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2'."'(s) ~ e(s) i&0 (r~) —(p/es)pA(r')}r-(s) (81)

where e(i), r (i), p, are the spin, isospin, and mo-
mentum operators, respectively, of the ith nucleon, and
g (r,) is the wave function of the pion, in the initial
state n, at the position of the same nucleon.

To a 6rst approximation, for a pion bound in an
atomic state to a nucleus of small change Z, the wave
function within the nucleus is given by

(82)

This is equivalent to neglecting the pion momentum.
Now consider the operator T for the pion in an

s state (n=e, o,o) in the approximation (82).

2s e(1) Pre (1)+e(2) Psr (2),

which can also be written

2'Ber sr{(e(1)+e(2))(r (1)—v' (2))+(e(1)—e(2))
X(r (1)+r (2))} (pi—ps)+x4((e(1)+e(2))
X(r-(1)+r-(2))+(e(1)-e(2))

X(r (1)—r (2))} (pi+ps). (83)

It is easily veri6ed. that the first term of (83) gives the
selection rules (4.2a), while the second term gives
(4.2b). For nucleons moving slowly in the target, we
expect the nuclear matrix elements to satisfy

(f I yi —ys I s)»(fl Pi+Ps ( s), (84)

which gives the general selection rule (4.1). This is in
part due to the 6nal-state kinematics (IC((k) and in
part to the role of the two-nucleon correlation, which
enhances the transfer of momentum in the relative co-
ordinates, but not, presumably, in the c.m. coordinates.

A similar argument can be constructed for a p-state
pion, which leads to the rules (4.3).
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Hartree-Pock calculations have been performed previously on the binding energy of closed-shell nuclei
using Tabakin's separable nonlocal two-nucleon potential. In this paper, we report on an evaluation of the
second-order correction to the binding energy of 0'6 and Ca'. Including the second-order terms, we obtain
binding energies of 6.7 and 10.9 MeV, respectively, for these two nuclei.

I. INTRODUCTION

~ 'Wo distinct kinds of two-nucleon potentials have
been used in recent years in nuclear structure

studies. The Yale potential of Lassila et al. ' and the
Hamada-Johnston potentiaP belong to the 6rst cate-
gory. These potentials were constructed to 6t the
properties of the deuteron and two-nucleon scattering
data over a large energy range; they both contain a
repulsive hard core and hence give rise to two-nucleon
wave functions that are very strongly correlated at a
small separation distance. In order to use these poten-
tials in nuclear-structure work, one has to go through
the painstaking process of evaluating the effective
matrix elements (i.e., the E-matrix elements of 8rueck-
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ner's many-body theory'). The problems that this kind
of calculation encounters for 6nite nuclei have been
overcome in recent years and the eGective matrix ele-
ments for the harmonic-oscillator shell-model states
are now available from the work of Kuo and Brown, 4

Becker and McKellar, ' and Shakin et al. ' These matrix
elements have been used in conventional spectroscopic
calculations in Ref. 4 and by Lawson et al.' and
Waghmare and Shakin. ' Successful results have also
been obtained'" in Hartree-Fock (HF) calculations
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with the effective matrix elements of the Yale potential;
in particular, the binding energy per nucleon is found
to be nearly of the right magnitude.

High-energy experiments other than nucleon-nucleon
scattering indicate that short-range correlations actu-
ally exist between a pair of nucleons. "Therefore, Yale
or the Hamada-Johnston potentials may be called
realistic in the sense that they do give rise to such
correlations. It must be mentioned, however, that these
correlations do not necessarily imply an irrfreite core.
The possibility of replacing the hard core by a softer
one, or by a nonlocal repulsion, is of genuine interest,
has been investigated, " and is under investigation at
the present time.

The second kind of two-nucleon potential has been
designed from the very beginning to serve this purpose.
To this category belong the velocity-dependent poten-
tials of Razavy et al. and Greco, and the separable
-nonlocal potential of Tabakin. "The last-named author
matched the 5-, I'-, and D-state nucleon-nucleon phase
parameters up to 320 MeV with a properly defined set
of separable potentials having small off-energy-shell
matrix elements. Although the quality of the fit was
not as good as that obtained in Refs. 1 and 2. there is
scope for further improvement. '4 What is important,
however, is the demonstration of the fact that the
nucleon-nucleon data can be fairly well reproduced
without generating strong short-range correlations in
the two-nucleon wave function. The main purpose
behind the design of such an effective potential is that
its separable nature makes an application to nuclear
structure calculations a fairly simple task.

HF calculations have been performed" for 0" and
Ca4' using the Tabakin potential. The binding energy
per nucleon obtained for these two nuclei are low—
2.41 and 3.74 MeV, respectively. It would therefore
seem that the relative advantage of the Tabakin po-
tential over the E-matrix elements of the Yale potential
is marred by its inadequacy in producing the right
binding energy. This conclusion, however, is not con-
sistent for the following reason: since the E-matrix
already contains the eGect of interaction between a
pair of nucleons to all possible orders, one should calcu-
late the higher-order contributions (at least the second-
order contribution) of the Tabakin potential before
making the comparison.

In the present work, we have used the HF wave func-
tions for the Tabakin potential, calculated in Ref. 15,

"J.I. Friedman, H. W. Kendal, and P. A. M. Gram, Phys.
Rev. 120, 992 (1960)."C. Bressel, A. K. Kerman, and E. Lomon, Bull. Am. Phys.
Soc. 10, 584 (1965).

'~ M. Razavy, G. Field, and J. S. Levinger, Phys. Rev. 125,
269 (1962);A. M. Green, Nucl. Phys. 47, 671 (1963);F. Tabakin,
Ann. Phys. (N.Y.) 30, 51 (1964).

'4 M. Bolsterli and J. MacKensie (private communication) have
shown that better Gts can indeed be obtained."A. K. Kerman, J.P. Svenne, and F. M. H. Villars, Phys. Rev.
,.147, 710 .(1966). ."J.Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).

to evaluate the second-order contribution to the binding
energy. The principle we follow is based on Goldstone's
linked-cluster perturbation expansion" in terms of the
two-nucleon potential e. In his original work, Tabakin'
applied the potential to calculate the binding energy of

- infinite nuclear matter and found that the perturbation
expansion in terms of e converges fairly rapidly. Our
calculations for finite nuclei also corroborate this
conclusion.

It is well known' that the HF potential can be
defined in an unambiguous manner w'ithin the frame-
work of the linked-cluster expansion in terms of e,
provided the series converges. The use of the HF
single-particle energies (in the energy denominators)
and wave function in the evaluation of a perturbation
theory diagram automatically takes care of all diagrams
of the same type having any number of self-energy
insertions. This is because a self-energy insertion repre-
sents the interaction of a particle with the particles in
the Fermi sea (i.e., the HF ground state), and by the
definition of the HF potential this contribution is
already present in the energy of the single particle.

The principle behind the HF calculation with the
Tabakin potential, and its second-order correction de-
scribed in this paper, therefore, has a firm foundation
in the GoMstone theory which seems to converge for the
Tabakin potential. The rearrangement of the linked-
cluster expansion, leading to the E-matrix expansion
of Brueckner, gives rise to certain formal difhculties in
the definition of the HF potential V. The usual pro-
cedure, suggested by Bethe," and followed in Refs. 9
and 10, substitutes the E-matrix elements instead of
the matrix elements of e in defining the quantity V.
The correct E-matrix elements are dependent on the
single-particle states themselves and hence the minimi-
zation of the ground-state energy does no longer lead
to the simple HF equation; there are extra terms in the
equation coming from the above-mentioned state de-
pendence. On the other hand, if one tries to bypass this

difhculty by using an approximate state-independent
Hermitian E (this was done in Refs. 9 and 10) in the
theory, then one is left with corrections to the energy
that are quite involved and have not been estimated
so far.

The formulas used in our second-order calculation
are derived in Sec. II. Numerical results are presented
in Sec. III. Section IV contains concluding remarks.

II. THE SECOHD-ORDER FORMULAS

I et tn, n represent occupied single-particle states in
the HF determinant. Theo a, b are any two unoccupied
single-particle states above the Fermi surface. The HF
energies of these states will be denoted by ~ with appro-
priate subscripts. The second-order contribution to the

'r H. A. Bethe, Phys. Rev. 103, 1353 (1956).
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ground-state energy is then given by

~ ..~
1
(mrtl vlab), ls

g(s) =
m&a e&b as+ Sb—e —e„

The subscript A denotes that the matrix element is
taken with respect to antisymmetric two-body states,
i.e., it consists of a direct and an exchange term:

(~«l vl ab)~=(m~ —Nml vl ab)

=V2(mob(v(ab). (2)

According to our notation, the state with a rounded
bracket is antisymmetric, while that with a pointed
bra or ket notation is an ordinary product of two-
particle wave functions. That is,

and
(mrs) = (1/V2)((m(1)rt(2)) —(11(1)m(2))}, (3a)

lab) = (a(1)b(2)). (3b)

With this notation, and the result (2), we obtain from
Eq. (1) -- (mn(v(ab)(ab (

v lmn)
jV(s)—

m&n a, b ea+ Sb em, Sn

O.i0

008—

Our purpose is to evaluate this expression using the
HF wave functions and energies calculated. in Ref. 1.5.

Although a straightforward computation of the ex-
pression (4) is not difficult, in this work we have fol-
lowed an approximation for the intermediate states

l ab) which makes the computation much simpler. This
approximation has been used by other authors4 and
consists of replacing the HF states (a,b) by plane-wave

states (kt, ks) with kt, ks larger than the Fermi mo-
mentum kj. The amplitude with which v scatters the
Fermi-sea particles m, e to unoccupied states is strongly
peaked for states a, b which are somewhat above the
Fermi surface (see Fig. 1). Therefore, the plane-wave
approximation we use for these states is well justi6ed
and expected to lead to small errors.

Each of the HF states m, e is given in terms of
harmonic-oscillator basis states l(x) as follows:

(m) =Q c (")(n) .

The coeKcients c '"' are known. For the erst-order
calculation of the potential energy required in the HF
work. , one needs the matrix elements (mn(v(mts). These
are evaluated by expanding the product of two har-
Ilmnic-oscillator states of the individual particles, with
the help of Moshinsky brackets, "in terms of oscillator
wave function (NL) and (Nl), for the center of mass
(c.rn. ) and relative coordinates, R and r, respectively.
The result is a linear sum of matrix elements of e con-
necting two states of the type (NL, (nLSJ): clDR, TM&).
Here S and T are the two-body spin and isospin quan-
tum numbers, J is obtained by coupling l with S, while
the total two-nucleon angular momentum (i is the
result of coupling I.with J; and 5K and 3f~ are projec-
tion quantum numbers corresponding to cl and T,
respectively. A central potential gives matrix elements
connecting two different values of n with the conserva-
tion of all other quantum nuxnbers, while a noncentral
potential can change l.

The procedure for evaluating the second-order matrix
element is exactly similar. Obviously, one obtains the
same kind of linear combination of matrix elements
connecting the states (NL, (nlSJ): el', TMr) as in the
6rst-order calculation. The operator, however, is dif-
ferent; instead of the operator e we now have V('&,

given by
unooo v

l ab)(ab l v
p'(s) —Q

e b e~+Sb S~—e~—(6)

0C

o 0.04—
C

H

0.02

0
lP 20 30, 40

it in tjnitS Of 0.075 ftbI

which can, in general, connect states of different E,
J, e, andi.

According to earlier statements, we shall replace the
HF states (ab) by the plane-wave states (kt, ks)t which
can be immediately transformed to (K,k) where K, k
are, respectively, the c.m. and relative momenta. The
restriction that a, b be unoccupied states above the
Fermi sea requires that k&, k2 be larger than the Fermi
momentum kp. This, in turn, can be taken into account,
while working in terms of K and k, by the Pauli-
principle operator Q(K,k,kb). An angle-averaged ap-
proximation is fairly good for this operator (cf. Kuo

FIG. 1. Plot of the k integrand in Eq. (13) for the attractive part
of Tabakin s ~S& potential (X=o, S=J=T=1, andi=j =1).

T. A. Brody and M. Moshinsky, Tables of Trams onea4iow
Brackets (Monograiias del Institute de Fisica, Mexico, 960}.



162 BIN DING ENERGY OF CLOSE 0 —SHELL NUCLEI

Vt2'= d'K d'k Q(K,k,k p)
(2~)6

e~ K,k}{K,k(ex-, (g)
(k'/'2nz) (2k'+-'K')+ &

where m is the nucleon mass. We have to evaluate the
matrix element of this operator betvreen the states

~
NL, (nlsJ):get, TM&}and

~
1PL', (n'l'S J):gm, TM&}.

Since the potential e does not depend on the c.m.
coordinate, we can easily work out the c.m. -dependent
part of the matrix element. Ke have

(ELM ~K}= d'R (R~L(R)F ~L'(A)e'* a'
vr here

=47riLY~L'(k)(SL~gL} ) (9a)

yL~&.}= I .(R)&.(KR)R dR,

= (—1)"(m/2)'r2(R~L(E) . (9b)

and Brown' ), and is given by

Q(E;k,k p) ~0 if k'+)E' &k p'

if k—~E&k&,- {k'+LE' kp—')/Ek otherwise.

%'e shall further simplify the calculation by using an
approximate average value 6 for the unperturbed pair
energy (e +e„).Including the normalization constant
(2w) ar' of a plane-wave state explicitly, we get

tions of matrix elements connecting the states ~FL,
(«SJ):/5K, TMr}, that occur in the two cases, are
exactly identical; only the operators are diGerent.

To complete the derivations of the second-order
result, vre now need the expression for the Tabakin
potential e, vrhich can be vrritten as follovrs:

g ~ grszr &@lsJM,TMr}
)l'SJl' i =1
3fMz

X (gl'S JT 'l'SJM, TMr
~
. (11)

For each state specified by SJM, TMp the potential
consists, in general, of two terms (i=1, 2). The values
of l and l' are consistent with 5, J, and parity of the
state; that is, for S=O and S=1, parity= (—1)~, we
have l=ir= J; while for S=1 and parity= —(—1)~
each of / and L' can be equal to J~1.It is clear that in
coordinate space the potential e for each state is nonlocal
and consists of the factors grsqr&'&(r) and gr szr" (r')
Tabakin used a slightly diferent notation for these
factors, but the correspondence between the tvro nota-
tions is obvious.

If we substitute the expression (11) for tr in Eq. (8)
and evaluate the matrix elements betvreen the two states
then obviously one factor of each e will be integrated
with the ~«} and ~m'l'} parts, respectively, of the two
states; vrhile the other factor vrill be integrated with
the relative plane-wave states

~
k}.The integration over

the angles of k in the latter factors can be carried out
easily, yielding

der(glgsjr ljSJM TMr)k)(k~gr, ,spy"'l+JM, TMr}

=&~»,16+g»»r" (k)g~.s»'"(k), (12)

are given in Tabakin's paper.
Collecting all these results we obtain finally

In these equations (R is the harmonic-oscillator radial
function, and the symbols P, k stand for the . tt, $
angles of the corresponding vectors. (R~L(E) is the
oscillator radial function in momentum space with the

where the momentum transforms of the potential,
oscillator constant (vt/'$)) where 6= jh('mcus'I' is the
oscillator constant of the individual-particle oscillator 00

function. gtszr (k) grsJT '(r)j r(kr)r'«
If we use a result similar to (9a) and. (9b) for 0

(KEN'L'M'} then the angle integration of K can be
immediately carried out, yielding

do&(iVLM ) K}(K(iV'L'M'} (ltlL, («SJ) gsn TM,
~
V &» ~lt/'L', (I'L'SJ):ym, TM, }

=g+(—1) + 'rRnrL(E)rR+ L(K)&LL F3~ . (1O)
I ~{«~g~s~r'o}{g& sert" (n'l'}

X k dk fNL(krak p)+) Q gksJ'p (k)gXSJT (k)~ (13)
0

Sky Q(E,k,k )
EldK rRpr L'(K) (14)

(k'/2m) (gE'+ 2k')+ 4

Thus, with the angle-averaged approximation of Q, it
ha, s been possible to prove that this second-order matrix
element conserves the c.m. angular momentum I.; but
unlike the first-order matrix element it is not required
to conserve N. However, actual numerical evaluation
shovrs that matrix elements nondiagonal in E are very
small compared to the diagonal ones. We shall, there- f&L(kP»~)
fore, assume the conservation requirements of the
second-order matrix elements to be the same as those
of the 6rst-order ones. Therefore, the linear combina-
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Taszz L Second-order matrix elements (MeV) of the Tabakin potential between relative two-body states (alSJ
~

and ~a'f'SJ). The
isospin T is given by l+S+T=odd integer. The (z,n ) values are specified in the 6rst column. (L,S,J) values are specified in the other
columns according to the spectroscopic notation 2S+1;,. The sign following each such notation is the over-all sign of the numbers in
that column. The entries on the first and second line against each n-n' value correspond to b= (2.6)'~' and (3.75)'~' F, respectively. The
maximum value of (n, m') used in the two cases are (i) 3 (S and P states), 2 (D states), and (ii) 4 (S states), 3 (I' and D states). Average
occupied pair energy 6=20.0 MeV. The matrix elements missing from this table are given in Table II.

e-n

0-0
0-0

'S1, —
1.417
1.115

'D1 — 3$1-3D1, + 'So—
0.762 0.423 0.397
0.456 0.317 0.348

0.032
0.043

0.501
0.258

'D2, — 'D3) — 'D

0.096 0.911 0.324 0.040 0.045
0.048 0.385 0.167 0.021 0.020

0-1

0-2

0-3

1.214
1.053

1.014
0.942

0.847
0.832

0.698
0.485

0.666
0.483

0.468

0.291
0.276

0.255
0.245

0.219

0.221
0.258

0.073
0.159

0.034
0.072

—0.014
0.001

—0.038—0.031

—0.053-0.055

0.688
0.384

0.731
0.441

0.736
0.467

0.140
0.073

0.162
0.089

0.172
0.099

1.542
0.714

1.779
0.903

1.878
1.012

0.370
0.213

0.382
0.235

0.244

0.047
0.027

0.049
0.029

0.031

0.060
0.030

0.067
0.035

0.039

1.042
0.994

0.648
0.519

0.221
0.247

0.130
0.194

0.089
0.018

0.946
0.573

0.204 2.612
0.112 1.324

0.424
0.273

0.054
0.035

0.079
0.043

2-3

3-3

0.872
0.089

0.730
0.786

0.733
0.798

0.616
0.706

0.520
0.625

0.620
0.519

0.504

0.594
0.521

0.507

0.493

0.101
0.218

0.193

0.123
0.176

0.155

0.115

0.052
0.122

—0.003
0.059

0.036
0.081

0.023
0.045

0.042
0.032

0.139
0.030

0.169
0.038

0.229
0.075

0.280
0.107

0.345
0.155

1,005
0.658

1.012
0.697

1.068
0.756

1.075
0.800

1.082
0.847

0.236
0.137

0.252
0.153

0.273
0.168

0.291
0.187

0.310
0.209

3.014
1.676

3.181
1.878

3.479
2.120

3.671
2.377

3.874
2.665

0.438
0.301

0.312

0.452
0.331

0.344

0.357

0.056
0.038

0.040

0.058
0.042

0.044

0.046

0.089
0.051

0.057

0.100
').061

0.068

0.075

r'dr (R„t(r)gtsgr«&(r)

1/2 co

= (—1)"~ — k'dk(Rts(k)g/spy &'& (k)
ks.

The function Sl ~(k) is the oscillator radial function in
momentum space for the relative momentum k, and uses
an oscillator well parameter (V2b) '.

In the actual calculation we made a further approxi-
mation. It was found from the preliminary results that
the dependence of f(k,kr, D) on the quantum numbers
(cVI,) is very weak. We, therefore, carried out an aver-
age of this quantity over the various (&VI.) quantum
numbers that enter into our calculations. The averaged
value was used in Eq. (13), and the resultant matrix
element was interpreted as that connecting the relative
state ~rtlSJM, TMr) with In'I, 'SJM, TMr). The same
averaging with respect to the (M.) quantum numbers
was done in Ref. 15 while calculating the potential
energy in the first order.

III. NUMERICAL RESULTS FOR 0'6 AND Cg4o

Ke used the values of the oscillator parameter b

equal to (2.6)'I'F and (3 75)'l'F for 0" and (:a4s,

respectively (1 F=10 " cm). The averaged occupied
pair energy 6 was taken to be 20.0 MeV. The value of
the Fermi momentum kp was assumed to be 1.3 F '.

The integrand of Eq. (13) is plotted as a function of
k in Fig. 1. It is noticed that the peak of the integrand
is at a value of k which is larger than kJ:, and the area
under the curve below k+ is a very small part of the
total area. This justices our plane-wave approximation
for the intermediate states.

The second-order matrix elements between various
relative two-nucleon states, calculated with the help of

Eq. (13), using an average value of f~r, (k,kr, h), are
tabulated in Tables I and II for the two values of b,

mentioned above.
The calculation of the two-nucleon matrix elements

from these relative matrix elements was done by using
a code written by J. P. Svenne for the work of Ref. 15.
The second-order contribution to the binding energy
was obtained from these two-nucleon matrix elements
and the expansion coefficients c ' & of the HF states.
The results for 0" and Ca' obtained in this way are,
respectively, 4.3 and 7.2 MeV per nucleon. Adding
these to the first-order results" for these two nuclei
(2.4 and 3.7 MeV, respectively) we obtain the very
satisfactory values of 6.7 and 10.9 MeV per nucleon,
respectively.
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TABLE II. See caption of Table I for explanations.

0-4

'Sg, — 0.733
'Sp, — 0.002

0.694
0.009

e-n' 1-0 2-0

Sj"Dy + 0.332 0.239
0.287 0.240

b
2-4 3-4 4-4 (F)

0.623 0.553 0.491 (3.75)'&
0.015 0.021 0.026 (3.75) '~'

b
2-1 3-0 3-1 3-2 (F)

0.147 0.159 0.084 0.006 (2.6) 'is

0.202 0.193 0.157 0.133 (3.75)'is

"W. &assichis, A. K. Kerman, and J. P. Svenne (to be

published�}.

IV. DISCUSSIONS AND CONCLUSIONS

The values of b, used in this work, were found to be
the most appropriate for 0"and Ca' in the HF calcula-
tions of Ref. 15. Results of the type compiled in Tables
I and II for various values of b and all. possible shell-
model relative states (rrl) and (rs'l') occurring in struc-
tural calculations are available but will not be presented
here. The averaging of the quantity fear, (k,k&,A), over
the various values of EI., becomes a worse and worse
approximation as the number of nodes E is increased
gradually. In general, this quantity decreases as E is
increased. Hence, in order that the tables of matrix
elements be useful throughout the periodic table, the
matrix elements between various relative states should
be computed for different values of SI, individually.
Table III gives some idea of the dependence of the
matrix elements on the value of b and the number of
nodes E considered in the averaging of f(k,kp, A).

The dependence of the matrix elements on the param-
eter 6 was not investigated in the present work in
great detail. As we go through the periodic table, the
average occupied pair energy can change quite signi6-
cantly, and the eGect of this change on the matrix
elements should, therefore, be studied. A rough guide
to the value of 6 is provided by the HF energies them-
selves. A discussion of this point is given in Ref. 19.

Finally, we make a few comments about the binding
energies for 0" and Ca'o that we have found here. The
first-order potential energies (per nucleon) in these two
nuclei are, respectively, 21.8 and 25.6 MeV. Comparing
these values with the second-order results, mentioned
in Sec. III, we conclude that the convergence of the
perturbation series is fairly rapid; this is in agreement

TABLE III. Matrix elements for the 'Si state with n=n'=0
showing the dependence on the oscillator parameter b, and the
number oi' nodes F taken for averaging f(k,kg, 6,) T.he matrix
elements are in MeV, and have a minus sign (attractive, 6=20.0
MeV).

gs (Fs)
Matrix e1ement

$2 (F2)

4.37

3.75

3.0

2.6

4.37 3.75
0.690 0.759

Number of
nodes (Ã)

8

8
4
8
3
8
3

Number of
30 2 6 nodes
0.856 0.942 N =8

Value of the
matrix element

0.690
1.006
0.759
1.115
0.856
1.340
0.942
1.417

with what was found by Tabakin for infinite nuclear
matter. The third- and higher-order terms may be
estimated, at this rate, to contribute about 1 MeV or
less in 0".If we make a similar estimate of the higher-
order contributions and add this to the value we have
already found for Ca', the resultant number gives an
overbinding if we assume that the contribution is
attractive. However, we probably have overestimated
our second-order term for Ca4' by using the same value
of 2 as for 0".The value of d should be somewhat
larger and this would produce less binding.

The conclusion we have reached from the results
contained in this paper is that the Tabakin potential
can produce very satisfactory values of the binding
energy of finite nuclei, provided one takes into account
at least the second-order contribution. The type of de-
tailed numerical agreement one obtains in this way is
comparable to what has been obtained with the ef-
fective matrix elements of the Yale potential.
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