0.936Ci. (7)

Cr is the same parameter as in (3) and can be expressed
in terms of the asymmetry energy parameter ~ of the
Bethe-Weizsacker mass formula,

Cr ——8sZ2/A . (8)

Fzo. 7. Conhguration matrix after prediagonalization
of the 2p-2h, 3p-3/z, etc., subspace.

surface vibrations obtained in the collective model into
the particle-hole lariguage.

III. REVIEW OF THE DYNAMIC
COLLECTIVE THEORY

The dynamic collective theory for spherical nuclei' —'
investigates the following Hamiltonian:

&=&u u sa+ &d ip+ &d ip uu sa y

where

a,„.,= Pgs)a, [ ~ 21 X~[2]j[o]

+ (2V'5)C2L~"'&&~'"][" (2)

The Hamiltonian (1) is diagonalized in the basis which
is constructed by coupling one dipole phonon' and, E
quad, rupole phonons to 1

Iiv,t„x,t; []em) (9)

Here X~——1 and, S2~&T are the number of d.ipole and
quad, rupole phonons, respectively. The corresponding
angular momenta are l& ——1 and. l2, v is the seniority
quantum number and 0. denotes additional quantum
numbers of the surface phonon states.

The dipole operator is easily obtained as

1/2

Deo ~ (r)yP'[IldT
3 nucleus

and, is explicitly given by

d,escribes the nuclear surface vibrations in the harmonic
approximation. This is, of course, no restriction, and. it
is straightforward to includ, e anharmonic terms as well.
The operator n~'~ is the tensor of rank 2 and, positive
parity for the surface quadrupole collective variables.
The dipole part of (1) is

where

RoZ 2

xp xo' —2)
xp= kpRp= 2.08,2~'

D iiP] =~o [aP]+~[[~P])(~[2]jPI+. . . ] (10)

p, (r, t) = p, (0)+g(r, t),
p„(r, t) = p„(O)—g(r, t),

(4)

where incompressibility of nuclear matter is assumed, .
For dipole Quctuations, one has

r](r, t) = —F&3j&(d'or)[n[" && V[")[1,

r ~& R(8, &p) =Ro{1+(+5)La"'X V"]j["}
Here Ii is a normalization constant, Rp is the nuclear
equilibrium radius, and, kp ls the wave number of the
dipole oscillations. The time depend. ence is contained.
in a&'&. The interaction of giant dipole resonances and
surface degrees of freedom is"

=E [L~[I])('~ [I]7 [2] y~ [2] ][0]

+Eoot &[i]Xa[i]j[o]L&[2]X&[2]j[o]

+E2 [L~[&])(~P])[2])([ix[2])(o2[21j]2] ][ol (6)
"T.Urbas and W. Greiner, Z. Physik 196, 44 (1966}.

Hg —— %38 Lcx['] &(n['])—[']——',v3C La['] &&n['])['] (3)

where n[" is the tensor of rank 1 and negative parity
describing the collective variables of the giant d.ipole
resonances. The giant resonances are considered, as
Quctuations of the proton and, neutron densities,
p„(r, t) and p„(r,t),

and Ep is the nuclear radius. Later we will need the
inverse of (11), i.e.,

1 3Ij
i2[i] = D i[[i]— LD ii[ii+a[2]g[&]+. . . (11)

Hap 3fp

The results of the dynamic collective theory for med. ium
and heavy nuclei show that the main structure of the
giant resonances is given by the strong coupling of
giant resonances to surface vibrations, ""the matrix
elements being of the order of 2 MeV. In fact, if we
neglect the dipole-quadrupole coupling we are led to
only one single 1 state with d,ipole strength. This
occurs because the collective model describes only the
dominant dipole state and neglects all the other 1p-ih
states with less dipole strength. For example, the
22-MeV giant resonance in 0' is to be id.entiied, with
the one-d. ipole-phonon state of the collective model.
The 24.5-MeU giant resonance is an additional ip-ih
configuration which has no corresponding state in the
collective model. It is therefore necessary to extend,
the Hamiltonian (1) along the lines suggested in Sec. II.
This will be done in the following section.

"The three-dipole phonon states are treated by perturbation
theory.
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where

lit 1 —D ~[) (13)

43'
'~'

Dph"'= —
I Q (&il o~orI'"

I
x2)&„tu., (14)3) ~x, n

Inserting (13) and (11) in (6), we obtain for the
interaction

Ifdip quad ~ +ph, quad &1 [LDph XDph ] XR ]
+KooLDph

"& XDph'"]&"
I
a&'~Xn' "]~"

+~„[LD h/1XD hf J]f)XL~ÃX~[)]W]fÃ (15)

where

&i= —1.588X4xoo(xo 2)&/ARo = 64m/ARoo, —
~;o———(0.708+1.588 (2/5s. )'i'xo')

X4xo'(xo' —2) «/A Ro' —127.5x/A——Ro' (16)

Koo
———(0.936+1.588(7/10~) "'x ')

X4xo (xoo—2)&/ARo = —169&/ARo

Here ~ is the symmetry energy constant of the Bethe-
YVeizsacker mass formula. The renormalization of the
coupling constants ICi, Xgp, and Xoo occurring in (6)
to the values xi, ~oo, and zoo in Eq. (16) is due to the
second term of (11).The physical origin of this addi-
tional term in (11) is quite interesting. It takes into
account the change of the single-particle functions
(computed in a spherical well) due to the dynamic sur-
face vibrations. In fact, the potential well is oscillating
ahoy. t a spherical equilibrium value. The single-
particle functions P; depend, therefore, on the surface

' At least in medium and heavy nuclei these 2+ states are very
complicated superpositions of various many-particle-many-hole
states.

"D. Drechsel, J. B. Seaborn, and W. Greiner, Phys. Rev.
gyttqrs 17, 488 (1966).

IV. SEMIMICROSCOPIC FORMULATION OF
COLLECTIVE CORRELATIONS

The dipole giant resonances obviously interact very
strongly with surface vibrations. Therefore, the most
important states leading to collective intermediate
structure for the giant resonances will be such nuclear
states where a (1p-1h)' configuration is coupled to
surface excitations. We still describe the latter in the
collective model, i.e., in the phonon approximation, for
simplicity. " It seems, therefore, most natural to
generalize the Hamiltonian (1) in the following way":

(a) Hd;p is replaced by Hph&";

(12)

where B,~&'& stands for the particle-hole Hamiltonian
in the (1p—1h)' subspace (see Fig. 7).

(b) The interaction (6) between surface vibrations
and the dipole states has to be interpreted in the particle-
hole language. This is achieved by the requirement that
the dipole operators in the two pictures are the same, i.e.,

variables 0.&", i.e.,

4~-=6-(~,.~)=6-(&0)+4'-/~~I -=~
The term proportional to n leads to a similar term in the
transition charges q(r, t) given by the collective model

(5). Therefore, by keeping the second term of (11) we
take into account additional corrections for the single-
particle wave functions due to the dynamic deformation
of the shell-model potential.

The full semimicroscopic Hamiltonian for giant
resonances is now

II= IIph&'i+IIq„, d+H ph, q„,d. (17)

Hpp g d describes the strong matrix elements shown in
Fig. 7 between the collective many-particle —many-hole
configurations and the 1p-1h states. Formally, it has the
structure of an additional two-body force between the
particle-hole states which, however, depends on the
surface collective coordinates nt'~. This interaction leads
to the collective correlations between the giant resonances
and the surface vibrations.

Expressed in microscopic terminology, the matrix
elements between two states are large if these two states
are essentially coherent superpositions of 1p-1h con-
6gurations or products of such superpositions, i.e., if
they are collective states. Therefore, the matrix ele-
ments shown in Figs. 3 and 4 are essentially propor-
tional to the dipole moment in the initial state and the
dipole and quadrupole moments in the intermediate
state. Thus they are strong only in the case of Fig. 3.

V. DIAGONALIZATION OF THE INTERACTION
BETWEEN THE (1P—1h)' STATES

The eigenstates and eigenvalues of the Hamiltonian
(17) are found by diagonalization of the energy matrix.
The basis for the matrix is formed, by the pure (1p-1h)
states with 0, 1, 2, etc., phonons excited:

I ~ )= Ij hi@no j t„n „,J; Mo(z,' 1. ), (18)

where j, l, and e are, respectively, the total-angular-
rnornentum, orbital-angular-momentum, and radia1
quantum numbers of the single-particle states. The
1p-1h configuration is coupled to the intermediate
angular momentum J. S stands for the number of
phonons, e for the seniority, and l for the angular
momentum of the phonon wave function. The total spin
of the states considered is unity, and their parity is
negative.

For numerical reasons we found it useful to pre-
diagonalize the 1p-1h subspace with the residual inter-
action included. ' This gives the gross distribution of
the dipole strength (doorway structure). We then take
into account the collective correlations, Hpp q Q Since
the matrix elements of the collective correlations (15)
between two states are essentially proportional to the

'~ J. B. Seaborn, D. Drechsel, and W. Greiner, Z. Physik 202,
3g (1/67),
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product of the dipole strengths of the states involved, ,
we are allowed. to omit such prediagonalized 1p-1h
states which are far ofI' the giant resonance and, carry
only a small amount of dipole strength. In this way we

can keep the matrix which is to be diagonalized rela-
tively small.

The matrix elements of the three terms of H~], ,q„,d
between the basis states are

I l' J'
(J' ll. I![Q(ny! D fifxD hf~lqf3i]fm!g l I)= ( )&+&'+& (~'IILD»'" XD»'" j'"ll~)(l'Il~'"Ill) (19)

+5 2 J' l

(j l' ~ II [L43f3] $43f3]jf&IX LD &fuXD hf~l]f&/]f01
I
j l ~ I)

1

( )7+V+i

(2%+1)"'
J/

O'IIELD»'"&&D»f"j' 'IIJ)«'IIL~f'&xuf'&jf f!!l), (20)
E

where E=o or 2. The reduced matrix elements of the surface quadrupole amplitud, es n~'~ are given in d,etail else-
where. '0 The reduced, matrix elements of the dipole operators are

(l 3"IILD»'" &&a ""j'x'Iizi') =-:iii lJ4j&j,j,j4JIU'

1/i 13 1q l3 14 1 li j, -', l, j,
!(—)"+'44m &z i-

90 0 OJ 0 0 0)i. 4 1 j.
li l3 1 f'l3 l4 lq

!««««R13R34+ ( )l3jl4+Jg !''0 00&0 00)
t~x p ji '~s 2 js

X I, I.'
)( Q (—)~+~(2I+1)(2L'+1)(25+1) « l3 l4 1 «» l3 3 j3 «» l4

33j4.R"R" . (21)
LL' &5 5 J' J .I I.' E. .I. 5 Ji .I.' S J'.

Here the indices 1 and 3 correspond to holes and the
indices 2 and 4 to particles and i;=(2l;+1)'f3. The
radial integrals R'r are given by

R„,i, (r)rR„&~&(r)r'.d.r. (22)

Evidently the direct term is essentially the product of
the dipole moments of the particle-hole states. This is,
of course, in complete analogy to the results of the
collective mod, el.'' The d,irect term exists only for
the case where both 1p-1h configurations are coupled to
J=1 and negative parity. The second term of (21) is
an exchange term. The two particles and, two holes
are separately coupled to a 1 state. This term vanishes
for double magic nuclei, provided that 3Aco and higher
excitations are d,iscarded. For nonmagic nuclei, the
exchange term mixes (1p-1I3)' states with (1p-1h)3 and
(1p-1h)' states. The latter ones are, of course, always
coupled, with vibrational wave functions to total
angular momentum and parity 1 . In practical calcula-

tions, however, this effect turned out to be small be-
cause of recoupling coefficients. Neglecting the exchange
term, the matrix element between the two 1p-1h con-
Qgurations will be proportional to the geometric mean
of the d,ipole strength in the two states. Thus the mixing
between a pure particle-hole state and. its erst vibra-
tional satellite (i.e., the same 1p-1h state with one
surface phonon excited) is proportional to the dipole
strength of the pure ip-1.h configuration. The situation
is, however, much more complex than in the dynamic
collective theory. Even in the case without collective
correlations, we now have more 1p-1h states, with some
d,ipole strength. Superimposed on these we have a
spectrum of one or more ad, d,itional phonons.

In the present calcu]ations we have used harmonic
oscillator wave functions for the radial wave functions
R„~. Once we have obtained the eigenvalues E and
corresponding eigenvectors by diagonalization in the
configuration space consisting of (1p-1h)' states and
up-to-X-phonon states, the integrated photoabsorption
cross section o.„is given by

q =4m'nE
I (Q a;(li p;1; X=e=l=0; 1—!D„ff'&I0))!', (23)
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Fio. 8. Photoabsorption cross section of "C.The experimental
points give the total photoabsorption cross section; the dashed
line gives the (V,eo) cross section at 90 in arbitrary units. The
dipole strengths are calculated with collective correlations.

where a; are the amplitudes of the pure 1p-ih states
(i.e., no phonon excited) in the eigenstate ~22).

VI. RESULTS AND DISCUSSION

In this section we present the results obtained for
"C, "Si, and, 'ONi and. compare them with experimental
data. We approximate the low-energy spectrum of these
nuclei by the phonon spectrum of a harmonic oscillator,
i.e., we neglect the strong anharmonic terms which
split the two-phonon triplet.

In the case of Si it might even be worthwhile to
repeat the calculations using a d,eformed basis. Never-
theless, it seems interesting to test the present theory
also for light nuclei, although the mod, el seems to be
more justified in the case of med, ium heavy nuclei. It is
necessary to say a few words on the parameters entering
the calculations. First of all, there are the parameters
82 and Cs of the harmonic quadrupole oscillator (2).
These are taken from the low-energy spectrum. The
6rst excited 2+ state of an even-even vibrational nu-
cleus is interpreted as the one-phonon state of the har-
monic surface vibrations. Consequently, its energy is
given by An|2 ——A(C2/82)'"=E(2+), and the transi-
tion probability to the ground state 8(E2) rcPs'=Str/
(28go2). From both relations one can easily compute 82
and Cs. The quantity Ps' is the square of the effective
vibrational amplitudes, Ps ——((0

~
g„cr„ter„~0))'~2. It

FIG. 10. Results of a particle-hole calculation with collective
correlations compared with the experimental absorption cross
section.

characterizes the "softness" of the quadrupole vibra-
tions. The symmetry energy parameter of the Bethe-
Weizsacker mass formula is taken to be ~=20 MeV
for all nuclei. The nucleon-nucleon force is of the form

&(ri,rs) = &of(~ri —rs~)

X{rr 0+&r (O1 ' O2)+err (&1' 22)+rior (O1 ' &2) (&1' &2) )
In actual calculations we use the exchange mixture
d,etermined by Gillet' for "C. Therefore, there is only
one free parameter, the strength Vo of the residual
force, which is adjusted so that the energy of the main
giant resonance agrees with experiment. We now discuss
the results of our calculation for speci6c nuclei.

A. Giant Resonance Structure of "C

The low-energy spectrum of "C shows a 2+ state at
4.43 MeV. Recent electron-scattering experiments give
8(E2)=44 fm4 and a transition radius of about 3.3 fm;
thus Ps is about 0.43."For the nucleon-nucleon force, a
Gaussian shape with a strength Vo= —35 MeV has
been used. . The two-phonon states of the surface vibra-
tions can probably be identified with the 7.6S-MeV
0+ state and. a 2+ state in the 10-MeV region. Thus it
seems worthwhile to interpret C' as a vibrator. The
splitting of the 7.65- and 10-MeV states indicates that
the contribution of anharmonic terms is appreciable.
They are, however, neglected in the present treatment.

The results are shown in Fig. 8 together with the
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Fzo. 9. Photoabsorption cross section of C".The experimental
points give the total photoabsorption cross section; the dashed
line gives the (ytn0) cross section at 90' in arbitrary units. The
dipole strengths are calculated in the usual 1p-1h model.

Fze. 11. Results of a particle-hole calculation with collective
correlations compared with the (y,m) and (v,po) cross sections.

"F. Gudden (private communication).
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FIG. 12. Results of a particle-hole calculation with collective
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40 ~

I

17 19 20 21 22 23 24

Er (Me v)

experimental data of the total photoabsorption cross
section and the (y,ns) cross section. ' "The double peak
at 22 and 23 MeV is explained by the theory, as is the
strong state at 25.5 MeV. However, the predicted
energy of the latter state is about 1 MeV too low, al-
though its strength is in agreement with the experi-
ments. Possibly the anharmonic terms of the collective
potential, which are neglected in the present calcula-
tions, are responsible for this discrepancy. Attention
should also be given to the minor states at 18 and 28.5
MeV, which also seem to be indicated in experiments.
For comparison with older calculations, we show the
results of a pure 1p-1k calculation in Fig. 9.

B. Giant Resonance Structure of "Si
In "Si, the first excited 2+ state lies at 1.78 MeV. The

effective vibrational amplitude Pe
——0.40 is known from

Coulomb excitation. Again, we approximate the low-

energy spectrum by the harmonic surface vibrator.
This seems to be a very crude approximation, since "Si
Inore closely resembles a deformed nuc/eus. However,
at least for the 1p-1k part of the calculations, it has
turned out that calculations with a deformed basis"
do not give an appreciable improvement on calculations
with a spherical basis. '4 The theoretical results are ob-
tained with a strength of the residual force Vo———60
MeV. The particle-hole configurations and energies are
the same as those of Bolen and Eisenberg. ' The results
of the calculation, together with various experimental
data, are shown in Figs. 10—12. One notices that all

major resonances in the experiments may be explained

FIG. 13. Results of a 1p-1h calculation compared
with the (p,y0) cross section.

nearly quantitatively as collective intermediate struc-
ture. Especially in the (p,ps) and (p,ps) data, however,
there is also an indication of noncollective structure. For
example, the major peaks in the (p,ys) cross section at
18.2, 18.8, 19.6, 20.4, 21.3, 21.9, and 22.7 MeV are
typical for collective intermediate structure. All the Gne
structure around these resonances is interpreted as non-
collective substructure (see Fig. 5). Some disagreement
in the energy position of the 15.2- and 16.2-MeV states
is probably due to inaccurate particle-hole energies for
the states involved, .

In Fig. 13, the comparison of the experimental data
with a pure particle-hole calculation is shown. ~ The
peaks at 19.4, 20.1, and 21.6 MeV represent what is
called. the 1p-1h or doorway structure in Fig. 5. The
comparison of these results with the calculations shown
in Figs. 10—12 clearly indicates the hierarchy of nuclear
structures (1p-1h doorway, collective intermediate, and
noncollective structure) as well as the improvement in
the agreement between theory and experiment obtained
by the inclusion of collective correlations.

Finally, we show in Fig. 14 the results for diferent
numbers of surface phonons taken into account. The
full lines indicate the dipole strengths if four phonons
are considered and the dashed lines those for six
phonons. It is very satisfactory that the states below
25 MeV are not appreciably affected. by this change, in
view of the fact that recent particle-hole calculations

'l

vT»' 'v
20

lt -. 'r-. v", . r r. rr r ~

30
E~(Mt Y)

Fro. 14. The inhuence of higher
quadrupole phonons is shown. The
levels indicated by full lines are
obtained from a calculation where
four phonons are included; those
irldicated by dashed lines were ob-
tained with six phonons.
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FIG. 16. Dipole strengths of states obtained in the usual particle-
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C. Giant Resonance Structure of "gi
The parameters for the collective quad, rupole oscil-

lator of "Ni are Ps ——0.21 and Ates ——1.33 MeV. They are,
again, taken from the low-energy spectrum.

The relative strengths of the dipole states obtained,
from the diagonalization of the energy matrix are
presented, in Figs. 15—17. Also, for comparison, the
experimental (7,e) cross section" for natural nickel
(6&% "Ni and 26% "Ni) is shown. Of course, the
calculated. strengths should. be compared with the total
absorption cross section for the pure A=60 isotope.

This is particularly true for nickel inasmuch as the
(y,p) cross section is expected to be of the same order of
magnitude as the (y,m) cross section.

Until now, however, no such measurements have
been reported. .Nevertheless, the number of strong dipole
states predicted, for "Ni, their energies, and, their
relative strengths are in strikingly good agreement with
the available experimental data. Moreover, it is re-
markable that so much structure can be nearly quantita-
tively accounted, for with only one adjustable param-
eter, namely, the strength Vo of the nucleon-nucleon
force. The results of the pure 1p-1k calculation (i.e.,
without collective correlations) are given in Fig. 16.
Figure 17 shows the results of the dynamic collective
theory (the giant resonances are treated in the collective
model). Comparison of Figs. 15—17 indicates that the
special features contained in Fig. 16 and Fig. 17 (pure
particle-hole structure and, pure collective structure,
respectively) are also present in Fig. 15. Thus, the
extension of the dynamic collective theory introduces
additional structure in the giant resonance, in agree-
ment with experiment, and at the same time preserves
the general features of the collective theory as well as
those of the pure particle-hole description. The merely
serniquantitative agreement between theory and, experi-
ment indicates, however, that further improvements of
the theory are necessary. One of the most important
corrections to the present theory of collective correla-
tions are the ground-state correlations. They will be
especially important for closed, -subshell nuclei.
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