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To determine the necessity for d waves at 9.954 MeV,
a search was made including only s and p waves. The
resulting error per datum point was about 1.5. A phase-
shift search was also made at 9.954 MeV, including
unsplit d waves. That is, the d waves were varied in the
search, but were constrained to be equal. Again, the
error per datum point was about 1.5 even though the
number of parameters varied increased from 3 to 4.
These results provide strong evidence for split d waves
at 10 MeV.

As shown in Table VII, at 9.954 MeV the phase shifts
give an error per datum point of 0.6. A systematic
investigation was made at this energy in order to
ascertain the extent a given phase shift could be
changed without increasing the error per point beyond
1.0. The procedure was as follows: The value of one
phase shift was changed from that given in Table VII
by an amount 6 and variation of this phase shift was
then suppressed while the computer adjusted the
remaining phase shifts to minimize the error function K
This procedure was repeated for several values of 6
(both positive and negative) and the resulting values
of E were plotted as a function of the phase shift. Each
phase shift was treated in this same Inanner.

The values of 6 which resulted in an error per point
of 1.0 are listed as the uncertainties in Table VII. Note
that strong correlations exist between the uncertainties.
In particular, although the uncertainties appear to

indicate that the d-wave phase shifts overlap, it was
found that for every solution the d5~& phase shift was
1.2 to 1.8 deg larger than the d3~~ phase shif t., Thus, good
fits to the data were obtained only for the d5~& phase
shift greater than the d3~2 phase shift, and it appears
that the d-wave splitting is determined more accurately
than the absolute values of the d-wave phase shifts.

In all of the above analysis the error per polarization
datum point was approximately the same as the error
per cross-section point.

VII. CONCLUSIONS

Polarizations in 'He(p, p)'He measured at four points
are in excellent agreement with the measurements of
Brown, Haeberli, and Saladin. ' In order to 6t the
available data at 10 MeV, small positive split d waves
are required with the d5~2 phase shift 1 to 2 deg larger
than the d3/2 phase shift.
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Exact upper bounds are established for the errors associated with approximate computations of total,
kinetic, and potential energies of a few-body system. As a consequence, error bounds are also estab. ished
for arbitrary coordinate functions. Reduction methods are developed to treat expectations of coordinate
functions which are divergent at some spatial point, e.g. , the delta function or the inverse square, or at
infinity, e.g., the mean-square radius. Positronium is used as a test case to study the relative accuracy of
the estimates.

1. INTRODUCTION

~~NE is usually compelled to resort to approxima-
tion techniques when dealing with the few-body

problem, the problem of several particles interacting
via a pair potential. There are two approaches which

* Supported in part by the U. S. Atomic Energy Commission
under Contract No. AT(30-1)-1480.

one can follow in quantum mechanics in calculating the
expectation value of some physical quantity. A direct
approach is to obtain an approximate solution to the
Schrodinger equation and use this to evaluate the
physical quantity. This method, of course, is ineKcient
since it yields a great deal more information than desired,
A more modest approach is to approximate the physical
quantity directly, without considering the accuracy
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of the corresponding wave function. An example is
the Rayleigh-Ritz minimum principle for the energy.
Here one can arrive at a good. value of the energy, but
one does not know hovr accurate other quantities are
when calculated with the associated wave function.
Indeed, slight changes in the wave function may produce
large changes in other expectation values, although the
energy may not change by very much. Preuss' has dis-
cussed this point, and has given an example to demon-
strate the necessity of investigating the accuracy of
other physical quantities.

One possible remedial measure is to work vrith a varia-
tional principle for the expectation in question. This can
be done and vrill be considered in a future paper. How-
ever, variational principles are not, in general, minimum

principles, and so one is not really certain of the ac-
curacy of the result. An alternative approach involves
calculating an upper bound to the error for the quantity
desired —dipole moment, quadrupole moment, Coulomb
radius, etc. We shall carry out this approach in the
present paper, bearing in mind that since only a neces-

sary, not a sufhcient, condition on the accuracy can be
obtained, a large upper bound does not necessarily
imply a large error. Following Kinoshita, ' Redei' has
given such a method of evaluating an exact upper bound
to the error in the density of atomic electrons. For a
general discussion of upper and. lower bounds for errors
of expectation values, and for further references in this
line, see Bazley and Fox. A rough estimation of the
error in the mean-square radius of a model triton has
also been made by the authors. ' In this paper, we shall
extend the method of Redei to general interparticle
forces, and, more importantly, extend it to quantities
such as the mean-square radius, whose asymptotic
divergence does not permit error evaluation by merely
integrating over particle density.

In Sec. 2, vre establish a known basic expression for
the error of an expectation. This is tested in several ways
in Sec. 3. The errors associated with functions of total,
kinetic, and potential energy are established in Sec. 4,
and that for an arbitrary pair coordinate function comes
as a consequence. In Sec. 5, reduction methods are
developed to treat expectations of coordinate functions
vrhich are divergent, either at a Gnite location, or
asymptotically at in6nity such as the mean-square
radius. Finally, positronium is used as a test case in
Sec. 6 to study the relative accuracy of the estimates.

2. ERROR BOUNDS Oj% EXPECTATIONS

We shall be concerned with the properties of the
normalized ground state, assumed nondegenerate,

(2 1)
1H. Preuss, Z. Naturforsch. 16a, 598 (1961).'T. Kinoshita, Phys. Rev. 115, 366 lt959).
'L. B. Redei, Phys. Rev. 130, 420 (1963).
4N. W. Bazley and D. W. Fox, Rev. Mod. Phys. 3S, 712

(1963).' S. Aranofi and J. K. Percus, Nucl. Phys. A98, 263 (1967).

of a few-body system. By "ground state" we refer to the
lowest level which is simultaneously an eigenstate of a
selected set of constants of motion —these constants vrill

be maintained for all wave functions considered. If an
approximation g, assumed normalized, is obtained by
some unspecified technique, the energy

is an upper bound to Eo, and indeed the error may be
estimated in a variety of vrays. To bound the error of an
expectation other than the energy, it is helpful to regard
the error in g as due to a perturbation of the Hamil-
tonian. In fact, it is clear—tautologically clear—that

(II—W)p= h+
for any perturbation 8' for which

Wj= (&—&o)y.

(2.3)

(2.4)

The quantity 8' may depend only on coordinates, or
may involve moments, or even projections; its specific
realization will not enter.

Since the true system Hamiltonian is regular, or at
least its irregularities are known, we shall carry out the
comparison of states by applying the perturbation —8',
thereby perturbing f to @. It is best to separate our
strictly normalization changes in expectations from
changes in form. For this purpose, we define

1.e.)

~=~/8 l~),

(lt14)=1,
(2.5)

I'f=f (4 I f)u—
is the part of fwith/projected out. Then

a= (1 I')~=~ (-I'/(& ~—.))(&
or

(2.6')

where
G= I'/(II Bs) . —(2.7)

LIn the usual Wigner-Brillouin method, P would be ob-
tained. from f by a Neumann expansion of the integral
equation for Q.j

If A is non-negative, then according to the triangle
inequality,

(2.&)

Hence inserting (2.7),

l Q ldll)"' —Q lA l
j)"'l &Q lW*GciGWly)'~s (2 9)

which is, incidentally, particularly appropriate to a
many-body system, where the condition Q lP) —+ 0 is
diKcult to avoid. Now P and @ may be related in the
spirit of the Wigner-Brillouin perturbation method, i.e.,
by erst de6ning

(2.6)

so that for any function f,



If we introduce the notation

and define
&~lel~&-=&e)

&ilk&=—(1+v)',

(2,10)

(2.11)

3. ASSESSMENT OF THE BOUND

The quantity v of (2.11) is in a sense a uniform meas-
ure of the closeness of the approximate wave function p
to the exact P. From Eqs. (2.5) and (2.11), we see that

IQ l~&l =(1+v)-'. (3 1)

The overlap I Q I P&l does not exceed 1, becoming 1 only
when @=lt (to within phase). Hence 0&v-+0 as
P ~P. The uniformity of the measure is also indicated
by observing, directly from definition, that

Q —0 I4 —
0&=v(2+v). (3 2)

If the exact ground state Ep (or a lower bound to it) is
known, it is possible to estimate y in a number of ways.
For example, if the lrst excited energy Er (or an upper
bound to it) is also known, we have

E. E.&Q ~-I~ E.l~- &~/&-~- ~l~-~)
= &~I~-E.I~)/Q

= (ho —Eo)(1+v)'/L(1+v)' —13
so that

1+v&DE —Eo)/(E —&o)j'"
or the somewhat weaker

(3.3)

v& o(ho —Eo)/(Er —hp). (3.3')

%e can at this point make a simple check of the ap-
proximations (inequalities) which have been and will

be used. For the normalization, we need only set A =1
in Eq. (2.9), obtaining

v&&yl W+GoWI@&~~p. (3.4)

then (2.9) yields at once

I Q IA Ilt&"'—&A&"'I

&(1+v)(W*GAGW&' '+v(A)' '. (2.12)

This is our basic expression for the error of an expecta-
tion, divided into intrinsic and normalization terms.

cally it is very conservative; thus the bound (3.5) will
be equally conservative compared to the estimate (3.3').

To further analyze the implication that by using
quite general kinematic (Hamiltonian-independent)
arguments, we are intrinsically limited as to the tight-
ness of our bound, we may look at the energy expecta-
tion itself. Thus let A =P Ep in—(2.9), yielding

Sp Ep«—W~G(iV Ep)G—W). (3.6)

Equation (3.6) is, in fact, an equality, as is readily
verified, and this is because one arm of the triangle in-
equality vanishes here. However, if G(H—E,,)G is re-
placed by its maximum eigenvalue (Er—Ep)/(Er —8o) ',
as before, (3.6) becomes

4. PROTOTYPE DEVIATIONS

Recapitulating, the problem of bounding the error
in the expectation of an observable A is reduced to that
of bounding the deviation

D(A) =&W*GAGW) —. (4.1)

While D(A) is, except for normalization, just the
quantity Q —pl A I f p), the explici—t form of (4.1) will

be essential in what follows. In particular, since all
eigenvalues of G=P/(H —Bp) lie between 0 and
1/(Er —hp), a computationally effective bound would
result if this pair of factors could be removed. If A,
assumed non-negative, commutes with the Hamiltonian,
we have indeed D(A) = &W*A' 'G'A' 'W&, so that

Er—Eo) &(H—ho)')
@o—Eo&

Eg—8,) Eg E, —

This is essentially Temple's~ bound and is far better in
practice than the %einstein bound, although still a
substantial overestimate. %e conclude at this stage
6rst that there is a basic irreducible loss of accuracy in
the replacement of the Green's function G=P/(Z Bp)—
by its maximum eigenvalue. Further, the division of f
into f Pand p a—ssociated with the triangle inequality
introduces an estimate whose conservative character
depends markedly upon the specific expectation we
desire.

Hut, assuming that at least Eg&$0, the lowest eigen-
value of G=P/(H Sp) is 1/(Er —Sp—). Hence (3.4) be-
comes v(1/(Er —So)&W*W&'~'(1+v), or

D(A )(&W*A W&/(Ey —So) '

LA,H)=0, A &0.
(4.2)

&(~-b.)'&'"

1+v Ej So—Our major task will be to relate deviations of observables
to others in which a process like (4.2) can be carried out.
The basic observables of the latter type are, of course,
functions of the energy and for these in fact (4;2) can
be improved somewhat. From

D((&—Eo)')=8—i I (&—Eo)'I 0 —
i)/&AIBA»

' G. Temple, Proc. Roy. Soc. (London) 119, 276 (1928).

Now it is known (Weinstein's' method) that

&(&—ho)')'"

is indeed an upper bound to 80—Eo, but that numeri-

' D. H. Weinstein, Phys. Rev. 40, 797 {1932).
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noting that (H—E2)/=0, we have The relation between V, T, and H now permits us to

D((H @ ) ) ((H g ) ) f 0 (4 3)
close the circle and obtain the separate deviations.
From Eq. (4.8),

while for s=o,

D(1)=(~-~i~-~)/(~I~),
or

D(1)=1-1/(1-v)'. (4 4)

D(V) &-,'K,D(T)'/'.

This can be extended by noting that

D(i 1/(r;;) i
s)&K,„D(T)"'/N(N 1),—

(4,11)

Next, we explicitly separate the energy into kinetic
and potential parts:

so that from Minkowski's inequality' (2 &0)

«z~-) )"&z(~-)", (4.12)

p
2 N

H=T+I', 7=P ', I/=-,' Z' ~(r;—r;), (4.3)
1 25$ j,j'=1

we And

D(V') &-'[N(N —1)/2)' 'K, sD(T)' '. (4.13)

and try to build up the-potential energy deviation by
itself. One method of doing this is to note that

Combining the sequences (4.3), (4.4), and (4.13),we can
therefore isolate kinetic and potential terms. To start
with,

D(T) =D(H) —D(V) &D(H)+-', K„D(T)1/2,

Hence

whel e

D(1/ )
r,,—x [ )(D(p,') '/'D(1) ' 2/1/4.

D(P, ,,'1/~ r, ,—x~) &KD(T)'/2

K= iV(N —1)(22/2D(1)/NA2)'/'.

1/~r;, —x~ =-', V; (r;,—x)/Ir, ,—x~
= (i/2A)[p;, (r;;—x)/~ r;,—x

~ j,
so that from. Schwartz's inequality,

whence

D(T') '/'& D(H') '/'+D(~ ) ' (4.15)

Proceeding further,

D(T4) 1/2 D[((H P)2)2]l/2 (D[(2(H2+ P'2)) 211/2

(4.7)

D(T) '"&D(H) '"+-,'Ks
s (4.14)

(4.6)
Next, D(T')' '=D((H V)')'/', —so from the triangle
inequality

24(r) = 24(x) 8(r—x)dx

N(x) V'1/
(
r—x

)
dx/42r

so that

1/
~

r x~ 9224(—x)dx/42t. ,

E
K„&—

i
V2u(x)

i
dx.

4m.
(4.9)

Alternatively, and generally the superior method, if

) N(x) [ &c/[ x], then certainly
) D(N(r)) ] &cD(1/r);

hence
K„&Kmax)2:24(x)

~
. (4.10)

For example, for a Gaussian potential N(x) = exp —21@2,

(4.9) yields K„&2K(3/e)2/2, while from (4.10),

As a consequence of (4.7), we can write for any
potential I

~
D( Q', ,, 24(r;l))

~
(K„D(T)"',

where K., may be determined in a variety of ways.
Perhaps the simplest way is to note that 5. SHORT- AND LO5'G-RANGE REDUCTION

If an observable 24(r,,) is too singular at some point
in space, the bounding techniques of (4.9) and. (4.10)
are unavailable. In this case, however, one can trade
inverse coordinates for moments. The reduction tech-
nique is in fact precisely that used in (4.6) and (4.7),
which v e now write more generally as

D(A/iV F)=D(y F—F y)
D(p. y

—sr sF) D(ysF y
—

sp)

for suitable s. Thus

or
t,D(AV F)~ &2D(y r 'y)' D(r'F 2 'r'F)'/'

ID«F) I &(2/&)D(p y 'p)"'D(F r'F)'" (51)
for any coordinate functions r and F. For example, to
handle ~rs —x~ ', we choose

F=(r;;—x)
~
r;;—.xI-', — r= )r;.,—x),

' G. H. Hardy, J. K. Littlewood, and G. Polya, Ine~p~nhties
(Cambridge University Press, New York, 1934), p. 30.

D(T4) '/2& 2D(H4) '/2+ 2D(y4) '/' (4.16)

and so forth. Thus we have available bounds on the
deviations of powers of the total, kinetic, or potential
energies, and by virtue of (4.8), on any potential sum.
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obtaining at once

D(l rv x
I

') & (1/A)D((p, —p')2) D(l r i—xl 2)"'

so that
D(l r,;—xl 2) &(1/A2)D((y,—p )2)

But for a translationally invariant system at zero total
momentum,

4mND(T) =Q;,; D(p 2+pal)
=D~Z' (p"+p') —2Z y'j
=W&—1)D((p'—y ) ).

D()rg —x( ')&L4m/(E —1)A'jD(T). (5.2)

On the other hand, for the stronger singularity
b(r;, x), w—e of course select

F=(1/4~)(r;;—x) ~r;,—x~-',

but s=2, yielding now

D(b(r;;—x))&(-,'mA)D(p; —y;) ~r;;—x~
—'

X (y;—y,))"'D(I;,—I-')" .

Hy virtue of Eq. (5.2), we also have

and conclude that (note that PWp=Wp)

BGW&=GBWP+ GttH, B/GWP. (5.7)

Hence applying the triangle inequality,

(W*GB*BGW)"'&(W*B*G'BW)' '
+(W*G)B*,H jG'I H,B)GW)"' (5.8)

and removing G' as in (4.2), we see that

D(B*B)'"& (Ey 80) '(—W*B—*BW)"'
+(E~—ho) 'D(t.B*,H)(H, Bj)"' (5 9)

The first term on the right of (5.9) is what would have
been expected from direct removal of G' as in (4.2),
while in the residue, B has been replaced by $H,Bj,
essentially an r —+ p replacement for a pure coordinate
function.

As prototype for the reduction (5.9), we may consider
the mean-square radius about the center of mass (c.m.):

1 A"

~E

with the observation that

B(H 8—) '= (H h—) 'B-
+(H—80) 'LH Bf(H ho)—', (5.6)

D((p' —p;) Ir',—x
i

'(p*—p ))
«mi(& —1)A'D((p' —p;) T(p' —p,))

=L4m/y —1)A~~D(T2),
and so

or

R'= P (r; r;)'—
2E'

(5.10)

4m 3&2 Then from (5.9), with LH, r;—r;]= (A/im)(p, —p;), and
D(8(r;;—x))&—

~

— D(T2)' 'D(T)'". (5.3) using the argument preceding (5.2),
4~ k(cV—1)A'

D(E')'"& (Eg—ho) '(WE'W)'"
Equation (5.3) may now be used in an alternative ex-
pression for K„of (4.8), yielding on integration with
the weight N(x)

cV(cV—1) p 4m
I

D(T2) 1/2
( N(x)

~

gx (5 4) which can be exPlicitly evaluated.
4n k(cV—1)A'

6. EXAMPLE AND APPLICATION
This is valid, although not necessarily optimal, for
singular but integrable potentials as well.

For observabales which do not decrease rapidly
enough at infinity, Eqs. (4.9), (4.10), and (5.4) are in-
adequate. For example, if N(x)=x', they diverge, re-
spectively, as x', x', and x'. Under these conditions, a
diGerent reduction technique is appropriate, one which
eQectively replaces coordinates by momenta. Suppose
that H has even parity, but that 8 is an observable of
odd parity. (This assumption is readily removed, e.g.,
by replacing an even parity 8 by P8, but irrelevant com-
plications are thereby introduced. ) Then

As we have indicated many times, the bounds ob-
tained are quite conservative. It is instructive to see
the relative accuracy of the estimates made, and for
this purpose let us consider a positronium atom, with
Hamiltonian

H = (1/2m) $pp+ pf5 —e'/r, 2

=pg22/m —e'/rgg+P'/4m (6.1)

)P= p~+p2, p~2 ——2(p~ —p2).j The ground state, nor-
malized to unit volume for the c.m. ,

f(rgg) = (ns/n) i(2e-a"" Eo (A2/m)a2

B(H Sp) 'PWp= PB(H —80)
—'Wp-

where
+&BIB(H-&o) 'Wl~), (55)- a me'/2A'. (6.2)

the term on the right must vanish. We now couple this We may fabricate a.n approximate wave function by
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changing the scale:

$(r»)=(p3/s)» g &'» $0= —(p /m)p(2n —p). (6.3)

It then follows that

The exact value is (4')'i'8/n, showing that the triangle
inequality is already responsible for a conservative
factor of 1.5.

Finally, let us check our estimate of D(R'). Since

(~l~)=C2-"P i j(-+P)j,
~=L-:( /p)"'+-,'(p/ )"'3'-1.

WP=P"'~ ' 'e &""(A'/m)25n(P —1/ri2), (6.12)
(6.4)

we obtain
For the sake of comparison, let us choose the mean-

square radius E'= ~ri2', for which we Gnd

(R')=3/4p' (lp i R'i lp) =3/4n' (6.5)

There is little point in assessing higher than second. order
terms in the difference of n and p. Hence with

(6.6)P=(1—~)n,

we desire a comparison of bounds with the known

3/2

Thus, in Eq. (2.12), using y =$8', we have

)
gR2iy)&12 —(R2)ii2) &2(~)~i//n+ (9/32n)$2. (6.11)

' E. %. Schmid, Y. C. Tang, and R. C. Herndon, Nucl. Phys.
42, 95 (1963).

i/ iR2iy)»2 —(R2)ident =(3)'i2(]/n)($+P) (6.7)

From (3.3), using the known value of Eo, Eq. (6.3),

v&2(bo —~0)j(~i—~o) = 3~', (6.g)

oR by a factor of almost 2. If we replace Eo by El,, the
lower bound found from Temple's method, we find
y((32/9)b', a factor of 5 worse than (6.8), which uses
the exact Eo. It appears that large errors may arise
from the uncertainty of the energy eigenvalue. Indeed,
in atomic-physics problems, Eo is considerably closer
to ho than to El, ,and Schmid et al show that the same
is true for a deuteron bound by a Gaussian potential.

Noting that

(W*GR'GW) = (R')—L2/(1+ y) J(lp i
R'

i lp)

+9/(1+7)'3(FAIR'l 0), (6 9)
we readily 6nd that

D(R') = (W*GR'GW) =3(35/4n)' (6.10)

(W*R'W) = (A'/m) 'Pn', (6.13)

and from Eq. (4.14) Ltogether with (43), (4.4), and
(4.I)g,

D(T)"'&-,'nb(A'/m)"'(1+43) . (6.14)

Hence Eq. (5.11)yields

D(R')»'(-', V3 (1+~35/n. (6.15)

Comparing this with the exact value, Eq. (6.10), we see
that we have another conservative factor of about 2.4,
attributable primarily to the D(T)' ' evaluation, and
here mainly to the size of E„.

In practice, the crucial value of y may have to be
determined in the absence of Grm knowledge of the
ground state Eo. The exact energy would then have to
be replaced by a lower bound involving the energy dis-
persion ((H—hp)'). For atomic systems, where the
energy dispersion in available computations can be
quite small, the technique described should. give usable
bounds on, e.g., the mean-square radius. However, for
model nuclei such as the model triton previously studied
by the authors, ' the energy dispersion is sizable, and an
upper-bound estimate for the mean-square radius turns
out to be several times the rad. ius. This conclusion is
unaltered even when the parameters of the wave func-
tion in this model are varied to minimize the above
upper bound. Furthermore, the overlap, (1+y) ', de-
creases exponentially with the number of particles, so
that the estimate becomes especially poor for a large
many-body system. For systems of the above types,
exact error bounds are luxuries, and one must be con-
tent with approximate techniques for improving ex-
pectations. We shall describe in a future paper one such
technique which has proven highly eRective.


