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Theory of Angular Correlations for Two Nucleons Emitted in the
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A theory is developed for the angular correlation for two fast nucleons emitted when a nucleus absorbs
a slow pion, based on the assumption that the reaction is direct. It is shown that for a quite general class
of models for the two-nucleon absorption mechanism, there are selection rules which relate the final angular
momenta of the two nucleons to the angular momenta carried initially by the two nucleons in the target
nucleus. The selection rules involve the relative and center-of-mass motions, separately, of the nucleon pair,
The angular correlation of interest is therefore defined with respect to the angle between the relative and c.m.
momenta of the emitted nucleons. The selection rules provide a direct connection between the observed
angular correlation and the two-nucleon angular momentum structure of the target nucleus. Some examples
are given for the application of this theory to the study of nuclear structure.

I. DI'TRODUCTIOH

SEVERAI authors' have expressed the idea that
study of the reaction in which a pion is absorbed by

a nucleus with the emission of two energetic nucleons
should yield information about the structure of the
nucleus. The idea is based on the assumption that the
reaction is direct, in that the pion interacts only with
the ejected nucleon pair. Evidence that this assumption
may be reasonable, at least for light nuclear targets, is
given by experiments which show (1) the distribution
of the summed momentum of the two ejected nucleons
is consistent with estimates of the two-nucleon mo-
mentum distribution in the target, ' ' and (2) the prob-
ability of the (zr, 2p) reaction, which would involve at
least three target nucleons, is small compared to that
of the (zr, 2rt) and (zr, stp), which can involve only two. '

In this paper we shall demonstrate the connection
between the angular distribution of the ejected nucleon
pairs and the angular-momentum structure of the target
nucleus, based on the assumption that the reaction is
direct. We shall not consider any specific model for
the reaction, but shall assume that some kind of two-
nucleon impulse approximation is valid. The features
of this approximation will be discussed in Sec. III.

The central argument is based on two considerations:
First, that for pions moving slowly with respect to the
target nucleus, there will be little transfer of angular
momentum to the center of mass (c.m. ) of the absorbing
nucleon pair, which is also moving slowly with respect
to the target. Combined with conservation of angular
momentum and parity for the entire system, this
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limitation is equivalent to a set of approximate selec-
tion rules for transfer of angular momentum to the c.m.
system and relative coordinates, separately, of the
nucleon pair. Second, the angular correlation of two
emitted particles is related to their individual and total
angular momenta. Since the selection rules for the
absorption control the relative and c.m. angular
momenta, the angular correlation of interest is that
between the relative and tota/ momenta of the two
emitted nucleons. (See Fig. 1.) Thus a study of this
correlation, together with the selection rules, provides a
means of measuring the relative and c.m. angular mo-
menta of the nucleon pair in the initial target.

If the initial pion were at rest with respect to the
absorbing nucleon pair, no linear or orbital angular mo-
mentum would be transferred to the c.m. of the pair,
measured, for example, with respect to the target. How-
ever, both linear and angular momentum would be
transferred in relative coordinates of the pair, consistent
with conservation of energy, angular momentum, and
parity, giving us the selection rules mentioned above.

In this paper we shall consider only pions, initially
moving slowly with respect to the target nucleus, as,
for example, in a x atomic bound state. For a not-too-

Fro. 1. Kinematics for the reaction A(zr, NzNz)B in total c.m.
system; the angular correlation discussed in this paper is defined
for the angle 8, between the relative momentum k and c.m. mo-
mentum K of the two emitted nucleons, Nl and X~.
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high nuclear charge, the motion of a bound pion with
respect to the target is negligible, so that the relative
momentum of the pion and nucleon pair is

k„i (lr/2m) K,
where the c.m. momentum K is the sum of the momenta
of the two nucleons (either before or after absorption,
since there is no momentum transfer), and iz/m(= 0.146)
is the ratio of the masses of the pion and nucleon.

For K&0, we expect some violation of the selection
rules. We estimate the change h8 of the pair c.m.
angular momentum, to be limited by'

68&k„tR, (1.2)

where E. is an "interaction length, ' which gives the
mean relative separation of the two nucleons in inter-
action with the pion. This length should be of the order
of the inverse of the relative momentum transfer. For a
light nucleus, we expect X&1 F '~200 MeV/Ac and
2&1 F. According to (1) and (2), this leads us to an
estimate: 29&0.07 which strongly favors the selection
rule 6/=0.

To make these arguments more quantitative, one
must adopt a more specific model of the pion-nuclear
interactions, which will not be done in this work. But
most models in use depend on a short-range nucleon-
nucleon correlation to provide the relative momentum
transfer, which would agree with our estimate of R,
above.

In any case, the theory to be presented here can itself
be used to test the validity of the selection rules by
comparing with experiments the predicted two-nucleon
angular correlation for a target whose angular-momen-
tum structure is thought to be known.

In the following section, and in Appendix A, we
derive the general form for the angular correlation, in
terms of the algebra of angular-momentum coupling.
In Sec. III, we consider the particular structure of the
two-nucleon impulse model for pion absorption. In
Sec. IV we obtain the selection rules for this model, and
in Sec. V work out several simple examples of angular
correlations based on these selection rules. In Appendix
8, we show as an example that a specific absorption
model, which has received much attention, ' does lead
to the selection rules, The discussion in Sec. VI con-
cludes the paper.

2'-—= (ol z'I ~), (2.2)

thus defining a transition operator depending explicitly
on nucleon variables only. If the initial pion state o,

has orbital angular momentum q with projection p,
then T will transform under rotations of the enclear
coordinates, as a tensor of rank T„&, since T must be a
scalar in nuclear-pion coordinates. The negative in-
trinsic parity of the pion means that T carries parity
= (—1)s+'. The transition amplitude (2.1) can then be
expressed as a nNclear matrix element, which we shall
write out more fully, using K and k for the c.m. and
relative momenta of the emitted nucleon pair (see
F :.1)

cV = (K,k,mi, ms, Ja3ffsXa
l
&

l JzMzXz),
K=ki+ks, k=(-', )(ki—ks) ) (2.3)

where m&, m2 are the spin projections along some axis of
the emitted nucleons, and J~3f~ are the spins and, spin
projections of the final and initial target states, re-
spectively. We use X~, X~ to denote all internal
quantum numbers of the final and initial target states.

For an experiment in which we measure the momenta
of the two ejected nucleons, but not the initial or final
spin projections of any of the particles (or initial orienta-
tion of the pion), we are concerned with the quantity

P(k,K,8) = (l q)l J~))—' g lM l', (2.4)

where M is given in (2.3). The pion has orbital angular-
momenturn q with projection p, . We use the notation
D)—=2l+1. Notice that I' depends only on the magni-
tudes k, E, and on the relative angle 0.

The momenta k and E are related by energy
conservation:

nuclei, respectively, and E~iV2 are the two fast nucleons.
We assume that the amplitude is given by the Q.rst-
order matrix element of an absorption operator T

3f= (B,iVi,Nsl Tl A,7r), (2.1)

where the initial and final states do not depend on T.
We require that T be a scalar under rotations and parity
inversions. If the pion is initially in a state with quan-
turn numbers n, we may take the matrix element of T
between the pion state 0. and the pion vacuum state

H. ANGULAR CORRELATION

We consider the amplitude for the reaction
A(rr, iVt, iVs)B, where A, B are the target and residual

ki' kss
l ki+ks l

'
Q= + +

2m 2m 2$g
= (2m) 'L2k'+(-', +m/Wg )E') (2.5)

'In units of A.
5 P. Huguenin, Z. Physik 167, 416 (1962); G. M. Shklyarevskii,

Zh. Eitsperim. i Teor. Fiz. 45, 698 (1963) /English transl. : Soviet
Phys. —JETP 18, 480 (1964)g; R. I. Jihuti and T. I. Kopaleishvii,
Nucl. Phys. SS, 337 (1964); R. M. Spector, Phys. Rev. 134,
3101 (1964); T. Kohmura, Progr. Theoret. Phys. (Kyoto) 34,
234 (1965); Y. Sakamoto, Nucl. Phys. S7, 414 (1966); Il-Tong
Cheon, Phys. Rev. 145, 794 (1966); I. Cheon, Y, Sakamoto, and
C. Nguyen Trung, Progr. Th-eoret Phys. (Kyoto.) 34, 574 (1965).

where m, W~ are the masses of the nucleon and the
final nucleus B, respectively. Q is the energy transfer

Q = (W.+W~ —Wn —2m)c', (2.6)

where 8', 8'~ are the masses of the pion and target
nucleus A, respectively.
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The distribution of particles for the unpola. rized ex-
periment can be expressed as a function of E and
Z= cos8:

O'W(E, Z) = const XkE'P(k, E,8), (2.7)

with the restrictions (2.5) and (2.6).
We are interested. in the angular correlation F(8)

given by (2.7) for fixed value of E, or, up to a constant
by P(k,E,8) for 6xed K and. appropriate k

F(8)=P(k,K,8); ffxed k, K. (2.8)

X (J~qMgp f J,M,), (2.10)

using the standard. vector coupling coefBcient. %e
choose the internal quantum numbers for the sta.te
labeled X, as follows: Let 9, I, be the c.m. (measured
with respect to the target c.m.) and relative angular mo-
mentum, respectively, of the two emitted nucleons, and
S the two-nucleon spin, all referring to the 6nal state.
Then these are vector-coupled:

8+1=L,
L+ S=I,
I+J~=J„

(2.11)

where I., I are the two-nucleon orbital and tota. l a,ngular
momentum, respectively. Then we have

f

J'.M.X,)= f Q,I,L,S,I,JsXa,J,M,), (2.12)

where I,stands for all the quantum numbers and vector
coupling displayed in (2.11) as well as the magnitude of
the momenta I, k. In this construction. , it is convenient
not to antisymmetrize the emitted nucleons with the
nucleons in the residual'target.

F(8) may be calculated. by stand. ard. techniques of the
theory of angular correlations' as given in more detail

6L. J. B. Goldfarb, in Nuclear Reactions, I, edited by P. M.
Endt and M. Demeur (North-Holland Publishing Company,
Amsterdam, 1959), p. 159; S. Devons and L. J. B. Goldfarb,
IJandbuch der Physik, edited by S. Flugge (Springer-Verlag,
Berlin, 2957), Vol. 42, p. 362. We use, however, the phase conven-
tions of Brink and Satchler, Ref. 10.

In order to express F(8) in compact form, it is con-
vient to introduce into the matrix element (2.3) a
complete set of intermediate states (of the total nuclear
system) with spin J„spin projection M'„and. internal
quantum numbers X,:

M= Q (K,k,mi, ns2, Jii,Mg, Xii
f
J.,M„X.)

JcMcXc

X (J,M,X, f T,
f
J&M&X&) . (2.9)

Since T transforms as a spherical tensor T„,we ma, y
reduce

in Appendix A. The result is

c"(I',I)—=4m (LI'][I])'"(I'I000
f r0),

5' is the usual Racah coeKcient, and P„is the Legendre
function.

Equation (2.13) is completely general; it is of interest
only if we can Gnd restrictions on the final states I,
connected to the target state through T„. Then the
angular correlation F(8) will have a maximum com-
plexity given by the vector restrictions on the argu-
ments of the Racah coefficient (Fig. 2). Thus r obeys
both inequalities,

r &2I, , r(2$,„, (2.14)

for the maximum relative and c.m. orbital angular
momenta of the two nucleons in the 6nal state. Also
the c" coefficients guarantee that both (I+I'+r) and
(8+P'+r) are even numbers (parity).

It is clear that F(8) —+ constant as K or k —+ 0.

III. IMPULSE APPROXIMATION

Let us now consider the speci6c properties of the two-
nucleon impulse approximation for the absorption proc-
ess, which was discussed in the Introduction.

Sy a two-nucleon absorption process, we mean that
the interaction operator T, Eq. (2.1), or its nuclear
part T, Eq. (2.2), is a sum of operators on no more
than two nucleons

(3 1)

where i, j stand for the coordinates or momenta and.
spins of the ith and jth nucleons. This encompasses a
variety of pion-nuclear interactions considered in var-
ious models: one-nucleon interactions ha.ve been con-
sidered by many authors' and two-nucleon terms due
to meson rescattering have also been treated' for meson-
absorption processes. The two-nucleon model of Kck-

FIG. 2. The quadrilateral represents
the recoupling through the Racah
coefficient of Eq. (2.23). Each of the
triangles represents a "triangle in-
equality" restriction on the three
angular momenta which compose it.

7 D. S. Koltun and A. Reitan, Phys, Rev. 141, 1413 (1966);
(to be pubnsbedl.

F(8)= Z LJ ](LJ.]L~])-'"8..'8..'8.,'
JcXcXc'

X(J.X.ffT. ffJ,X,)(J.X.ffT.ff J~X~)*

XP(—1)~+-t-~'W(8'I QI; I.r)
Xc'(I', I)c"(O'P)P.„(cos8), (2.13)
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stein and Divakaran are of this type, although the
interaction T(ij ) is not given explicitly, since the
eQ'ect of two-nucleon correlation is included in an
effective two-nucleon absorption interaction.

Since T is a sum of one- and two-nucleon operators,
the absorption amplitude M (2.3) can be reduced to a
sum of two-nucleon matrix elements of T, multiplied
by overlap integrals (or form factors) for removing two
nucleons from the target. However, in the tzvo-mucteoe

impulse approximatiom, we further assume that the only
important two-nucleon matrix elements connect the
two emitted nucleons with two nucleons in the target;
we neglect processes in which T connects a nucleon
in target A with a nucleon in the residual target B.This
is based on the notion that while two-nucleon cor-
relations are essential to the absorption process, three
nucleon and higher correlations are less probable, so
that if two nucleons interact through T '" (ij), a third
nucleon is not likely to receive sufhcient momentum
transfer to be ejected at high energy.

This approximation is in part amenable to experi-
mental test, in the relative probability for the reaction
(m. ,2p) to either (~,pe), or (rr, nn), since the first must
involve a three-nucleon process, while the second and
third may proceed through a two-nucleon process.

We note that the two-nucleon interaction (3.1) does
not directly imply the two-nucleon impulse approxima-
tion, in the sense just discussed; the latter is a statement
about the nucleus and is based on the notion of an
"independent-pair approximation" for nuclear structure.

This approximation is most easily formulated in
terms of the reduced matrix element (2.10):

where

xw(IfI +JA q&e)(I~x~llT'-llI*x*&

x(I,x;; ~.x.l)~,x.&, (3.2)

and
T =T &»(1)+T &'i(2)+T i"(1,2)

(I~X~{I
I'X'' JeXe&

(3.3)

L~+8;=I;. (3.4)

' S. . G. Eckstein, Phys. Rev. 129, 8413 (1963).' P. P. Divakaran, Phys. Rev. 139, 8387 (1965')."See, e.g., D. M. Brink and G. R. Satchler, Arlgular Momentum
(Clarendon Press, Oxford, England, 1962), p. 84; or A. de Shalit
and I. Talmi, Nuclear Shel/ Theory (Academic Press Inc. , Near
York, 1963&, p. 359.

is the coefficient of fractional parentage (c.f.p.)' for
the two-nucleon state I;, X; which leaves the residual
nucleus in the state J~, X~. The two-nucleon state I;,
X; has total angular momentum I;, and internal
structure given by X;, which we shall take to stand for
P;, I;, the c.m. and. relative orbital angular momenta, and
5; the spin, of the two nucleons, with the vector coupling

a+I;= L;,

We have added the index f to the quantum numbers
(2.11) referring to the final two-nucleon state. Finally,
the Racah recoupling in (3.2) takes care of the fact
that J~ and J, are coupled states:

Ig+ Jg= J.,

I;+Jg= Jg.
(3.5)

What have been left out of (3.2) in making the im-
pulse approximation, are terms with c.f.p. to states of
the residual nucleus other than J~, X~.

hP =0, (favored)

68= 1, (possible, but not favored) .

(4.1a)

(4.1b)

This means that the two-nucleon —transition operator
T l Eq. (3.3)j transforms under rotations of the
c.m. coordinates R, like a spherical tensor of rank
zero for case (4.1a) and rank one for case (4.1b), with
even or odd parity in R, respectively.

We may find selection rules for I, S, and isospin
T of the two-nucleon system, by combining Eq. (4.1)
with the fact that 1 transforms under rotations of
the complete two-nucleon system as a tensor of rank
q and parity (—1)&+', and is synunetrical in nuclear
coordinates.

We give the results for initial pions in s-state (q=0)
and p-state (q=1):

(1) For s wave, we have BI=0 and a parity change:
This requires T to transform as a vector in spin and in
isospin. Thus

48=0, BI=1, and TS=1,0~ 11
=0,1&-+11 (4.2a)

AP, =1, 61=0,2, and TS=11~ 11
= 11+-+00

10+-+ 01 (4.2b)
with AL=1 for both cases.

(2) For P wave, AI= 1 and no parity change:

&8=0, Df= 0,2, TS=11~ 11
11+-+01
10+-+ 01 (4.3a)

&8=1, al=1,3, TS=11~10
11~OI (4.3b)

with AJ =0, 2 for both cases.
Qne notices some simple features of these selection

rules. Set (4.2a) corresponds to absorption of the pion
in an s wave with respect to the two nucleons, and
(4.2b) to a relative p wave, although both correspond

IV. SELECTION RULES

The qualitative argument of the Introduction was
that for slow pions there is little probability of angular
momentum transfer to the c.m. of the absorbing nuclear
pair. This gives us the approximate selection rules:



NUCLEAR ABSORPTION OF SLOW P IONS 967

to an s-wave pion with respect to the target. Similarly,
(4.3a) corresponds to a p-wave pion relative to the two
nucleons and has the same selection rules for the in-
ternal pair variables I, S, T as (4.2b). Finally, (4.3b)
corresponds to pion s and d wave relative to the two
nucleons.

In Appendix 8 we work out the specific example of a
simple model absorption operator, from which we ob-
tain the selection rules above.

V. EXAMPLES

In this section we shall work out some specihc cases
to show the connection between the structure of the
target and the angular distribution of nucleon pairs,
through the selection rules of the previous section.

We shaB first suppose that the target nucleus is we11

described by the shell model, with the two absorbing
nucleons both assigned to the first p shell. If we further
suppose that the radial wave functions are those for a
harmonic oscillator, we may easily find" the possible
orbital angular momenta in c.m. and relative coordi-
nates, and their sum, to the

L;

0 (5.1a)

2 (5.1b)

2 (5.1c)

1 (5.1d)

Consider the possible transition for absorption of an
s-state pion, under the strong selection rules (4.2a). We
may obtain the 6nal-state angular momenta:

0"(J,T=00) -+ Ni4~(0, 1),
C"(0,0) ~ Il"*(0,1) . (5.4)

A nonisotropic angular correlation for these transitions
would imply either (1) violation of the strong selection
rules (4.2a), or (2) the presence of components in the
initial target state, with angular-momentum structure
not given by the harmonic-oscillator shell model.

As a second example, consider absorption of an
s-state pion by a p-shell nucleon pair with I,=1,
T;=0—+If=1, Tf=1, as in

Li'(J'T = 1,0) -+ He'(0, 0),
0"(0,0) ~ N "(1,0). (5.5)

Again using the strong selection rules (4.2a), we find
that the contribution of (5.1d) is eliminated by the
spin-isospin rules.

Thus the components of the initial state which con-
tribute to the transition are 'Si. (5.1a), and 'Di,
which is given by a linear combination of (5.1b) and
(5.1c). The contributions of these two components are
in proportion to the c.f.p. 's Lsee Eq. (3.2)j:

ua=('S, ; J~=ox,
l &Jg ——0,X~),

an=('Di; Ja=0,Xsl )J~=0,X~)
(5.6)

The two nucleon transition amplitudes in Eq. (2.3) may
be written as

A transition of this type would be the case for
A(7r, 2')B with J~=J~——0, and T~ ——0, Tii 1,——as, for
example, in

=( f ~r r rSrllT. III*"~'&'L'S'), (5.7)

0 (5.2a)

1,3 (5.2b)

1,2,3 (5.2c)

0,2 1,2,3 (5.2d)

Now suppose the initial two-nucleon total spin is
I;=0, with isospin T,=1.Then only components (5.1a)
'Ss, and (5.1d) 'I'o are present in the initial state. The
selection rules (4.2a) give

T,S=1,0 —+ 1,1, (5.3a)

"E.g., T. A. Brody and M. Moshinsky, TaMes of Tramsforraa
tioe Brackets (Monogra6as del Instituto de Gsica, Mexico City,
1960).

T,S=1,1 —+ 1,0 or 0,1. (5.3l )

If the final two-nucleon isospin is Tf=1, there is no
final state in (5.2d) with Ir =0, so that only (5.2a) will
contribute to the absorption. It follows from (2.13),
(2.14) that the angular distribution will be isotropic,
that is, Ii (8) will be constant, since Bf——0.

where X; may be 'Si or 'Di, and, Xs stands for one of
the four possible sets of Gnal-state quantum numbers:

Mg.
Mg.
M3.
3f4.

~f if
0 1
0 1
2 1
2 1

Lf Sf
1 1
1
1 1
2 1

from 'Sg

from 'Di (5.8)

The amplitudes M3 and M4 are not, in fact, indepen-
dent, since they diGer only in the value of Lf, all other
quantum numbers are constant. If we use the fact that
7 transforms as a scalar in I, and can be decomposed
into a scalar in c.m. , vector in relative coordinates, and
vector in spin, we may decompose the reduced matrix
elements (5.7) for Ms, Me, and obtain the ratio

8'(1L;SfS;; 1I)8'(1 l;1';; 1gf)

(II2SLS;r; 1I)8'(frl;2L, ; 1gf)

Inserting the resulting values of (3.2) into (2.13) for
the four cases in (5.8), we obtain an angular distribu-
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tion of the form

F(8) =A OPO(cose)+A 2P2(cos9),
Ao= g(0101;10)(us'I M&I '+a&'I M

+sDos2 ReM2*Mg)+g(2121; 10)aD'
~
M3

~

'
+g(2121; 20)ag)'iM4i ',

A.=g(2121; 12)aD'
i
M3

i

'
+g(2121; 22)uz'~ M4~ '+g(2101; 12)

X2 Re(asM i+ ag)M2) aDMS*, (5.10)
where we use

g(QT5; Lr)= (—1)~' &-~'W(FBI; Lr)
Xc"(I',I)c"(Q'P) . (5.11)

In the case of 0"—& N" LEq. (S.S)J there are, in
principle, three final states based on the p shell, with
J= 1, T=0. Suppose we start with sn assumption of the
values of the c.f.p. 's as and aa for each final state, based,
say, on a spectroscopic calculation of the levels of N".
Then a measurement of Ao, A2 for all three states gives
six relations for the three independent complex ampli-
tudes M;, through $Eq. (5.10)].On the other hand, if
the transition amplitudes are given, the Ao, A2 give a,
and aD for each state. If only relative intensities were
measured, then one fewer quantity would be obtained.
Such measurements seem possible with the ground and
3.95-MeV states of N'4 as Gnal states, since they are
well-separated levels. Note that the measurements
would have to be made for the same 0, E for each level,
which can only approximately be satis6ed LEqs. (2.5),
(2 6)l.

One can go further, with more specific assumptions
about the details of the two-nucleon amplitudes
M&(5.'I). For example, if the only interaction in the
final state is assumed to be that between the two out-
going nucleons "on energy shell, " then the complex
phase of each Mz is given by exp(ibl, ;), where 8l,; is
the phase shift for the appropriate If, jf(j=f+S) which
are unique for each MA, in (5.8). There will be additional
phases &1, &i from the phase conventions for the
initial and final states. Under these assumptions, there
are only three real unknowns in the MI, 's to be deter-
mined using Eq. (5.10).

VL DISCUSSION

The theory presented above rests on two assumptions:
(1) that the absorption process can be treated in a two-
nucleon impulse approximation, as described in Sec. III,
and (2) that the absorption mechanism is such that the
selection rules of Sec. IV are well obeyed. The pos-
sibility of confirming these assumptions depends on the
ability to measure the angular correlations with suf-
ficient accuracy to detect the presence of angular corn-
plexity higher than that predicted by the theory. A
minimum requirement is energy resolution sufhcient to
separate excited states of the residual target.

In making the above assumptions, we have neglected
three-nucleon processes, whose contribution is not
easily estimated. However, as mentioned in the Intro-
duction, there is evidence that these effects are small.
Possibly a more serious interfering process is the dis-
tortion of the correlation by scattering of the emitted
nucleons by the residual nucleus; this effect might be
included in a numerical calculation of a specific absorp-
tion model, but is diKcult to estimate qualitatively.
One does not expect these distortions to be large in light
nuclei. Large deflections of the outgoing nucleons would
also smear out the angular distribution in the laboratory
angle between kq and k2. However, experiments2 on Li
and 0 targets show narrow distributions in this angle,
peaked at 180', with widths consistent with no deflec-
tion of outgoing nucleons.

It should be noted that the angular correlations of
interest fEq. (2.8)$ are also functions of E. The E'
dependence reflects the total momentum distribution of
the absorbing nucleon pair in the target nucleus, which,
in turn depends on the angular-momentum quantum
numbers P of the initial pair. In general, the maximum
of the momentum distribution will occur at higher K
for increasing P; only P=O contributes at K=O. Thus
a study of the angular correlation as a function of E
may help separate the contribution of the different
values of 9 in the initial target. However, we also ex-

pect the selection rules to be less exact with increasing
E )see Eq. (1.1)), which introduces ambiguities into
this analysis.

In this paper we have considered only the absorption
of pions with negligible momentum with respect to the
target nucleus. The theory may be applied directly to
the case of pions of moderate momentum by averaging
over the momentum direction. %e again measure the
distribution P(k, IC,O) $Eq. (2.4)j for 6xed k, K, de6ned
in the c.m. system of the pion+target, with the energy-
conservation restriction (2.5); Q now includes the pion
kinetic energy. However, there are several complica-
tions: (1) The direction average smears out the E de-
pendence of the angular correlation, since a sphere of
momenta in the target, of radius equal to the pion mo-
mentum, now contributes to a given final momentum
E. (2) The selection rules (4.1) will become more com-
plicated with increasing momentum. (3) Each partial
wave of the pion (with respect to the target) has its
own set of selection rules; the number of waves and
resultant complexity of the distributions increases with
pion momentum. As a result, it is much harder to get
at the nuclear structure information, for fast pions than
it is for slow.

Instead of averaging over the direction of the pion
momentum, one could consider the angular correlation
for a 6xed relation between K and the pion momentum
g. This is not the correlation calculated in Sec. II, since
the projection p, of the pion orbital angular momentum
is now fixed. The problem is similar to that treated,
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usually at higher energies, in the "peripheral" or "pole"
approximations. " Then the angular correlation is
analogous to the "decay correlation" of a resonant state.
However, in these high-energy cases, one knows the spin
of the resonant state, while in the present case, one
wants to determine this quantity. Further, because of
the high momentum brought in by the pion, one does
not have the simple angular-momentum selection rules
which allow determination of the angular-momentum
structure of the target.

In conclusion, it has been shown how the measure-
ment of the angular correlation of the emitted nucleons
in the reaction A(vr, E~¹)Bunder the l~inematic limits
discussed, leads to information about the two-nucleon
angular momentum structure of the target, A. Used
"in reverse, " the theory presented here also provides
a new means of studying the mechanism by which two
nucleons absorb a pion by separating the contributions
of diRerent two-nucleon angular momentum states.

preferred direction, only poo survives in, (A4):

uo (J.X.,J.X.') = ([J.)/[J.)[v)) "(J.x.ll~.ll»x. )
x(J.x'II~-IIJ.x.&*,

and. the trace (A3) becomes

~(e) = Q poo(JcX.,JoXc')«oo(Jcxc',J.x.) (A6)
Zc,&c»c'

The total efficiency tensor eo' may be decomposed
successively into pairs of coupled tensors

«o'(J„,X„,J,X,')

"I J~ J,
=gP.)[J,) I' J, J, PP,~„,—&l00)

0.
X«,"(Ixz,I'Xz')« „"(Js,Jg-)
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APPENDIX A

We derive Eq. (2.13) for the angular distribution
using the density and egciency matrix formalism.

&J.M,x, l, l
J.M. x, )

=([q)[J~])-' P (J,M.x, lr. lJ~M, X„)

since Ms is not measured in (A2).
Further decomposition yields

L Q(re —pl00)«„(9P)«(II) ~ (A9)

0.
X J&u&X& l r +l J,'X,'X,'&,

Decomposition of the plane-wave in the k direction gives

and the eSciency matrix e

(J.M,x, l. l J,'M, 'x.')
(J.M.X.lK &,m„m„J,MsX~)

m1™o~~B

« „"(f,l') =c"(I,V)(4~/[r))'I'Y„„(k)iI-I'( —1) I' (A10)

and a similar expression for «„"(9P), in Z, with

c"g,l') =4m(D)[I'))'~'(II'00lr0). (A11)

y(K&m, m, J~M~XslJ ~M,~X ~) (A2) Using the addition theorem on F, „(X)Y,, „(k) w, e
obtain

So that, Eqs. (2.4) and (2.8) may be written

F(0)=Trp«. (A3)

It is useful to introduce the irreducible tensor forms
of p

«oo(J,X,',J,X,)
—[J)'"Z(—1)'+ ' ~&s.s~z,z~r. , z;

X W(8TBI; Lr)c"(I',I)c"(~',8)P„(k K). (A12)
p„"(JX,J'x') =g (—1)" z' (JMxlpl J'M'x')

Finally inserting (A5) and (A12) into (A6), we obtain

X(JJ'—MM'l~/) (A4)

and similarly for «. Since p in (A1) is a scalar, having no APPENDIX 8
Consider as a specihc model of the absorption opera-

Shspiro, V. M. Kolybssov, aud G. R. Augst, Nucl. phys. 61, 333 tor (3.1) the Gallilean-invariant form of the staticmodel
'2E.g., J. D. Jackson, Rev. Mod. Phys. 37, 484 (1965); I. S.

(1965).
'

pion-nucleon interaction'"
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2'."'(s) ~ e(s) i&0 (r~) —(p/es)pA(r')}r-(s) (81)

where e(i), r (i), p, are the spin, isospin, and mo-
mentum operators, respectively, of the ith nucleon, and
g (r,) is the wave function of the pion, in the initial
state n, at the position of the same nucleon.

To a 6rst approximation, for a pion bound in an
atomic state to a nucleus of small change Z, the wave
function within the nucleus is given by

(82)

This is equivalent to neglecting the pion momentum.
Now consider the operator T for the pion in an

s state (n=e, o,o) in the approximation (82).

2s e(1) Pre (1)+e(2) Psr (2),

which can also be written

2'Ber sr{(e(1)+e(2))(r (1)—v' (2))+(e(1)—e(2))
X(r (1)+r (2))} (pi—ps)+x4((e(1)+e(2))
X(r-(1)+r-(2))+(e(1)-e(2))

X(r (1)—r (2))} (pi+ps). (83)

It is easily veri6ed. that the first term of (83) gives the
selection rules (4.2a), while the second term gives
(4.2b). For nucleons moving slowly in the target, we
expect the nuclear matrix elements to satisfy

(f I yi —ys I s)»(fl Pi+Ps ( s), (84)

which gives the general selection rule (4.1). This is in
part due to the 6nal-state kinematics (IC((k) and in
part to the role of the two-nucleon correlation, which
enhances the transfer of momentum in the relative co-
ordinates, but not, presumably, in the c.m. coordinates.

A similar argument can be constructed for a p-state
pion, which leads to the rules (4.3).
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Second-Order Contribution to the Binding Energy of Closed-Shell
Nuclei with the Tabakin Potentials
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Hartree-Pock calculations have been performed previously on the binding energy of closed-shell nuclei
using Tabakin's separable nonlocal two-nucleon potential. In this paper, we report on an evaluation of the
second-order correction to the binding energy of 0'6 and Ca'. Including the second-order terms, we obtain
binding energies of 6.7 and 10.9 MeV, respectively, for these two nuclei.

I. INTRODUCTION

~ 'Wo distinct kinds of two-nucleon potentials have
been used in recent years in nuclear structure

studies. The Yale potential of Lassila et al. ' and the
Hamada-Johnston potentiaP belong to the 6rst cate-
gory. These potentials were constructed to 6t the
properties of the deuteron and two-nucleon scattering
data over a large energy range; they both contain a
repulsive hard core and hence give rise to two-nucleon
wave functions that are very strongly correlated at a
small separation distance. In order to use these poten-
tials in nuclear-structure work, one has to go through
the painstaking process of evaluating the effective
matrix elements (i.e., the E-matrix elements of 8rueck-

*This work is supported in part through funds provided by the
U. S. Atomic Energy Commission under Contract AT(30-1)2098.

/Present address: Department of Physics and Institute of
Theoretical Science, University of Oregon, Eugene, Oregon.' K. E.Lassila, M. H. Hull, Jr., H. M. Ruppel, F.A. McDonald,
and G. Breit, Phys. Rev. 126, 881 (1962).' T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962).

ner's many-body theory'). The problems that this kind
of calculation encounters for 6nite nuclei have been
overcome in recent years and the eGective matrix ele-
ments for the harmonic-oscillator shell-model states
are now available from the work of Kuo and Brown, 4

Becker and McKellar, ' and Shakin et al. ' These matrix
elements have been used in conventional spectroscopic
calculations in Ref. 4 and by Lawson et al.' and
Waghmare and Shakin. ' Successful results have also
been obtained'" in Hartree-Fock (HF) calculations

s K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958).This work lists all the earlier references by Brueckner and
collaborators.
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