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Semidirect Isospin Mixing in Deuteron-Induced Reactions
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A new mechanism which leads to substantial violation of isotopic invariance in "direct" processes in-
volving deuterons is suggested. The T-forbidden (d,a) cross section resulting from this mechanism is nearly
comparable in magnitude with that from the formation of isotopically impure compound intermediate states.
This new mechanism involves transitions from the S=1 state of the deuteron to the S=O, T=1 "state."
These transitions occur because the nucleon-target interaction contains a spin-orbit part; however, the
Coulomb distortion of the proton wave function in the intermediate states causes an asymmetry in the
spin-orbit potentials seen by the neutron and proton. Thus the spin of one nucleon is Ripped more often
than that of the other. Because the electromagnetic interaction merely provides the asymmetry factor
(which is due to the long-range nature of the Coulomb potential), while it is the nuclear forces which actually
Qip the spins, this source of T=1 admixture is far more important than two other "direct" mechanisms
which have been suggested, namely, Coulomb polarization of the deuteron internal wave function, or
preliminary (allowed) deuteron pickup leading to a T= 0 state of the residual nucleus, followed by Coulomb
excitation to a T=1 final state. Estimates of the forbidden reaction cross sections resulting from either
the preferential spin-flip or the Coulomb-excitation mechanism are presented, and an experimental test of
the new hypothesis is proposed. Finally, it is concluded from this investigation that the preferential spin-
Qip mechanism can explain the recent observations of Meyer-Schutzmeister et al. , both qualitatively and
quantitatively.

I. INTRODUCTION

EACTIONS such as C"(d&a)B", leading to (for-
bidden) T= 1 isotopic spin states of the residual

nucleus, are commonly assumed to take place through
the formation of isotopically impure (compound) inter-
mediate states, ' which can subsequently decay through
the forbidden channel. In this model, the cross section
for production of the T-forbidden 8" state is an un-

equivocal measure of the T=1 admixture of the com-

pound intermediate level excited by the reaction.
Evidence of a direct mechanism for such reactions has
been reported by Meyer-Schiitzmeister, von Ehrenstein,
and Alias. ' They have found that at deuteron energies
above 11.3 MeV, the differential cross section for
production of the 1.74 MeV, J"=0+, T= 1 state in 8"
resembles typical direct-reaction angular distributions.
Two possible mechanisms to account for isospin mixing
in a direct process were proposed by MEA. Neither
seems capable of explaining the observed violation.

The first of these mechanisms is polarization of the
wave function of the incident deuteron by the Coulomb
field of the target. ' Such polarization would introduce
S=1, T=1 odd-l components in the deuteron internal
wave function. This explanation is insufficient for
several reasons. In the first place, examination of the
Born amplitude for deuteron pickup shows that the
vertex function for n ~ d+d is required. This function
is basically the projection of the O.-particle internal
(four-nucleon) wave function onto two-deuteron in-
ternal wave functions. The essential point is that the

~ Supported in part by the National Science Foundation.
~ D. H. Wilkinson, Phil. Mag. I, 379 (1956).
~ L. Meyer-Schutzmeister, D. von Ehrenstein, and R. G. Alias,

Phys. Rev. 147, 743 (1966). Henceforth this reference or its
authors will both be referred to as MEA.' Y. Hpsbi~o&o @pd %. P. Alford, Phys. Rev. 116, 981
(1959).

nucleons in an unpolarized o. particle all have zero rela-
tive angular momentum, so that odd-1 components of the
internal wave function of the incident deuteron will
make no contribution of order Z/137 to the amplitude.
In order for the deuteron polarization mechanism to
contribute, the emergent o. particle must also be
polarized, which means that the amplitude for the
process would be reduced from the allowed amplitude
by a factor of order (Z/137)' )for the C"(d a)B" re-
action, the factor is 60/(137)'=0.0037 so that the T
forbidden cross section from this mechanism would be
unobservably small. Secondly, even disregarding the
preceding argument, Drachman has shown4 that the
ratio of l=1 to l=0 components in the wave function
of the polarized incident deuteron is already too small
to account for the observed effect. (In fact, since the
adiabatic approximation Drachman used is a low-

energy treatment, it substantially overestimates the
polarization at incident energies above the Coulomb
barrier. ) The combina, tion of these two arguments
seems to eliminate the polarization mechanism as a
candidate for the source of the observed isospin
violation.

The other mechanism suggested in MEA is that the
incident deuteron first picks up a deuteron from the
target, leaving the 8' nucleus in a T=O, 1+ state; the
departing o. particle then Coulomb-excites the residual
nucleus to the T=1, 0+ state. Since the transition is
1+—+0+, the electromagnetic multipole is' 3f1; it is
straightforward to estimate that the effect of such final
3f1 transitions is too small to explain the data.

The purpose of this article is to point out the existence
- of a direct mechanism which can account for the

4 R. J. Drachman, Phys. Rev. Letters 17, 1017 (1966).' L. R. B. Elton, Introdstctory 1Vnctear Theory (Sir Isaac Pitman
and Sons, Ltd. , London, 1959), p. 198.
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magnitude and qualitative behavior of the T-violating
differential cross section. The reaction amplitude may
be written as the sum of a "direct" and of a "com-
pound" part. The details of this splitting depend on
the experimental energy resolution. The "direct" part
of the amplitude will be a matrix element of the form

(tr Bio
) V& (

d C is. @.+)

where C,+ is the wave function of the n-p-C" system,
treated as elementary particles interacting via two-body
optical potentials. The state C;+ generally contains a
component describing the quasielastic transition to the
5=0, T=1 state of the e-p system. (Hereafter, this
"state" will be denoted by p.) On the other hand, the
ground state of C" may be written as a superposition
of T=O states of 8"coupled to a deuteron, and of 7=1
states of 8"coupled to a q, both giving over-all T=O.
The reaction C"(d,n)Bio (T= 1) may be thought of as
p pickup by the p component of the incident three-body
optical-model wave function trt~+. (Since this mechanism
requires a preliminary transition from d to p before the
direct p pickup takes place, it may be called "semi-
direct. ") The cross section for production of the T=1
final state will therefore measure the q component of
the C" ground state, as well as the isospin impurity of
highly excited N'4 states.

The remainder of this paper is organized as follows:
in Sec. II, the reaction amplitude is nonrigorously split
into "compound" and "direct" parts, assuming "inter-
mediate'" energy resolution. Section II is not intended
as a justification of the three-body optical model;
rather, its purpose is to indicate heuristically the
origin of compound and direct processes, and to show
how the reaction mechanism can change in a relatively
narrow energy interval.

Section III has been included for completeness: It is
a brief account of the construction of the wave function
C,+ using a previously derived' three-particle theory of
deuteron reactions which has subsequently been modi-
6ed to account for Coulomb eGects. ' The important
formulas in this section are Eqs. (3.9) through (3.11),
and (3.17). The first part of Sec. IV is a derivation of
the (direct) allowed and forbidden (d,n) reaction ampli-
tudes, using the wave function (3.17). The important
equations in this derivation are (4.2) and (4.9) through
(4.15). Next, the forbidden amplitude is approximated
in a way which allows the determination of the ratio of
forbidden to allowed cross sections. Using the fact that
the form of the Mi transition matrix element (suggested
in MEA) is virtually identical to that of expression
(4.14) for the preferential spin-flip amplitude, a rather
good estimate of the ratio of these two amplitudes is

' H. Feshbach, A. K. Kerman, and R. H. Lemmer, Ann. Phys.
(N. Y.) 41, 230 (1967).A list of references in which Feshbach has
employed the channel elimination techriique is given in this paper.' J. V. Noble, Phys. Rev. 157, 939 (1967); and Ph.D. thesis,
Princeton University, 1966 (unpublished).' J. V. Noble, Phys. Rev. 161, 945 (1967).

obtained in (4.18). The necessary inclusion of the p
intermediate states, which is the subject matter of this
paper, has experimentally observable consequences for
the breakup reaction C's(d np)C" the rest of Sec. IV
describes a possible experiment for directly observing
the d —+ p transition. Finally, the ideas and results of
this paper are summarized in Sec. V.

Appendix A contains an estimate of the leading term
for the magnetic-dipole-interaction mechanism sug-
gested in MKA. Appendix 8 is a brief derivation of
the (d,esp) breakup amplitude given by the theory
described in Sec. III and Ref. 7.

II. COMPOUND VERSUS DIRECT
REACTION MECHANISMS

We consider the scattering of a neutron, a proton,
and C". The reactions we are most interested in are
C"(d,a)B" and C"(d d)C". The transition amplitude
for C"(d n)B' may be written

(tr B'o
I
g+(E)

I d, C's)
= (k ',IfMg, a,B"

i Vf i Kg, v, dtC "+), (2.1)
where

(E II) id, C"+—)=0
H=H;+ V;=Hr+ Vf,
V'= V,c"+Vp,c't,
V~= V,p1o,

(E—H, ) ~d, C s)=(E—H,) ~~,Bio)=0,
and

~d, C"+)= ~d, C")+lim(E+it) —H ) 'V, ~d, C"+). (2.2)

Following Feshbach and others, ' ' we define the
projection operator onto the ground state of C":
P=

~

C")(C"
~

and let R= 1—P. Then, since
R~d, C")=—0, we have

P
~
d, C"+)=P

~
d, C")1P(E+irl —H )

)& LPV,P+PV,R(E+iri —RHR) 'RV, Pj
~
d,C"+)

(2 3)

R
~
d, C"+)= R(E+it)—RHR) 'RV;P

~ d, C"+). (2.4)

Now we assume that at what Feshbach calls "inter-
mediate" energy resolution, ' the effective potential
becomes

PV,P+PV;R(E+irl RHR) 'RV,P— .

I
Crs) V opt.+V opt.+p

"
(Cisl (2 5)

~ E+ir) —hi

where the ~pq) are vertex functions for forming the
intermediate structure resonances from the entrance

o T. Teichmann and E. P. Wigner, Phys. Rev. 87, 125 (1952),
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channel, and where the Bq are the energies of these
states. (We assume some sort of energy-averaging so
that only a few of these intermediate states will be
important at any given energy. ) Approximating the
contribution of R~d, Ci2+& by its most rapidly varying
part,

R
( e~&(» ( c,+&

R
j d, C"+&~P

E+jg gi
we Gnd that

&.,B l~+(E) ld, C &=&,B"
I V.IC",C'+&

(~ B"I~i'(E))&» I@'"&
(2.6)

E—g~—g~+(E)

The derivation of expression (2.6) Lin terms of the
various quantities de6ned in (2.7) and (2.8)$ from the
basic definition (2.1) and the assumption (2.5) is a
matter of straightforward algebra and has been given
many times previously, ' "so we omit it here. In (2.6),
t C~+) is a pure three-body wave function describing the
interaction of n, p and C" via two-body optical poten-
tials; it is asymptotic to the wave function of the non-
interacting deuteron-C" system, and satisfies the
Lippmann-Schwinger equation

+(E+zrl Ho V)—'LU —'v'+V 'vi j~4+). (2.7)

In (2.7), Ho is the kinetic energy operator of e+p+C".
The level shif t is given by (we have assumed
&vi ~

vi, &
~ h~ ~)

6i,+(E)= &vi,
~
(E+irl Hp—

—V —V 'v' —V 'v') '~vi) (2 8)

and has a negative-de6nite imaginary part. "The "6nal
vertex function" appearing in (2.6) is given by

l~.+(E)&
= Vf(E+ig Ho Uv —V 'v' ——V —'v') '~C'2»)

+VfRI&i& (2 9)

Clearly, if
~ Pi) is a state of definite spin and parity,

and if only one such state is important at a given energy,
then the expression

(k 'IfMr'nB"
I "~+(E))&»lc"+ Ki& '

3Z
Mf, v E—h) —~~+(E)

(which is proportional to the cross section arising from
the formation and decay of one intermediate state) will
be symmetric about 0= cos '(k ' X)=90'. The differ-
ential cross sections given in MEA for excitation of
the T=1, 0+ state in B"are not symmetric about 90'
at any of the incident energies. Above 10.5 MeV
there is substantial forward-backward asymmetry. The
forward peaking observed at energies above 1j..4 MeV

'o J. V. Noble, Phys. Rev. 148, 1528 (j.966).

is best described in terms of a direct-reaction model, for
which the amplitude is just the 6rst term in (2.6):
&n,B"

~
Vf

~
C",C;+). It is this amplitude with which the

next section will be concerned.
To brieQy summarize: In this section we have seen

how the (d,n) reaction amplitude may be split into a
"direct" and a "compound" contribution. It should be
emphasized that this separation is entirely artificial,
depends on the energy resolution and is, in a sense,
superQuous because the many-level E-matrix formula-
tion" is complete at any resolution. Nevertheless, it is
useful to split the amplitude for heuristic reasons, and
to indicate that under some circumstances the two
mechanisms can interfere in an observable way.

The isospin violating (d,n) cross sections observed by
MEA seem to have the compound mechanism (sym-
metric about 0= 90') behavior at lower deuteron
energies, and the direct (forward-peaked) behavior at
higher energies. The magnitude of the total cross section
decreases rapidly, reaching a minimum around E= 11.4
Me V, and then increases again. Such qualitative
behavior may be explained by just the compound-direct
interference eGect mentioned above.

III. THE THREE-BODY OPTICAL MODEL

The mathematical techniques for constructing the
scattering wave function of three particles interacting
via two-body optical potentials have been reviewed in
a previous paper, ' and there now exists a considerable
body of literature on the subject. In a more recent
publication, the modification of the theory of Ref. 7
necessary in order to include the proton-target Coulomb
potential were described in considerable detail. ' For
this reason, the present discussion of deuteron scattering
will be limited to a brief review.

We write the proton-neutron-target Hamiltonian as

H =H.+V.+V,+V.„+U„(8.1.)

where Ho is the kinetic energy, V„and V~ are the
neutron target and proton-target optical potentials,
respectively, V„„ is the neutron-proton potential and

U~ is the proton-target Coulomb potential, which is
taken to be that for point charges. It is important to
realize that despite its weakness, the long-range nature
of the Coulomb potential can produce eGects which

might seem disproportionately large. ' To understand
such eBects requires treating the Coulomb interaction
to all orders of perturbation theory.

The scattering wave function C;+ described in Sec. II
satisfies the Lippmann-Schwinger equation

i
c'~+) =

i d; Kv)

+(E+'n H. U,)- (V.+V—.+~-.) I
~; &, (3.2)

where ~d; Kv) is the wave function of a deuteron with

"A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257
(j.958); G. K, Brown, i''. Bj,,- 893 (1959}.
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s projection of spin v, and with momentum K relative
to the target. Equation (3.2) is only a formal relation
because the Coulomb distortion of the incident plane
wave must somehow be included. One way to do this
is to define the Coulomb potential Uq acting on the e-P
center of mass by

Ue ——Zes[-', Ir„+r I] '[1+2m/M, g ', (33)
where m is the nucleon mass and 3f, the target mass.
We now define

I
Pe+& to be the outgoing wave solution

of the Schrodinger equation

(E—Hp —V,—Ue) I ye+) =0, (3.4)

asymptotic to ld; Kv). [Since (3.4) separates,
I
pe+& is

just a product wave function. ] Equation (3.4) implies
the relation

IC"+)=
I e.+&+(E+t'~ H. v—:U—.)—

X(v.+v,+ U,—U,) lc,+&. (3.5)

De6ning the Coulomb-modified deuteron elastic scat-
tering operator by

U-.(E) I~"&=(V.+V.+U. U.) l-~;.&, (36)

we 6nd the integral equation

Use+(E)
I
ye+& = (E—Hp —Ue)

X(E+ist—Hp —V —V —U ) '
x {(v„+v„+U„—U.) lq.+&

+(V +Vv+Uv —Ue)(E+irt Hp Ue) 't„—v+(E—)
X(E+,-H, U.) U-+(-E)

I ~"-&~ (3 7)

In (3.7), t„v(W) is the tt-p scattering matrix in the
presence of Uz, dered by the equation

t„„(W)= V.,+V.„(W—Ho —U~)-'t. ,(W) . (3.8)

1 s"
—Z ZS" 0 ) '™~—s".

dK//(K/S/ /

I
j3(W) I

K//S// //

Xr8"(W (2M—) 'E"')(K"S"v"
I
T(W) I

Klv). (3.10)

In (3.10) the object 8(W) has been defined by

(K'S'v' I+(W) I
KSv&= dq' dq(ps I

q'&

X(yx. q'S'"
I
(W—H, —V„—V„—U„)-

X(vo+Vv+Uv 'U&) ItI/&'qSv)

(ql»&X,(3.11)
W—(2M) 'E' —m 'qs

and T(W) is defined similarly, with the exception of re-
placing (W Hp V„—V,——U„)—'(V +V„+U„U&)—
in (3.11) by U«(W). The system of notation used to
write the matrix elements in (3.10) and (3.11) is

K= k„+k„
q= (k„-k,)/2,

(3.12a)

(3.12b)

and clearly (h= 1),
'I

H p I K,q) = [(2M) 'll."'+m 'q')
I K,q), (3.13)

the ~S~ state, and by one separable term in the 'SD state,
and we neglect I-p scattering in states with l „)0 [.In
(3.9), A.r and A~ are, respectively, the triplet and
singlet spin-projection operators. $ Putting (3.9) into
(3.7) leads to the following set of coupled linear integral
equations~:

(K'S'v'
I T(W) I

R1v) = (K'S'.'
I &(W) I

K1.&

Equation (3.7) has no mathematical pathologiesr' and
has a completely continuous" kernel so that, given the
ability to calculate the Green's function (E+irt 8p—'

V„—Vv —U„) ', (3.7) is a suitable general starting
point for the calculation of C;+. In Ref. 8 it is shown
how the above Green's function may be constructed in
terms of solutions of Fredholm integral equations
formally similar to the Faddeev" equations; for the
present purpose it is enough to know that 'tPis con-
struction can in principle be accomplished.

The fact- that the triplet state of- the deuteron-is
weakly bound while the singlet state is nearly bound
allows the tt-p scattering matrix to be well represented
by the simple form'

where the deuteron reduced mass M is given by

M = 2mM. /(M. +2m) . (3.14)

The Coulomb-modified plane wave I/gI/K'& is the solution
of the equation

[V'+Es—2M Ue(E) ](R I
yx') =0. (3.15)

On the energy shell [that is, with W=(2M) 'Es
ee+i7tj—th. e deuteron internal wave function is given

by
lpe(q) = (ql t/t&/[W, —(2M) 'E' —m 'tf'j (3.16)

so that (K'1v'IT(W) IK1v& is just the nuclear part of
the deuteron elas'tic-. scattering matrix. The object B(W)
plays the role of the deuteron optical potential: when
it is substituted into the "Iippmann-Schwinger"
Eq. (3.10) it gives the correct (Coulomb-modified)
elastic scattering matrix. B(W) differs from the tradi-
tional deuteron optical potential' in that it can, in
general, produce transitions:. between S=1-and S=O

t v(W) —It/t&rt(W)tl (t/t
I

—lt/p)rp(W)&~(t/pl . ('4.9)

That is, we approximate V „by one separa'ble. term'in

"This term is de6ned in Ref. 7, and in several of the references
contained therein.''L. D. Faddeev, Mathematscat Aspects of the Three Body-
Problem in the QNantunz Scattering Theory {Israel Program for
Scientisc Translations, Jerusalem, 1965).



J. V. NOBLE 162

states, even when V and V„are identical, as in Finally, we see by inspection of Eqs. (3.5), (3.6),
reactions on Ts=o nuclei. The importance of this type (3.8), and (3.9) that C;+ may be expressed directly in

of transition will be discussed in the next section. terms of T(W) and the various potentials:

~e,+)= P dK"
8lryl I

dq'pl+(E+ig Hp V Uv Uv) i(V+Vv+Uv Us)7

(e"I»-)
X ~@ "'q"S"v")

E+ig —(23II) 'E"'—m 'q"'

)&(8(K"—K)bs t8; y rs-(E—+i/ (2M) —'E"s)(K"S"v"~T(E+ir/) ~K1v)). (3.17)

IV. ISOTOPIC-SPIN VIOLATION

Ke now apply the considerations of the previous
section to targets with E=Z, for which V„'&'=—V~'&'

(within small corrections for the finite charge-radius of
the nucleus). The Coulomb-corrected matrix element,
(K'S'v'~B(W)

~
KSv), of the deuteron "effective optical

potential, " in general. can connect the 5=1, T=O, "d"
state with the 5=0, T= 1, "q" state. How does this

happen? First let us note that if the potentials V and

V„are purely central, the d ~ y matrix element of 8
will vanish, regardless of whether or not V a,nd V„are
identical. That is, as Drachman4 has correctly stated,
the Coulomb force alone cannot produce the prefer-
ential spin Ripping of one nucleon relative to the other
which leads to d —+q transitions. The actual mechanism
is more subtle. The nucleon-nucleus optical potential
has been found to contain a spin-orbit term, with a
strength of several MeU."When one properly accounts
for the effect of the p-C" Coulomb repulsion to all

orders, one finds tha, t the proton wave function is
excluded from the nuclear region, relative to the neutron
wave function. This exclusion destroys the symmetry
between the spin-orbit parts of the n C's and -P-C"
forces, and leads to preferential spin fiip. Anticipating
the end result, we note that this mechanism can lead
to relatively large isospin violation (as compared, say,

with M1 transitions) because it is the strong nuclear l s
interaction which actually does the spin Gipping; the
role of the long-range repulsion in this process is merely
to produce an eGective asymmetry in the nuclear
force.

The matrix elements of B(W) have a simple graphical
representation, indicated in Fig. 1(a).The "bubble" rep-
resents all graphs involving e, p, and c in which the e
and p do not interact with each other; the first few

terms are shown in Fig. 1(b). In order to treat the
Coulomb interaction correctly, the proton intermediate
states must be taken to be Coulomb-modified plane
waves.

The lowest-order contribution (in U„and V„) to the
d —+p matrix element of B may be written down from

Eq. (3.11) or from Fig. 1 by inspection:

(K'OOiB(W)
i
Klv)=(y ', ",i(W—H, —U,)-i

&&LV„"+V,'7(W —H, —U„)-'~y&',. viv). (4.1)

In Ref. 8 it is shown that (4.1) is a reasonable repre-
sentation of the off-diagonal matrix elements of B(W).
Since V„" and U„" (the spin-orbit parts of the
nucleon optical potentials) are small, we may neglect
terms of order V„,v" (W Hp Uv) '(U„U—q) (n—ote-
that U„—U~ is a weak, short-ranged potential under

P ~ P ~~)Y'

Fro. 1. (a) Graphical representa-
tion of a general matrix element
of 8(W); (b) the erst two terms
in the per turbative expansion
of B(W).

(b)

'4 M. A. Preston, E'hysics of the ENdeus (Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1962), p. 547.
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these circumstances) to obtain

(K'00IE3(W) IK1,)= P g (ool-', -', ; „'o,'&
vp*(x+ p K')

dx
W—(2M) 'E"—m '(x+-', K')'

XD&x+K',o 'IV "l&x+K,o„&8,„.+(&x+K',o 'I V ".I&x+K,o„&8, , j
»(x+-', K)

(4 2)
W—(2M)-'E' —m—'(x+-'K)'

In (4.2) the matrix elements of Vv" in the basis of Coulomb wave functions for the proton alone D.e., eigen-
functions of Hp+ Uv) have been abbreviated V„"",the constant $ is just A/(A+1), where A is the nucleon number
of the target. %e require the matrix element of the spin-orbit potential. It turns out to be

where
(k-'ooI V-" Ik-1.&=(k.'Xk ) (00ls„l 1v)f(lk„'—k„l), (4.3)

f(Q) =p(2~PQ)-' dr r'V P' (r)j,(Qr). (4 4)

We use the local plane-wave approximation" for the Coulomb wave functions to obtain

(k,'00I V„"Ik,1v& cp(k„')cp(k„)(k,'Xk„) (00I s„l1v)f(l k, '—k„l), (4.5)

where cp(k) is the appropriate Coulomb-barrier penetration factor. '~" Noting that (x+-,'K)' and (x+-,'K')' are
restricted to be small when (4.2) is on or near the energy shell, we get

vpP(x+-,'K') v i(x+-', K)
&K'00 I &(W) IK»&=f(IK' —K I)

I W—(231) 'E"—m '(x+-,'K')'jLW —(2M) 'E' —m '(x+-,'K)'j

X I
(x+K') X (x+K) (p p; 00

I {s +cp(~E')cp(pE)s }I
-', -', ; 1v&]. (4.6)

In evaluating the vectorial dependence of the integral, we use the fact that aX a—=0; letting x= q —-', K, we obtain
an expression of the form

dq(K' —K) X(q+lK)A(l q+p(K' —K) l)A(v)

=-'(K'XK) dq fi(I q+-,'(K' —K) I)gp(q)+QX dq qadi(l q+-', Q l)fp(q).

By symmetry, the second term vanishes, and so we get

(K'00 IE3(W) I
K

I v) —,
' f(l K' —K

I
)Fpi( I

K' —K
I
E"E' W)

XDK'X K) (-'-'; 00 I {s +co(~E')cp(~E)s }I
p-'; 1v)$ (4 7)

where
ap*(l q+ pQ l)»(v)

Fpi(Q E"E'W)= dq
LW—(231) 'E"—m '(q+-'Q)']LW —(2M) 'E'—m 'q')

(4 g)

Since S=s +s„ is diagonal, we have, finally,

(K'00IB(W)
I
Klv) ——,

' f(l K' —Kl)Fpi(l K' —KI,E",E'; W)
X(1—c (—E')c (—E))L(K'XK) (-—';00ls„l —'-'; 1 )g. (4.9)

We see that (4.9) contains the approximate "asymmetry factor" Li —cp(E'/2) cp(E/2) j; this f'actor vanishes if
the Coulomb interaction is turned off, or if E' and E—+ 00.

The (d,n) reaction matrix element introduced in Sec. II may now be calculated. The Born term,

(k 'lr~rl Vrld;4x'v),
'~ L. Schulman, Phys. Rev. 156, 1129 (1967). Schulman gives a number of references to earlier uses of this approximation.
' See, e.g., A. Messiah, Quantum 3fechunics (John Wiley R Sons, Inc. , New York, 1961),Vol. 1, p. 486.
'~ R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev. 140, B1291 (1965).
"Because of the cutoff at backward angles, it is only appropriate to integrate from 0 to x/2.
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typically has a, pole in the momentum transfer lk
'—Kl near the physical region,

'

and so has a strong 'angular
dependence.

l
This term is responsible for the strong forward peaki'ng of direct reactions. ] In contrast, the next

term obtained from the expression (3.17) is

(k 'I/M/I V/(F+z& H—o V—- V—v U—v) '(V +Vv) ld 4z'v&

which has much weaker angular variation. (The same remarks apply if the initial state contains the tv rather than
the d.) The dominant part of the (d,n) amplitude, at least at forward angles, may thus be written

dK"(k 'I/M/l V/(L+zzt Hp —Ug) '—
l
yz'v8"v"&

8/l~/I

X fb(K"—K)88"ib," r8"(I+i' (2M—) iE" )(K"5"v"lT(E+izt) lK1v)}. (4.10)

In order to calculate this matrix element, one must know the eRective d and p single-particle wave functions in
C", the interaction V~ and the n —+ 2d and n~ 2@ vertex functions, as well as the empirical m-C" and d-C'
scattering matrices. These objects must then be put together in a lengthy and complicated calculation. Both
because the various pieces are not really well known, and because the problem does not seem to merit such a de-
tailed study, only a rough estimate of the ratio of the forbidden to the allowed cross section will be given here.
We take V "(r) to have' the usual form

(1.4)'
V„'" (r) = ———V, , expL(r —R)/D7(1+expl (r—R)/D7}

Dr
(4.11)

where E, , 10 MeV, R 2.3 F, D 0.65 F. Substituting (4.11) into (4.4), we find

f(Q) = —i(6zr ) (1.4) E,R f(Q), (4.12)

where f(Q) is a dimensionless quantity which falls off, for large Q, faster than Q -', and f(0)~1.We now calculate
the (allowed) amplitude for C"+d—+ B"(T=0, J~= 1+)+cr,

(k~'1M/l a+(8)
l
Kiv&~ dK"(k~'1M f l

Vf(E+zzt —Hp —Uz) 'l Pz 'viv)C'z"(K") ) (4.13)

and the amplitude for the forbidden reaction C"+d~ 8' (T= 1, I =0+)+n

(1 4)'
(k.'l b+(Z)

l
K1.)=—z V, .R'(6zr') '2ML1 —cp'(E/2)7 dK"' dK"

2
// ///

x (k.'l v(z +&i—H, —U,)-ilyz "p)p(K"xK"') (ools„l 1.)7 e '(K'") . (4.14)
(5/3) k."+i' —E"'

Several approximations have been made in obtainirig To compare the T-allowed amplitude a+(E) with
(4.13) and (4.14) from (4.10). Cz~(K") is the puiely the T-forbidden amplitude, we assume
diagonal part of the deuteron optical wave function,

(k.'1Mfl Vf(F+z VHp Ud) ''IOz'»v&

=&~,„(k.'l V,(Z+ zg H, U,) 'l y—"z&—p.
-

—=b~,.(k.'lb....+(&) lK&. (4.»)

b„„„lb(K"—K)—r,(Z+ig —(2M)-zE'")
x(K-1"'IT (&) IK1 &7

Clearly the oR-diagonal elements of T' do not con-
tribute very much and may be neglected. The' matrix Equation (4.15) states that the diagonal part of the
element (K'OolT(E+izt) lK1v) was approximated by Born amplitude for d+C '~ n+Bip(T=O, I =1+) is

J dK"(K"ool8(E+izt) lK"1v&C'z~(K");- and' the'. be- approximately the same as that for q+C" ~n+B'p
havior of f(Q) and of Cz"(K") allowed Fpi to.,be re- . (T=1,J =0+).This is reasonable since the C" ground
placed by its on-shell Q=o value, namely' unity. sta, te has the same SU(4) symmetry as the n particle,
Finally, rp(s) was repIaced by —s ' in (4.10); and the and the final states are fairly close in energy. Invoking

Q value of the forbidden reaction was neglected be- rotational symmetry and noting that f(Q) is a rapidly
cause of its smallness. decreasing function of Q and that Cz"(K') is strongly
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peaked at K'= K, we approximate Eq. (4.14) by

(k~'I b+(8)
I
Kiv&~ —i(1.4)'(12s') 'V, , R'2M

X[1—cs'(E/2) jI(k.',E)(5/3) '"
X[(&.'XK) (00IsyI iv&j(k 'Ibn. ,„+(E)ICx"&. (4.16)

The function I(k ',E) in (4.16) is just (5/3)'»J'dQ f(Q)
X[(5/3)k~'s+ixi —(K+Q)s) ' a reasonable form for
f(Q) which lets us evaluate the integral is P'(Q'+P') ',
where pR~1. Using this form and recalling that
k '))p, we find I(k ',E')~ p'xx'—i/2k '. The ratio of
the forbidden to the allowed amplitude at 8=30' is
then

61=
I (k.' Ib+(~) IK1.& I/1(k. '

I
b,...+(&)

I
C'x"&

I

~(5/3)'"[(1.4)'/24j
I
V, .

I
2MP'R'E

X[1—co'(E/2) $ (sin30')/2v3
0.03, (4.17)

which leads to a ratio of forbidden to aBowed cross
sections of 10.'. It should be emphasized that be-
cause of all the uncertainties involved in calculating
the ratio R, the cross-section ratio (R' is only an order-
of-magnitude figure. (The fact that it agrees reasonably
well with the observed cross-section ratio is probably
an example of the well-known phenomenon of fortuitous
cancellation of errors. ) It is much more significant to
compare the amplitude (4.14) with that given by the
3f1 mechanism suggested by MEA. This ratio is
probably must less uncertain since the functional forms
of the amplitudes are nearly identical (see Appendix A).
The appropriate ratio turns out be be

Thus, even though the M1. mechanism undoubtedly
occurs and contributes, it will be far too small to ex-
plain the data, or to compete with the semidirect d —+ q

'transition mechanism described in this paper.
As further evidence that it is the asymmetric spin-

Aip rather than 311 transitions which produces the
isotopic-spin violation, we note that the

Afar-produced

amplitude is strongly forward-peaked (the pure M1
interaction is weakly singular at 8=0'). On the other
hand, the expression (4.14) vanishes at 8=0'. (This is
typical of short-ranged spin-orbit interactions. ) An ex-
amination of the T-violating differential cross sections
of MEA (which are small near 8=0', and peaked at
8 20') convincingly excludes the Mi mechanism on
these qualitative grounds alone, exclusive of the esti-
mate (4.18) of the ratio of the cross sections of the two
mechanisms.

r =
I amplitude for final Mi transition I/

I
spin-fiip amplitude

I

=[5.7e'R'(mc'ss) 'j[2M(1.4)'(6s') 'I V, , IRs

X f 1—css(E/2))] '
(4.18)

It is philosophically unsatisfying to explain an ex-
perimental anomaly by means of a new mechanism
whose sole observable manifestation is the very eGect
which it was invoked to explain. This consideration
instigated a search by me for an independent way to
test the hypothesis of preliminary d~ j transitions.
If this mechanism is indeed responsible for the ob-
servations of MEA, it also implies that there will be
$=1—+ $=0 transitions in the breakup reaction,
C"(d,ep)Cts. Ideally, one wouM like to be able to ex-
amine the relative spin orientations of the nucleons in
the Anal state. This is not yet a technologically feasible
experiment; fortunately there is a much simpler ex-
periment one can do which may be sensitive to the
presence of the T=1, p "state" in breakup. The idea
is to detect 6nal states in which the neutron and proton
are at small relative momentum. Under these conditions,
the breakup differential cross section is given by"

~0b.u. . ~0el ~op.e.
~9qs' +R

dQ dQ dQ
(4.19)

'9 See Appendix 3, and Ref. '7, as well as P. M. I"ishbane and
J. V. Noble, Phys. Rev. (to be published).

so R. Zurmuhle (private communication).

In (4;19), do, i/dQ is the elastic differential cross section
[i.e., for C"(d,d) C"j with the final momentum slightly
off the energy shell, (dou. , /dQ) is the "differential cross
section" for the "quasielastic" reaction C's(d, p)C's,
in which the neutron and proton come off with zero
relative momentum; and qs is the maximum e-p rela-
tive momentum accepted by the detection system (in
inverse fermis). The number R is essentially the square
of the ratio of the singlet-to-triplet tx-p scattering
lengths (it is actually slightly less than this ratio) and
has a value of 14 or 15. From the size of the isospin-
violating (d,n) cross section, one might expect o.u., to
be 1—5% of o;i. [One should note that Eq. (4.19) is
dimensionally correct when qo is given in units of
inverse fermis; see Eq. (819) for details. )

Now, do, i/dQ typically is forward-peaked, and has
sharp diGraction minima. To attempt to detect the
presence of y states, one would select breakup events
with small qs, and measure doh. „./dQ as a function of
angle. Since dos., /dQ vanishes at 8=0, and do, i/dQ is
maximum there, the two anguI. ar distributions will be
out of phase. The factor E. 14—15 also is highly favor-
able. Thus, if do.u., /dQ is present at all, the differential
cross section (4.19) should be much smoother than
do, i/dQ since the term R(dos. , /dQ) should "fill in the
dips" in do, i/dQ.

Despite the rather small expected value for the cross
section do.q „/dQ, measured under these conditions,
such an experiment is probably feasible at the present
level of experimental technology. A search for these
phenomena is now being initiated at the University of
Pennsylvania tandem accelerator facility. ~'
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APPENDIX A: ESTIMATE OF THE MAGNETIC-
DIPOLE TRANSITION MATRIX ELEMENT

The interaction energy of a magnetic dipole with an
applied magnetic field is just

Hr= —1s S. (A1)

For nucleons in a nucleus, with definite orbital angular
momentum and total angular momentum,

y„,v(/, j)=p„,v(l)(eh/2mc) j. (A2)

The shell-model picture of the T=O, J = T+ states of
B" gives the basic configuration of a neutron and a
proton hole in the Ps/s shell coupled to total J; thus,

» C. D. Zaiiratos, J. S. Lilley, and F. W. Slee, Phys. Rev. 154
887 (1967)."J.Jobst, Bull. Am, Phys. Soc. 10, 462 (1965l; Ph.D. thesis,
University of Wisconsin, 1966 (unpublished).

V. SUMMARY AND CONCLUSIONS

In this paper, a new mechanism for producing
isotopic-spin violations was introduced to account for
the observations of MEA. This mechanism has been
shown to be a far more likely candidate than those
proposed by MEA, in that it has the right magnitude
and the right angular behavior to explain the data. A
direct experimental test of this hypothesis was proposed.

Zafiratos et al."have reported the nonobservation of
the J =0+, T= 1 state in N'4 in a study of the C"-
(n,d)NI4 reaction. On the other hand, Jobst's has seen
the T=1 state in N'4 using the 0"(d,n)N" reaction.
The cross sections should be of the same order of
magnitude; however Jobst's statistics seem to be
considerably better than those of Zafiratos et al. , as far
as was indicated by their respective articles. The upper
limit of 0.27/& of the ground-state cross section given
by Zafiratos et al. is probably slightly low; i.e., they
may have overestimated the sensitivity of their ex-
periment. On the other hand, both C"(d,a)B" and
0"(d&n)N' have small Q values, whereas C's(nd)N"
is quite endoergic (by about 13 MeV). In view of the
sensitivity of the T-forbidden cross section to such
eftects, it would not be surprising to find that the T-for-
bidden (a,d) reaction leading to the T=1 state in N'4

has a cross section lower than the upper limit given by
these authors.

Finally, we mention that Jobst's data" were not
taken at suSciently high energies to show the forward-
peaking effect found by MEA. By analogy with the
Cis(d, o)B" reaction, one would expect this effect to
appear above 12 MeV.

p = —1.91 and p~= 3.79 in the l= j., j= +2 state. "The
magnetic field of an 0, particle with orbital angular mo-
mentum L is" B=(Qh/JI„cRs)L„, where'R is the dis-
tance from the n particle, Q= 2e, and 3f„is the ri-particle
reduced mass. Thus, if Jiv ——j„+j„, the interaction
matrix element becomes (note Jsr is diagonal and so
cannot connect the 1+ with the 0+ state")

(k,',Jr=0(Hr (k,Jar= 1,J,)
lr 5.7esh' ) d'R(R —' exp( —ik '.R)
(8mÃ, c's'1

XL, exp(ik, R)} (00~ j„~Jsr ——1,J,&,
l.e.)

(k.',Jiv'= 0~ Hr ) k.,Jism=1,J.&

5.7eshsi - k '&&k.—(00 i1„i1,J,) . (A3)

Neglecting the final-state Coulomb interaction, and
calling the spacing between the two levels

AE= (hs/2', )P,
we get the over-all transition matrix element

5.7e'i
(lt.',J~' 0 l HrG, +(Z) V,

~

——e; Kv&=
~'mc'

dk"t (k. Xk") (ooljvllv&g(k" lb...„+(Z) ~K&

(k '—k")s(h "+irish' —k"')
(A4)

To put (A4) in a form which may be compared with
(4.14) and which leads to (4.18), we note that:

(1) Equation (A4) is not a singular integral.
(2) The limit of 8' -+ 0 is finite and bounded in (A4).

Thus, we identify $R'(k ' —k")'j ' with the same kind
of dimensionless function of momentum transfer as

f(Q) in (4.12), so that the expressions (A4) and (4.14)
are seen to be virtually identical in form, and simply
have different over-all coupling constants in front of
the integrals. LOf course, the range R appearing above
reQects the structure of bg„+, but will be about the
same as the range appearing in (4.12).$

APPENDIX B: ESTIMATING THE (d,np)
CROSS SECTION

Let us denote the elastic (d, d) amplitude (for scat-
tering from a spin-0 target) by (K'v'

~
2+(E)

~
Kv), where

K and K' are the c.m. momentum of the deuteron be-
fore and after scattering, and v and s

' are the s projec-

O' See Ref. 5, p. 125.
,. ' "~ J. D. Jackson, Classical ElectrodyrIamics (John Wiley 8t Sons,
Inc. , New York„1962), p. 134. .

~6 A. de-Shalit and I. Talmi, Egclear Shell Theory -(Academic
Press Inc., New York, 1963), p. 117.
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ss s
'

nd the breakup operator byss section for an t e rits s in. The di6erential cross s
ri m b nttelasticl t' deuteron scattering ma

—=EX '
dO

dE'E "h(K"—E')
0

X-' g [(K'v'[A+(E) [Kv) [', 813 —1» 1
e(W) = e „„-i V„(W)+ V„„(W—H) '(V„+-V„

=e(W)+V.,(W—a,)-~e( ). (87)

V Vv+V „)(W—H) '

X(V +V„). (86)
%e may obviously write

'
st a constant. e ma denote the breakup

+(E) I K. h...
d ' is the relati e

ampi u
eanin s, an qh61ttthe fo e

n-p mo
fth l'td 8

m b w ittenthe breakup cross section may

=ME ' dK' dq'~ab.u. =

2M 2M
X 5[ K"+ q"+=—«g' K'-—

m m

S W = e(W)+t„v(W)Go(W)e(W).

We note that (on the ene gyer shell)

(K'S'v' [A+(E) [ Kv)

vs *(q')
' —2M)—'K"—m 'q"ZE+g (

(89)X( 'q'Sv' '5' 'I e(E+i~) IKqiv)|4(q).

X-:2 2 Z I(

rvedere
'

ions are over the range of observe

restrict the range of fina q w ' '5' '[$(E+ig) [Kqiv)gd(q) dq. (810)

o ~& g'~& qo&qmax )

we et just (K'v'[A+(E)[Kv).j[With 5'=1, E'=E, we get just v'
K'q'5'v

We also see th t

where
SSE2

2= Kg
2

gmgx =
Therefore from (38) anand using (3.12)

(33) (K'q'SY[B+(E) [K )[,

small qo, the Anal state has no de-
th dp b

en
'

ection of j' i.e., e
Afo e s states) so we may

a small
y

of 4m. e now
es dX'=—dQ is o servb d d frange of solid ang es

the E' integration to get

eo

dq'q"Eo(q')

dq( '05v'05' '[e(E+ig) [Kqiv)ps(q)

—vs (0)rs (E+it)—(23II) 'E"

X(K'5'v'[A+(E) [Kv). (811

shell)Now we note athat (on the energy

'E"+m 'q" (312)E=(2M) 'E' —og ——(2M) 'E m

')K' 'SY[B+(E)[Kv) [',o 2 2 Z I(Ko q'
S' Ov' S'~

(3
where

Eo (q )= (23'/m)(qmgx q
2 ~o)

and so with q'=0,

vs.*(q")
flK'SY[A+(E) [Kv)= —m dq

X(K'q"S v
' "S' '[ e(E+ip) [Kqlv)ps(q)

attermg opera

(V+Vv)(W &) '(V+Vv-e(W) = V„+Vv+
X ( '05v'05' '[ e(E+ig) [Kqivgs(q )dq. (313)

with
vs'(q")&

ss the breakup amplitude wi

(
We now wish to express t e re wi

(d ) amplitudes. We no eelastic
b 7,19tor is givensc
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Thus we at last, write using (81'l), we obtain LE'p(0)~E1

00 ——1

ks = —4srrn dqvs *(It) —vs (0)rs (0) . (815) X{-2'g l(K'1v'lA+(E}. lKv)l'
v'v

(K'OS'v'
l
8+(E)

l Kv) f—s (K'S'v'
l
A +(E) .

l Kv), (814}. g&b 2~+ &2 q
2

ttpsl —

l
lap&'& —cr-'l2

Where dg 3 (~srsmCt J

Suppose we choose the form +R-', P l
(K'00lA+(E)

l
Kv)

l
2). (818)

v s(q) =ct(q2+crs')-';

=l2 ' (0)j 'l "'—( ) '3 (81/) „4
~

2
l la &tl —tl2

is the tri let or sin let n- scatterin dQ 3 2srsntct)where ao p g P
length accordingly as S=1 or 0. The normalization
constant c1 is determined by the requirement that
J'dqll4(q) I'= 1, i.e., that

da el
'' do'q. e.

X (off-shell)+R —, (819)
dQ dQ

(816)
Comparing (818) with (81), and defining the "quasi-

then comParing t„v (E) with the aPProPriate effective- elastic" (d, &p) differential cross section analogously with
range formula, vre 6nd (81) but using (K'00lA+(E)

l
Kv) we have

4m.C12
where R=

l
ap t"—cr '

l

2
l
ap t"—n '

l

'—15.The parame-
ter c1 may be evaluated from the above normalization
condition (note cr Stre), and inserted into (819) to

Putting (814) into (84), assuming vt(0)~vp(0), and get the expression (4.19).
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Analysis of Recoil Angular and Range Distributions from
Compound-Nucleus Reactions*
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A method is presented for calculating the observable kinematic properties of 'nuclei recoiling from com-
pound-nucleus reactions. The computations are performed by specifying center-of-mass distribution func-
tions in angle and speed which arise from the emission of particles, and carrying out the appropriate inte-
grations o'ver laboratory speeds and angles. The calculated angular distributions, . range distributions, and
range distributions with angular restrictions (collimated ranges) are directly comparable to the corre-

. sponding properties measured in recoil experiments. Results are given for a number of compound-nucleus
reactions induced by heavy ions and a particles, where suKciently detailed experimental data are available
for comparison. Uery good agreement was obtained by assuming isotropic particle emission in the center-of-
mass system and using a Maxwellian distribution of recoil speeds. The single parameter in the Maxwellian
function was fixed by relating it to the mean-square velocity of the recoiling nuclei, the latter being deter-
mined from experimental angular distribution data by means of a previous analysis. The eGects of di8erent
forms of the center-of-mass angular and velocity distributions on the calculated angular and range distri-
butions are discussed. We conclude that, in all the cases investigated, the recoil angular distributions are
essentially isotropic in the center-of-mass system, with no more than a small anisotropy being allowed by
the experimental data. Furthermore, velocity distributions which diGer greatly from the Maxwellian, form
are not consistent with the observations. The laboratory velocity spectrum of recoils emitted within a small
angular interval about 0' has been. calculated for a specific reaction, and is found to resemble rather closely
a recent experimental measurement of this distribution.

of recoiling .product nuclei can be used to test for full

linear momentum transfer from ari incident beam and
for the symmetry (about ssr) of particle emission in the
center-of-mass system. These criteria may be sufhcient

0

I. INTRODUCTION'

HE use of recoil techniques in nuclear reaction
studies can provide detailed information on. the

reaction mechanism. ' Measurements of average ranges
to Indicate that the reaction under study proceeds via

* Supported by the U. S. Atomic Energy Commission.
f' Alfred P. Sloan Research Fellow. Alexander, in Nuclear Chemistry, edited by L. YatIe (Academic'3. G. Harvey, Ann. Rev. Nucl. Sci. 10, 240 (1960); J. M. Press Inc., New York, to be published).


