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Collisions between heavy particles which entail a change in electronic state (such as changes in ionization
or excitation) are considered in the low-velocity (v((1 a.u.) region. The electronic part of the problem
is treated in a way which is both exact and at the same time lends itself most directly to the solution of the
collision problem. This is done by introducing a representation of the electronic Hamiltonian H, l for the
molecular system which is exact but nondiugonu/. The basis states, which are a generalization of the resonant
and potential scattering states of resonance theory, are not constrained by the noncrossing rule. Using
these states as an expansion basis, the full Schrodinger equation for the collision is reduced to an electively
Rnite set of coupled two-body equations for the heavy-particle motion. The only approximation made,
aside from small velocity, is the Born-Oppenheimer approximation. Therefore, both the electronic problem
and the resultant problem of coupled heavy-particle motions may be treated with an accuracy that should
be comparable with that of the corresponding molecular-stationary-state calculations.

I. INTRODUCTION
r 1HE present paper is concerned with slow (s«1 a.u.)..reactive collisions between atoms or ions, A~+B" +-
As+8&, where the superscripts indicate the state of
ionization or excitation of the atom. These reactions
comprise certain charge-exchange and mutual neutrali-
zation collisions as well as collisional excitation and de-
excitation of atoms (including elastic scattering), and
have a bearing on some noncollisional processes re-
sulting in dissociation such as predissociation and
photon-induced dissociation.

Since this class of reactions involves a change of
electronic state, Bates and Massey' have been able to
describe them with some success using the Landau-
Zener two-state theory. ' This theory starts with two
"zeroth-order" electronic states whose potential energy
curves cross (or pseudocross), and then calculates
semiclassically the probability of a transition from
one zeroth-order state to the other. This approach can
in principle be improved on in two independent ways.
First, it has been pointed out that the semiclassical
solution of the nuclear-motion problem may some-
times leave something to be desired, ' so that there is
need for both refinement and generalization of the
nuclear problem. Secondly, the electronic part of the
problem in the Landau-Zener approach has never been
well formulated. The situation is so bad that the
so-called zeroth-order electronic states, which are the
starting point of the theory, are simply not defined (for
states of the same symmetry) except that they must
be "sufFiciently inaccurate" that they violate the non-
crossing rule of von Neumann and Wigner. 4

It is the purpose of the present paper to put the elec-
trorsic part of the problem on a better footing. In par-

* Supported by the Advanced Research Projects Agency.
r D. R. Bates and H. S. W. Massey, Phil. Mag. 45, 112 (1954).
2L. Landau, Physik. Z. Sowjetunion 2, 46 (1932); C. Zener,

Proc. Roy. Soc. (London) A137, 696 (1932); E. C. G. Stueckel-
berg, Helv. Phys. Acta 5, 370 (1932).

'D. R. Bates, Proc. Roy. Soc. (London) A257, 22 (1960).' J. von Neutnann and E. P. Wigner, Physik Z. 30, 467 (1929).
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ticular, we require the treatment of the electronic
Hamiltonian H, l to have the following two properties:
(1) It must be exact and explicitly defined, in contrast
with the zeroth-order states mentioned above, so that
among other things one may be able to take full ad-
vantage of the progress which has been made in recent
years in the art of calculating the discrete electronic
states of molecular systems. (2) The electronic problem
should be treated in such a way that if possible the
very valuable Born-Oppenheimer approximation re-
mains fully valid to the same extent that it is valid
for the stationary states of molecules. Requirement (1)
differentiates the present treatment from the Landau-
Zener approach, while requirement (2) rules out the
use of the conventional adiabatic states as will be
shown.

To satisfy these two conditions, it has been found
necessary to introduce a new qgusiadiabatic represetsta
tioe of II,l. In contrast with the conventional adiabatic
representation used exclusively by chemists and spec-
troscopists, which is diagonal, the new representation
is moediagoea/, with the off-diagonal matrix elements
furnishing the coupling for the electronic transitions.
An interesting consequence of the nondiagonality is
that the potential curves in this representation are not
constrained by the noncrossing rule4 so that they freely
cross one another.

Section II of.the paper is devoted to the derivation
and analysis of this nondiagonal representation of X,&.

In Sec. III, the solution of the full collision problem is
expanded in the states of the quasiadiabatic representa-
tion, and the exact coupled equations for the heavy-
particle motion are derived in a form which it is be-
lieved should be immediately useful. Section IV is
a summary.

II. QUASIADIABATIC REPRESENTATION OF H, t

In order to introduce the representation of the elec-
tronic Hamiltonian H, ~ on which the solution of the
98



SLOW HEAVY-PARTICLE COLLISION THEORY 99

collision problem in Sec. III depends, the reader' s
indulgence is asked while we consider a physical process
which is not included in the direct subject matter of
the present paper but which leads us most directly
into this new representation, namely, dissociative
recombination (e+AB+ +AB—„+A+—B). This process
is universally described in terms of a set of potential
energy curves such as those of Fig. 1(a), which de-
picts schematically all the electronic "states" (for a
particular symmetry) of the molecular system AB,
including the electronic continuum (shaded region),
a dissociating state AB„, and a Rydberg series of dis-
crete states.

According to this picture, recombination occurs
through an electronic transition from the electronic
continuum to the discrete state AB„which crosses it,
and this latter state then dissociates directly to the
products A+B. While this picture seems natural, if
we ask critically what these states are and how they
are defined, it becomes clear that they are rot the eigen-
states of B,i, i.e., the conventional adiabatic states
which diagonalize this operator. This is seen most
directly when we remember that the adiabatic states
are strictly bound by the noncrossing rule, 4 whereas
the state AB„ in Fig. 1(a) fiagrantly violates this rule,

by first crossing the entire Rydberg series, and even
worse by cutting through the continuum' as well. By
contrast, the way that the aCh ubati c states would look
for the same system is indicated schematically in Fig.
1(b), which one can see renders the dissociative at-
tachment process quite incomprehensible.

Since the curves of Fig. 1(a) which are necessary to
explain dissociative attachment do not belong to the
conventional adiabatic states, we must ask mkat are
they? From the discrete region alone, this would present
quite a serious puzzle, which might defy solution.
However, when we consider the region where the
curve AB„crosses the continuum, the proper inter-
pretation of these crossing states soon becomes clear,
for a discrete state like AB„which is degenerate
with (crosses) a continuum is a familiar situation in
theoretical physics and has been dealt with exhaus-
tively. ' Such a discrete state is, of course, a resomaece.
It is not an actual eigenstate of the Hamiltonian (H, t

here) but requires an artificial constraint for its defini-
tion as described below, and hence is often called a
"quasistationary state. "It was by the use of such states

5 The prohibition against crossing a continuum is rarely dis-
cussed, possibly because it turns out to be a trivial statement.
9 we remember that a particular adiabatic eigenstate of II,~

is defined as the ~th lowest-energy level of this operator (n=
1, 2, 3 ~ ~ ~ ), then if we follow any such eth level from right to
left, it is clear that, since it is the nth level for all R, it can never
penetrate a 6nite distance into the continuum, but can at most
become coincident with its lower limit [the AB+ curve in Fig.
1(b)g. In a different context, this is discussed for the Hs system
by E. R. Davison PJ. Chem. Phys. 36, 1080 (1962)g.

sH. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958); 19, 287
(1962); and references to previous work therein contained.
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FIG. 1. Potential-energy curves for a typical molecular system
AJ3, exhibiting schematically the electronic states of single sym-
metry, including the electronic continuum (shaded region),
a discrete Rydberg series, and a dissociating state AB„.In (a) the
states belong to the quasiadiabatic representation of II,I, ex-
hibited in Kq. (5) . Note that AB, in (a) cuts across all the other
states. The vertical markers at each crossing indicate twice the
magnitude of the coupling terms V;. (E& and Bs are merely typical
energies. ) The curves in (b) belong to the conventional adiabatic
or diagonal representation of H, l for the same system. They are
characterized by their strict adherence to the noncrossing rule,
so that the former AB„curve is now fragmented and prevented
from either reaching or entering the continuum.

is made stationary. (As in any adiabatic definition,
the internuclear distance R appears parametrically in
all quantities. )

Having defined P„, a new projection operator Q onto

r T. F. O' Malley, Phys. Rev. 150, 14 (1966).
The same approach is also in large part implicit in the earlier

treatment of J. N. Bardsley, A. Herzenberg, and F. Mandl, in
Atomic Collision Processes, edited by M. R. C. McDowell (North-
Holland Publishing Company, Amsterdam, 1964), p. 415. How-
ever, the explicit approach of these authors does not lend itself
to generalization in this direction.

9 See for example, J. C. Y. Chen, J. Chem. Phys. 40, 3513
(1964).

and a special decomposition or representation of the
Hamiltonian based on them, that the problem of dis-
sociative attachment (e+AB~AB„=&A +B, closely
related to dissociative recombination) has recently been
successfully treated in a fully quantitative way. ~ 8 It
is the purpose of this paper to define a similar represen-
tation of H, ~ in the discrete as well as the continuous
region of Fig. 1(a), in order to put the problem of
slow heavy-particle collisions on a similar firm footing,
so that it may be discussed as simply as possible
and with a minimum of approximations.

The definition of the resonance or quasistationary
state for the auto-ionizing electronic states of mole-
cules is discussed in some detail in Ref. 7 as well as
elsewhere. ' For the present purpose, the main features
are as follows: The electronic wave function P„of the
resonant state is artificially restricted in some way to
a portion of Hilbert space by a projection operator Q',
while its energy eigenvalue
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this state, together with its orthogonal complement I',
are now constructed by

P=1—Q. (2)

These new operators P and Q may be used to exhibit
the electronic Hamiltonian in the form of a nondiagonal
matrixr (which will form the basis of the remaining
discussion of this section) as follows:

QH. tQ QH, iP

PH, tQ PH, tP
(3)

(The wave function operated on by H, t then becomes
formally a vectorlike quantity with components Qp =p,
and PP.) The eigenstates of the operator PH, tP, with
wave functions P~,; (s=1, 2, ~ ~ ~ ), satisfy the equation

PH,re„„=e~„(R)@„,;, (4)

H) —— V2 0 0 (5)

V3 0 0

where

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

(6)

The V; which are the close analogs of V- of Ref. 7 couple

' Note that it is just this constraint of orthogonality which
allows these states to cross the curve AB,. Since the derivation of
the noncrossing rule assumes that the states discussed belong to
the same Hamiltonian, it therefore does not hold between the
states of PH, lP and those of„QH,~Q.

which may also be written in the same form as (1) for
the eigenvalues of QHQ. These states are usually called
potential scattering states, since they normally com-
prise the electronic continuum (scattering) states,
with, however, the constraint imposed by I' of orthog-
onality to the state P„.However, for the purpose of the
present paper an important and necessary generaliza-
tion must be made. The definitions (1) through (4)
are here applied consistently for all R, even in the dis-
crete region outside the shaded area of Fig. 1(a). As
a result, the spectrum of I'H, ~I', i.e., the so-called
"potential scattering states, " now includes not only
the electronic continuum but also all of the discrete
Rydberg states which are crossed by the curve AB„
to whose wave function P, they are constrained to be
orthogonal. "

The eigenstates @~,; of the operator PH, tP from
Eq. (4) may now be used to write the representation
Eq. (3) of H, t in the more explicit form

Vg Vg V3 ~ ~ ~

all states only to P„ the orthogonal state or states whose
potential curve crosses theirs. ""'

Consider Eq. (5) which plays a central role in the
theory developed in this paper. It exhibits ae exact
nondiagonal representation of H, t, the electronic Hamil-
tonian. Since the representation (5) is adiabatic (as
is any representation of H, &) but is based on the quasi-
stationary states of this operator, it is called the glusi-
adhabatic representations to distinguish it from the adia-
batic representation used by the chemists, which is the
exact di agon@/ representation.

Now since LI,& is only a part of the full Hamiltonian
H for the molecular system, there is now law of physics
which says that it must be diagonal. "The analysis of
the II,& problem simply furnishes us with the rum ma-
tersal for solving the total physical problem (in which
the motion of the nuclei is always important). We
may therefore prepare this raw material either in the
form of a diagonal or nondiagonal representation,
whichever best lends itself to solving the physical
problem.

As was mentioned above, the nondiagonal quasi-
adiabatic representation (3) as used in Ref. 7 had the
remarkable eGect of rendering the dissociative attach-
ment problem not only tractable but even fairly simple.
Upon reflection it is clear why the representation (3)
lends itself so well to the analysis of this reaction while
the diagonal adiabatic representation would not. The
reason is that electron attachment involves a change
in electronic state. As it turned out, it was precisely
the off-diagonal matrix elements PH, ~Q which gave the
probability amplitude for the essential electronic tran-
sition. "It is for just this reason, namely, the presence
of the o6-diagonal matrix elements V; connecting the
diGerent electronic states, that the presently de6ned

"It has been assumed that with the removal of @„none of
the states left in P space tend to cross as did @„in Fig. 1(b). In
order to be perfectly general, if this situation should develop
in an unusual case, then a second p, would have to be defined in P
space and the above procedure repeated, etc.'"Y. Demkov PDolk. Akad. Nauk SSSR 166, 1076 (1966)
(English transl. : Soviet Phys. —Doklady 11, 138 (1966))g has
represented the ionic and covalent molecular states in a form
identical to Eq. (5).

'~ This important fact regarding molecular states seems to have
been overlooked generally. For an exception, see W. Lichten, Phys.
Rev. 131, 229 (1963).Lichten's nondiagonal representation was an
approximate one, based on single configuration molecular orbitals,
but had a number of qualitative features in common with the
present exact one. Quantitatively, however, even if one considers
these single orbital states as the beginning of a full representation,
the large magnitude of their oG-diagonal matrix elements V;,
which are sometimes as great as several eV, would unfortunately
rule out their use in a practical way for the purpose of the present
paper. In a very recent paper, R. D. Levine [J.Chem. Phys. 46,
331 (196/) ) seems also to have employed this single con6guration
representation for a purpose similar to that of this paper."Conversely, it is clear why the permanent states of molecules,
which involve no electronic transition (as opposed to collisions or
reactions), are best described by the adiabatic representation, just
because it is diagonal. It is presumably for this reason that the
adiabatic representation has found such a favor among the spec-
troscopists and chemists, while being mainly a source of embar-
rassment to collision theorists.
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nondiagonal representation (5) is chosen in the next
section to describe the collision problem, which by
dehnition is concerned with transitions between elec-
tronic states.

Since the quasiadiabatic representation of H, &, de-
fined by Eqs. (1)-(5) applied for all R, is determined
by the projection operator Q', this operator deserves
further consideration before passing on to Sec. III.
The Q' which we have assumed and which was used in
defining the curves of Fig. 1(a) was that of Feshbach"
or preferably some simpli6ed version' of this projec-
tion operator, which describes a state in which an elec-
tron is bound to an excited core."A good example in
the literature of empirically determined molecular
states which clearly correspond to P, as determined by
Feshbach's Q', rather than to states of the adiabatic
representation, are the states of He2 known as B core
states. ' These have been interpreted as composed
of an electron bound to the excited B state of the He2+
core, so that as pointed out in Ref. 7 they directly
satisfy Feshbach's definition. Just as the AB„curve
of Fig. 1(a), these J3 core curves are entirely un-
aGected by the noncrossing rule in that they cut
through the electronic continuum' at small R and then
cross a complete Rydberg series. "

Of course there is a certain amount of Qexibility in
the choice of Q', and in fact any artificial constraint on
the wave function which leads to a physically meaning-
ful and useful state may legitimately be used. In ad-
dition to the core-excited states of Feshbach, there is
at least one other obvious choice of the operator Q'
which will sometimes be needed, namely, one which
vrould explicitly de6ne an ionic state for all R."A set
of potential curves for a representation based on such
an ionic state is shown schematically in Fig. 2. To
complicate matters a little, this representation might

'4See Ref. 6. For an application of this operator to a simple
system (H and He) see T. F. O' Malley and S. Geltman, Phys.
Rev. 137, A1344 (1965). H. S. Taylor and J. K. Williams [J.
Chem. Phys. 42, 4063 (1965)jeffectively use it for a more complex
system (Hs ).

"See for example L. Lipsky and A. Russek, Phys. Rev. 142,
59 (1966).

'6 It should be mentioned that the more general Kapur-Peierls
de6nition of a resonance as used in Ref. 8 has been deliberately
excluded. The main reason for this is that the Kapur-Peierls states
can easily be shown to reduce, in the discrete region of Fig. j., to
ordinary bound states of the adiabatic or diagonal representation
to B,b and so are not interesting in the present context.

'r R. S. Mulliken, Phys. Rev. 136, A962 (1964).
' This behavior as portrayed in Ref. 17 is not completely one

hundred percent consistent. As drawn there, each of the curves
mentioned avoids crossing the lowest state in the Rydberg series,
although they cross all higher ones. It should be pointed out here
that an apparent discrepancy between Ref. 17 and the experi-
mental result of W. W. Robertson LJ. Chem. Phys. 42, 2064
(1965)g disappears when one recognizes that 8 core states
roperly belong to a nondiagonal representation of H, 1 and there-
ore need not avoid crossing even the lowest Rydberg states of

the same symmetry.
'The atomic orbital approximation for such a projection op-

erator has been in use for a long time. See for example, L. Pauling,
J.Am. Chem. Soc. 54, 988 (1932).
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FIG. 2. Potential-energy curves shown schematically for the
quasiadiabatic electronic states of the fictitious molecular system
CD. These states (all oi a particular symmetry) belong to a
nondiagonal representation of H, & based on the quasistationary
sonic state denoted CD, As in .Fig. 1(a), the vertical markers are
drawn equal to twice the o6-diagonal coupling terms V; at the
crossings.

arise within the P space described by Fig. 1(a) (see
Ref. 11).Finally, wherever there is a choice between
Q"s which differ only in complexity, perhaps the same
criterion should be used as for resonant states, namely
that Q should be as simple as possible without, how-

ever, allowing the V; to become large.

~=@+W=~,1-,(R)+Z ~, ;f. ;(R.), . (7)

where the sum over i includes integration over the
electronic continuum as well. Substituting (7) into
the Schrodinger equation for the full Hamiltonian
H=H, i+Tran (Tn is the nuclear kinetic-energy opera-
tor), the resulting equations may first be written
without approximation in the familiar symbolic form

P (B—E)PP =—PBQk,

Q(~ E)9P= Q»~, --
just as in Ref. 7.

%e now make just one approximation, the Born-
Oppersheimer cpproximutiors, by neglecting T& operat-
ing on all the electronic functions P;. This is equiv-
alent to the principal approximations made in Sec. 5
of Ref. 7 for the dissociative attachment problem. It
is also equivalent to the approximations normally
made in studying the stationary states of molecules,
neither more nor less approximate. With this one ap-
proximation then we get in place of Eq. (8) the coupled
equations

(Tg+e„E)1„=—Q V;f'—i, , ;,

(T~+e~. E)4,'= V'f. — —
where i = 1, 2, ~ ~ ~ and the V; are given by Eq. (6) .

IH. SOLUTION OF THE COLLISION PROBLEM

Given the nondiagonal quasiadiabatic representa-
tion of H,~, dered in the last section, it is now rela-
tively straightforward to expand the total wave func-
tion P in the complete set of electronic wave functions
Q„and P~; which are the basis of this representation;
thus
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The coupled equations (9) for the nuclear wave
functions f'; are the desired result of the present paper.
They couple only those states whose quasiadiabatic
potential curves cross. In their derivation they involve
only those approximations which are customarily made
in analyzing the stationary states of molecules, namely
the Born-Oppenheimer approximation, and also the re-
lated assumption of small internuclear velocities
(e((1 a.u.) in that the eGects of the Coriolis force""
and of electron momentum transfer (where it is ap-
propriate) have not been considered. As a result of
this, an accuracy is expected for the solutions of (9)
which is comparable to that for the molecular-station-
ary-state problem. "

It might be instructive to compare the present re-
sults, Eq. (9), with those that have occasionally been
obtained when the states of the diagonal adiabatic
representation have been used as an expansion basis
in place of Eq. (7) . In that case a set of formal coupled
equations is obtained which are equivalent to the
exact Eqs. (8). The trouble with the equations cou-
pling the adiabatic states comes when one looks for
some good approximation to render the equations tract-
able. If the minimal Born-Oppenheimer approximation
is made as was done to derive (9), the equations become
completely uncoupled because of the absence of off-
diagonal matrix elements in B,~, and one then loses all
the physics. It is for this reason that the coupled equa-
tions for the adiabatic states have always remained
merely formal relations which have never been of any
use in actual collision problems. The present result
therefore differs from that obtained with adiabatic
states precisely in the explicit appearance in Eqs. (9)
of the electronic coupling terms V; which link any two
crossing electronic states. LIncidentally, if one should
ever wish to drop the Born-Oppenheimer approxima-
tion in using the present formalism it would be a
straightforward matter to go back to the exact Eq. (8)
and include all the nonadiabatic coupling. )

As in Ref. 7, the format solutioe of the collision equa-
tions (9) may be written by examining the asymptotic
behavior of the wave functions. (The same normaliza-
tion is assumed for all continuum functions as in Ref. 7.)
If r is the incident channel, the transition matrix ele-
ment T;,„may be expressed as

' W. R. Thorson, J. Chem. Phys. 39, 1431 (1963)."The neglect of the Coriolis force shows up in the fact that the
U;=U;(E) are scalars, exactly as in the molecular-structure
problem. Note that the corresponding (but more complicated)
quantities V, of Eq. (5.3) of Ref. 7 were also said (improperly in
that case) to be scalars, resulting in a prediction of isotropic cross
sections for the attachment problem. This is presently being
corrected.

"Note also that the electronic quantities e; and V; in (9)
may be calculated by essentially the same methods as are used for
the adiabatic potential curves. An interesting practical conse-
quence of this is that the computation of these quantities may
reasonably be left to those who are expert at such calculations
leaving collision theorists free to devote their efforts to the coupled
Eqs. (9), a proper collision problem.

and
F=2 Z IVt,')(t V;I.

j oyen
(13)

6 and I' are the level shift and width operators, analo-
gous to but diferent in detail (especially I') from those
of Ref. 7. The difference results from the fact that the
electron channel was open there while here it is con-
sidered closed. The subscript e means vibrational state
(both discrete and continuous). The fP in Eq. (13)
have no subscript v because this nuclear state is neces-
sarily in the continuum since F has contributions only
from open channels. By using the semiclassical nature
of the f's, 6 and F may be further simplified of course,
but this will not be developed here.

It is interesting to contemplate the complex, energy-
dependent, nonlocal optical potential operating on the
wave function f„ in Eq. (11).The real part, e,+6, is
an effective energy-dependent potential energy curve
for motion in the state r when coupled to the states j.
It has sometimes been said that 6nding such an energy-
dependent potential curve would be one desirable al-
ternative to the adiabatic potential curves. For those
who see the problem that way, this is the desired energy-
dependent curve. The imaginary part ——,

' iF is, of
course, a measure of the transition probability from r
to each of the states j.Although a full analysis of this
term would require the exact solution of Eq. (11) or
(9), its first-order matrix element, (f,s I

F
I
1;s) is

easily evaluated for a single partial wave. It is equal,
to within a normalization factor, to g;p&z( j), where
I'r,z (j ) =4'VP/5ehF is the first-order probability,
from the Landau-Zener theory, ' of a transition from
the curve r to j.

For completeness, a transition from the state i to j
in P space may also be expressed in a form similar in
appearance to Eq. (10) as

(14)

where now, however, f,+ satisfies the inhomogeneols
equation, coupling it to the incident channel i,

(To,+c„+0 ,'i F E)f'„+= —V;f;.s+. —-—(15)

Equations (14) and (15) are analogous to Eq. (5.9a)
of Ref. 7, which described vibrational excitation.

where the f" are the homogeneous solutions of Eq. (9)
(neglecting the V s), and the superscript + ( —)
means a plane plus outgoing (incoming) wave. The
equation satisfied by f„+ may be written by using
the standard expansion for the Green's functions
Lg;=(E—T—sq+i8) ' as 8-+Oj, in a form closely
analogous to Eq. (4.15) of Ref. 2 with a complex po-
tential as

(Tir+e„+a ,'—iI—' E—)1„+=0,
where
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An important practical consideration in using Eq. (9)
or the equivalent formal expressions (11), (15), etc.
is the number of states which are eGectively coupled.
Although the number of equations in (9) is infinite,
it is a known consequence of the semiclassical nature
of the wave functions that actual transitions can only
occur between states whose curves cross either below
or very near the energy E. This follows from two facts:
(a) that a nuclear wave function (say t„) vanishes
quite rapidly in the classically inaccessible region
beyond its turning point, and (b) a consequence of the
Frank-Condon principle which makes transitions prob-
able only in the immediate vicinity of a crossing point
(formerly called "pseudocrossing point"). So if the
crossing point is well above E then both of the wave
functions will be vanishingly small there, and so there-
fore will be the transition probability.

However, while transitions to these higher states
have a vanishingly small probability, the situation is
somewhat different for the level shift 6 of Eq. (12)
induced by these states. This vanishes more slowly as
the diGerence in energy increases. Although the mag-
nitude of V; should normally be such as to make the
contribution of the higher states negligible anyway,
the following procedure allows it to be considered ex-
plicitly in the simplest way.

In order to take advantage of the effective finiteness
of the number of coupled equations in (9), let J be the
number of the states AB„„whose curves cross that of
AB„" either below or very near the energy E. It is
then trivial to eliminate the remaining states formally
from Eqs. (9) in favor of g, by writing

f'„,;=(E T e;) 'V f, —for —g)J.
Substituting this into (9) gives the finite set of coupled
equations

( j=1, 2, ~ ~ ~ J), (16)

where

Equations (16) are fully equivalent to the infinite
set (9), but emphasize the practical aspect that only
7+1 states are effectively coupled while the higher
states cause at most a level shift. 6' may be simplified.
Remembering that the Green's functions in 6' act on
V,f„we make a standard semiclassical approximation,
related to the Born—Oppenheimer approximation, that
P; varies slowly compared to t', Then using E. q. (11)
satisfied by f„, the partial level shift b,' becomes

(17)

(Tii+e,+6' E)f,=——Vit v,

(Tri+e„E)f'„=——Vif'„. (18)

These are identical in form with the coupled equations
which form the basis of the Landau —Zener theory. '
The only diGerence is that now the electronic part of
the problem has been treated honestly and without
approximation, so that instead of unde6ned "zeroth-
order" states or crude atomic-orbital approximations,
there appear instead the electronic quantities e„, e~,&, V&,

and 6', defined by the exact quasiadiabatic representa-
tion (5) of H, i. Work presently being done on the two-
state problem should therefore rest on a Armer founda-
tion than heretofore when viewed as the solution of
Eq. (18).

The energy E2 of Fig. 1(a) corresponds to a different
kind of two-state problem in which one of the two
channels is closed. Depending on where one starts, the
physical problem is either that of predissociation or
resonant elastic scattering. In the latter case, it should
be pointed out that each one of the vibrational levels
gii' of the closed channel state AB„,i Lthe one marked
A+8* in Fig. 1(a)j constitutes a separate resonance
level, so that the present problem, Eq. (18), then be-
comes simply a particular realization, for each partial
wave, of the multilevel resonant scattering problem
which has been worked out in detail in the literature. '4

This is most readily exhibited by considering the ap-
propriate two-state form of Eq. (11), which becomes,

~' P. G. Burke and D. D. McVicar, Proc. Phys. Soc. (London)
8~, 989 (~965).

"See for example, U. Fano LPhya. Rev. 124, 1866 (1961lg,
where this problem is worked out in Sec. V. The unde6ned quanti-
ties @„, f@, V@„of that paper are readily identi6ed with the
quantities appearing in the homogeneous solutions of the present
Eqs. (18), and the matrix elements of V1 taken between these
homogeneous states.

where e„=e,+6—2iF. Experience has shown" that the
magnitude of level shifts for higher Rydberg states
falls off very rapidly (apparently as j ' if j is the prin-
cipal Rydberg quantum number) . Accordingly, we
expect that 6' will normally be negligible since the
lowest one or more states are not included in it. In ad-
dition, in evaluating (17) it is expected that the ap-
proximation ~„e„should be satisfactory. If it is not,
the state in question should probably also be included
in the set of coupled equations (16).

Two-State Problem

Equations (16) (the final result of the present paper)
represent the heavy-particle collision problem eBec-
tively as a 6nite set of coupled two-body equations,
with the nlmber determined by the number of curve
crossings which occur below or very near to the energy
E. The simplest and most immediately interesting
special case of Eqs. (16) corresponds to E~ of Fig. 1(a) .
This determines a t7oo state pr-oblem (J=1) and Eqs.
(16) reduce to two coupled equations
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using (17) with 7=1,

I
2'n+e, +&'+Q

I Vgi..")(&—%,.) '

X(f,.V, I-S3;+=0. (19)

Equation (19) exhibits the multilevel resonance struc-
ture of the problem perhaps most clearly.

One-State Problem

If the energy is reduced still further so that it goes
well below the lowest crossing point in Fig. 1(a), an
interesting limiting case, the one state -prob1em, occurs.
In this case, it is still legitimate to start from Eqs.
(18) I Eq. (9) would do as well). From (18), we derive
this time the equation for f'„(which now describes a
low-lying vibrational state), with the same considera-
tions used above, and find

ETg+er Vi(e, ——e„) 'Vi Effr =0—. (20)

With Eq. (20) for the one-state problem, we have now
recovered the standard. equation for the low-lying vi-
brational states of a molecular level1 The potential in
(20) is just a roundabout way of writing the lowest
potential energy curve in the usual diagonal repre-
sentation. The present formalism, therefore, as em-
bodied in Eqs. (16), is powerful enough to include as
a special case the equations resulting from the diagonal
representation of H, & whenever the physics is such
(i.e., a one-state situation), that this representation is
the appropriate one, in addition to describing electronic
transitions in the simplest way.

Finally, the 3-, 4-, and n-state problems generated
by Eq. (16) in the appropriate energy ranges may be
handled by a direct extension of the methods used
for the two-state problem, either by direct numerical
integration, " which is a possible although perhaps
clumsy procedure, or by an extension of the semi-
classical methods of Landau, Zener, and Stueckel-
berg, ' which is being actively pursued by a number of
workers. "

IV. SUMMARY

In the present paper, a large class of slow atomic-
collision processes, those involving a change in mo-
lecular electronic state and resulting in excitation,
de-excitation, scattering, or various kinds of electron
transfer, has been reduced to a set of two or more
"See D. R. Bates, H. C. Johnston, and I. Stewart, Proc. Phys.

Soc. (London) 84, 517 {1964);also W. D. Ellison and S. Borowitz,
in Atorlic Collision Processes, edited by M. R. C. McDowell
(North-Holland Publishing Company, Amsterdam, 1964), p. 790.

"See, for example, W. R. Thorson and S. A. Boorstein in
Proceedings of the Fourth International Atomic Collisions Con-
ference (Science Bookcrafters, Inc. , Hastings, New York, 1965),
p. 218; also V. K. Bykovskii, E. E. Nikitin, and M. Ya
Ovchinnikova, Zh. Eksperim. i Teor. Fiz. 4'7, 750 (1964) LEnglish
transl. :Soviet Phys. —JETP. 20, 500 (1965)$.

coupled two-body equations (16). The approximation
made in reducing the electronic part of the problem was
simply the Born-Oppenheimer approximation together
with that of small velocities (v«1 a.u.) .

In order to eGect this reduction to coupled equations,
it was necessary to introduce an exact nondiagonal
representation, the quasiadiabatic representation, of
the electronic Hamiltonian H, ~, whose states among
other things are not subject to the noncrossing rule.
This representation is determined by the quasistation-
ary state AB„(or AB„+, etc.) defined with the help
of a projection operator Q'. This latter might be either
Feshbach's projection onto the excited states of the
target molecule, or else one that somehow specifies
a particular distribution of charges so that for example
AB„+-+A+B+ or AB;+A +B+.

Since such a nondiagonal representation of H, ~ seems
to be required in order to treat collision processes, it is
believed that it is just as important and as basic in its
own right as is the more familiar diagonal adiabatic
representation. Further, since its computation is more
or less equivalent to that of the adiabatic electronic
states, an attractive division of labor suggests itself
when the present formulation of the problem is em-
ployed, with the electronic quantities of Eq. (5) being
calculated most appropriately by molecular structure
specialists while the resulting coupled equations (16)
are analyzed and solved by collision theorists.

Quantitative application of this approach to certain
charge-changing collisions is presently being studied.

Pote added inproof A, n intere. sting observation has
been made about the large R behavior of quasista-
tionary states (such as AB„of Fig. 1) for molecular
systems. It has been pointed out

I
M. Mittleman and

J. C. Y. Chen (private communication)) that, for cer-
tain choices of Q', the asymptotic value of the energy
e„(R) may not be precisely equal to the "physical"
energy of the two separated atoms.

Because this observation might be interpreted as an
objection to the present theory, in which such states
may play a prominent role, it is important to point out
that this energy difference, where it occurs, is simply
the familiar level shift d, , as dehned in Eq. (12) Lsee
also Eqs. (16) and (17)j.The occurrence of level shifts
is inseparable in general from the use of quasistationary
states, and since in the present case their numerical
values follow as a direct by-product of solving the
coupled equations (16), it should be emphasized that
the existence of level shifts presents no special difIiculty
for the present theory, either in principle or in practice.
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