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A simple method is proposed for treating pairing correlations in even-even nuclei without violating the
particle-number conservation. A dispersion formula is derived which makes it possible to calculate the
eigenenergies for a system with A particles, once the occupation numbers for the (A —2)-particle system
are known. This formula is used to calculate the ground-state energies for the even Ni isotopes; the results
turn out to be much better than those obtained by the standard BCS method. The ground-state wave
function is discussed and compared with the A-particle component of the BCS wave function. The possi.-
bility of treating neutron-proton correlations by the same method is also considered, and the general formu-
lation is given for the case of a charge-independent pairing interaction between particles in nondegenerate
orbitals. The degenerate model is studied in detail, and the approximate ground-state energy is compared
with the exact one. The results obtained suggest that the present method may be usefully applied in the
general case of nondegenerate levels.

I. INTRODUCTION

HE problem of treating pairing correlations in
nuclei without violating the particle-number con-

servation has received much attention in the past few
years. ' Recently, new methods closely related to each
other have been proposed by several authors. ' ' These
methods, formally very similar to the usual BCS
procedure, 7 seem to be very promising as compared
with the latter. This is not only because of the conser-
vation of the number of particles, and the improvement
of the numerical results, ' but also because of the better
understanding of the approximations involved. More-
over, there is hope that this kind of approach may be
useful in dealing with more realistic interactions. In
the case of the even-odd nuclei, for instance, it has been
possible to treat a pairing-plus-quadrupole force. '

In Ref. 2 the low-lying states of a spherical. even-odd
A nucleus were described as a linear combination of
states obtained by adding a particle and a hole to the
ground state of the neighboring (A —1) and (A+1)
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4 Giu Do Dang and A. Klein, Phys. Rev. 143, /35 (1966).
~ Giu Do Dang and A. Klein, Phys. Rev. 147, 689 (1966).
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'See, e.g., M. Baranger, in Cargdse Summer School Lectures,
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The ground-state energies calculated by Do Dang and Klein
(Refs. 4 and 5), and by Jean et at. (Ref. 6), are not far from those
obtained by projecting out of the BCS wave function the part
with the correct number of particles.

e D. Prosperi and E. Salusti, Nuovo Cimento 44B, 233 (1966).
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even-even nucleus, respectively. In this paper we pro-
pose an analogous method for the study of even-even
spherical nuclei, con6ning ourselves to the simplest
stage of approximation. More precisely, the ground
state of a system of an even number (A) of identical
particles is described as a linear combination of states
obtained by adding two particles to the ground state
of the (A —2) system. ' Using this approximation and
making use of the equation of motion for a pair of
operators a "tt t(cT. is th-e state which is the time
reversal of n), we derive the equations which determine
the approximate ground state and its energy for the
A-particle system. As a consequence of neglecting the
excited states of the (A —2)-particle system only
pairing-type matrix, elements appear in the 6nal
equations. For the usual case of a constant pairing force
the eigenenergies can be obtained as solutions of a dis-
persion formula. The accuracy of the approximation,
as tested by calculating the ground-state energies for
the model of the Ni isotopes, "turns out to be very good.

The present method can be straightforwardly applied
to the more complicated case of systems of unlike nu-
cleons. In Sec. III we give the general formulation for
an even-even system of protons and neutrons moving in
a set of single-particle orbits and interacting through a
charge-independent pairing force. In this case our
treatment would, not a priori seem to be adequate
because of the complete lack. of neutron-proton corre-
lation in the ground-state wave function. From a
detailed discussion of the degenerate case, however, we
shall conclude that such a wave function may in fact

'A. Covello and E. Salusti, Bull. Am. Phys. Soc. 12, 49/
(1967). A similar wave function has also been studied by R. W
Richardson (private communication).

"A. K. Kerman, R. D. Lawson, and M. H, MacFarlane, Phys,
Rev. 124, 162 (1961).
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be useful for the treatment of neutron-proton pairing
correlations in even-even nuclei.

II. SYSTEM OF IDEN'TICAL PARTICLES

A. Formulation of the Method

We consider a system of A identical particles (A
even) moving in a set of single-particle orbits and inter-
a,cting through a two-body residual interaction. The
Hamiltonian is then written

where

p (A —2) = (A —2, 0
i
a "a

i
A —2, 0) . (9i

The amplitudes X a,re related to the coefFicients c of

(3) through

on the right-hand side, and neglecting the excited
states" ISO, consistently with (3). In this way we
obtain the following set of linear equations for the X's:

eX =2» X +xp Z V«pe[1 2p~(A 2)]Xp) (8)

FI=g»aaa aa+ 4 2 Uapypaa ap apay y

CL nPyb

where

X.(A) =g d.p(A —2)cp*(A), (10)

where n, P, y, and b label the single-particle states, and
V has the following symmetry properties:

~A,O)=g. (A)a.ta.-~~A —2, 0), (3)

where a„t and a-t create time-reversed states, and the
coeKcients c depend on A. In other words, thinking of
the even-A system as an (A —2) core plus two particles,
we assume that its ground-state wave function does
not contain any component corresponding to core ex-
citations. Clearly, such an approximation depends on the
lowest excitation energy of the core [energy gap between
the ground state and the first excited state of the (A —2)-
particle system), namely, the larger this energy the
better the approximation.

%e de6ne now the following quantities:

X.(A) = (A,O~ a.ta.-t
t
A —2, 0), (4)

e(A) =Ep(A) —Ep(A —2),

where Ep(A) and Ep(A 2) are the energies corr—espond-
ing to the states ~A, O) and ~A —2, 0), respectively. The
equation for the amplitude X is obtained from the
equation of motion for the pair of operators a ta-t.
It is

eX-= (A 0( [H,a-'a='jI A —2,0). (6)

Once the commutator [H,a ta tj is calculated, Eq-.
(6) can be linearized by introducing the unit operator

P ~

A —2, I) (A —2, I (
= 1

(2)

Let us denote by
~

A —2, I) a complete set of eigen-
states of H for the system with (A —2) particles, where
I stands for all the quantum numbers which specify
the state. The ground state ~A, O) of the A-particle
system can clearly be expanded in terms of states built
by applying two creation operators to the eigenvectors

~
A —2, I).We now make the approximation of neglect-

ing all the excited states (IAO) in such a,n expansion,
namely, we put

d p(A —2)=(A —2, 0~apapa ta t(A -2, 0—). (11)

Note that in (1) the residual interaction V was left
completely arbitrary, whereas in (8) only pairing-type
matrix elements V -pp appear. We may say that as a
result of our approximation only pairing correlations
are extracted from the interaction.

Equation (8) is equivalent to an eigenvalue problem
for the nonsynunetric matrix T whose elements are

T p 2» 5 p+ p'——V -,pp[1 —2p (A —2)]. (12)

The calculation of the ground-state energy and wave
function for the A system therefore requires the knowl-
edge of the quantities p (A —2) and d p(A —2). To
this end a step-by-step procedure can be used. Since
we have

p.(0)=0, d p(O)=S.p,

it follows from (10) and (11) that

X (2) = c (2).

Also, it is easily seen that

p-(2) =X-'(2)i 2 Xl'(2)
p)o

(13)

(14)

~' We assume that principal-quantum-number excitation is not
allowed.

Hence one can so]ve Eq. (8) for A =2, thus obtaining
ep(2) and

~
2,0), then calculate the p(2)'s and. the d(2)'s

and proceed by successive steps up to A. Actually, for3)2 ea.ch step involves the diagonalization of a non-
Hermitian ma, trix, and therefore the eigenvalues may
turn out to be complex. However, the situation becomes
much simpler if we consider the case of the usual con-
sta,nt pa.iring force, namely, if we assume that all the
matrix elements V -py are equal. In this case, as we
shall show in the next section, a dispersion formula for
the eigenenergies can be derived and the nature of the
solutions can be studied graphically.

It is to be noted that for A = 2 our method is exact,
since the expansion (3) and the linearization of Eq. (6)
can be made without any approximation. In this case
the matrix (12) is obviously symmetric.
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By virtue of the step-by-step method described. above,
the ground state

~ A,O) can be straightforwardly related
to the vacuum

~
0). We shall come back to this point in

Sec. II C, where the structure of such a wave function
will be discussed in detail.

B. Pairing Case

For the usual constant pairing force V -pp= —G
(G)0), and the solution of the eigenvalue problem is
greatly simplified. In fact, Eq. (8) becomes

e = 2e+G(A —2)—GQ, (20)

and the ground-state energy Ep(A) of the A-particle
system can be easily derived. One obtains

the (A —2) system, and. therefore one obtains the exact
solution for the pairing force. %e have

p(A —2) = (A —2)/2Q,

where Q is the number of pair states (number of n) 0).
Then Eq. (17) .becomes

a e

from which it follows that"

1GP1—2p (A —2)]
X =— -QXp,

2
(16)

Ep(A) =A e—-', GA (1——.',A+Q),

namely, the exact result.

1VNmeri cal Eesllts

(21)

1 1—2p (A —2)

G n)0 26~ e

As we have already pointed out, in the simple case of
two particles our procedure is exact and Eq. (17) re-
duces to the well-known" dispersion formula

1—=Z
G &o 2e —e

(18)

In this case one has also d p
——b p, and the X's coincide

with the c's. For A) 2 the eigenvalue equation (17) can
be solved graphically to give the approximate ground-
state energy )relative to the ground state of the (A —2)
system) of the system of A particles interacting through
a pairing force, once the occupation numbers p (A —2)
for the (A —2)-particle system are known.

Actually, Eq. (17) has several solutions, but the
eigenvalue ep

——Ee(A) —Ep(A —2) in which we are
interested can be easily identified as the one which
tends toward the appropriate value of 2e when the
residual interaction is turned off. The eigenvalues below
ep correspond to eigenvectors which vanish when G -+ 0
because of the Pauli principle, and therefore must be
considered unphysical. The states corresponding to
energies larger than e0 represent the excited states of
seniority zero of the A-particle system, within the ap-
proximation of neglecting all the excited states of
seniority zero of the (A —2) system. However, these
states are not of interest here since the above approxi-
mation is not expected to be valid for them.

"This equation has also been derived by R. R. Chasman, Phys.
Rev. 156, 1197 (1967).

~4 See, e.g., A. M. Lane, Nuclear Theory (W. A. Benjamin, Inc.,
New York, 1964), Chap. 1.

The Degenerate 3fodel

Let us now consider the degenerate model, in which
all the single-particle energies are assumed equal. In
this case there are no excited states of seniority zero in

%e have calculated the ground-state energies for
the model of the even Ni isotopes, which is a standard
test case since there is the exact solution" with which
to compare the results. The single-particle energies are
(inMeV) e&p, p 000 ef,p 078 e»,p

156 cop, p 452
and the pairing constant G= 0.331 MeV. "The number
of particles ranges from 2 (Ni") to 10 (Ni"). Here the
occupation numbers p (A) have been obtained by means
of the very simple formula

p (A) =u-(A —2)+X-'(&)I2 Xti'(A) (22)
p&o

TAN&.K I. Values of the ground-state energy (in MeV) for
the model of the Ni isotopes.

Ep(A)

Exact'
BCSb
Present ~ ork

NiPP(2)

—1.49
—1.13
—1.49

Ni" (4)

—2.11
—1.51
—2.07

Ni" (6)
—1.75
—1.09
—1.59

Ni" (8) i%i"(10)
—0.51 1.70
—0.22 2.48
—0.36 1.75

' Reference 11.
b Reference 16.

~~ Actually, for A =6(Ni") we used a slightly smaller G=0.306
MeV in order to obtain a real solution for Eq. (17).

'6 L. S. Kisslinger and R. A. Sorensen, Kgl. Danske Videnskab.
Selskab, Mat. Fys. Medd. 32, No. 9 (1960)."Y.Nogami and I. J. Zucker, Nucl. Phys. 60, 203 (1964).

which can be easily derived by making use of the same
approximation involved in Eq. (8) and by assuming
c„(A)=X (A).

In Table I we compare our energies to the exact ones
obtained by Lawson, Kerman, and MacFarlane" and
to those obtained by Kisslinger and Sorensen" using the
BCS method. It appears that the present method gives
much better ground-state eriergies than the standard
quasiparticle approximation. Our results are practically
as good as those achieved by other particle-number
conserving approximations. 4 ' " In Table II we give
the values of the occupation numbers for the various
Ni isotopes obtained by using Eq. (22).
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TmLE II. Values of the occupation numbers
p;(A) for the Ni isotopes.

related to IA —4, 0). Iterating this procedure one
6nally obtains

A/2

2 4 6 8 10 IA,O)= g Lg c,(2p)a tast)IO),
p~1 a

(23)

pele 0.342 0.596
fsls 0.082 0.213
PIi2 0.036 0.090
g9) 2 0.007 0.016

0.716 0.831 0.927
0.425 0.619 0.800
0.163 0.282 0.463
0.026 0.040 0.057

where IO) is the vacuum.
Since the coeKcients c depend on p, we introduce

their average value

C. The Ground-State Wave Function

The ground-state vectors IA,O) and IA —2, 0) are
related through Eq. (3). In the same way, namely, by
neglecting all the excited. states of the (A —4)-particle
system, the ground-state vector IA —2, 0) can be

2 A/2

c.=—P c (2p)
A p-~

and the relative deviation from the average value

~«(2P) = (1/c.)Lc-(2P)—c-3

Equation (23) can therefore be written

(25)

IA 0&=II && -L1+~-(2P&3 -' =') Io&= K - -' ='&""IO&+(Z - -' «-')'*" "Z Z -~-(2p& -' ='Io&
A a A Ck

+s(Q c a ta-t)i" & Q g c„cpa (2p)hp(2p')a ta taptaptIO-)+ . . (26)

The first term in (26),

(P c.a.'a ')"~'10),- (27)

is of the well-known form of the A-particle component
of the BCS wave function. As has been shown by
Bayman, ' it is possible to derive the BCS theory from
a trial function of the form (27) without introducing
Quctuations in the number of particles. The second
term in (26) vanishes because

Z ~-(2p) =o. (28)

For the same reason the only nonvanishing contri-
bution to the third term is

L(P c a ta t)$(A—4)

XP P c cpA (2P)hp(2P)a ta taptapt IO). (29)

III. SYSTEM OF PROTO5'8 AND NEUTRO58

A. Pairing Interaction between Particles in
Nondegenerate Orbitals

We shall now study the problem of neutron-proton
pairing correlations, making use of the same method

~8 B. F. Bayman, Nucl. Phys. 15, 33 (1960).

We can thus conclude that if the values of the c (2p)
are close to each other, i.e., if the 6 (2p) are «1, the
contribution (29) and the higher-order contributions to
I A,O) are negligible, and we can approximately identify
IA, O) with (27).

Note that the wave function (23) is exact in both
limits when Q is either very large or very small compared
to the single-particle splittings.

applied to the case of identical particles. Here we con-
sider an even-even system of A nucleons (Z protons and
Xneutrons) and given T,= -,'(E—Z) interacting through
a charge-independent pairing force, which is effective
only for J=O, T=1 pairs. The Hamiltonian is written

~ =~ &a~at ~at —4G ~ ~at ~at' ~pt ~pS &

~p~t'
(3o)

l(A T*)0&=g c a a- I(A 2 T +1)0& (32)

Clearly, neither of the wave functions (31) and (32) has
the isospin T as a good quantum number.

We now de6ne the following quantities:

X =((A,T,)OIa, ta ,tI(A —2, T,+1-)0), (33)

e,=E,(A, T.)—E,(A —2, T,+1), (34)

where Es(A, T,) and Es(A —2, T+ 1) are the energies
corresponding to the states I(A,T,)0) and

I
(A-2, T,+1)0),

respectively. The equation for the amplitude X is
written

esX = ((A,T,)OI $H,a,ta„t)
I (A —2, T,+1)0).-(35)

where t is the isobaric-spin index. The two charge
states will be explicitly labelled by x and v.

According to (3), the ground;state vector
I (A, T,)0&

can be related either to the ground state of the system
with (A —2) particles and T, 1, or to the groun—d state
of the system with (A —2) particles and. T,+1.We have

I (A, T,)0)=Q c „a „taa„t
I (A —2, T,—1)0) (31)
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2 2/2

Z c-(2P),
A —Tg n-&

ezX««= 2e«&«« —Gp«. (A —2, T.+1)X««

Proceeding now in the same manner as described in Sec. ticles and introduce the two average values
II A, one obtains the analog of Eq. (8);

(44)

—~sGl 1—2p (A —2, T,+1)$Q Xp, (36)
2 &/2

c.„= Q c,„(2p'),
A+T, r'-r

(45)

~-(2P) = (1/&-)Lc-(2P) —&-3, (46)

(47)

and

~-(2P') = (1/ -)L -(2P') —-].p..(A —2, T,+1)
=((A —2, T,+1)0la .ta l(A —2, T,+1)0). (38) The wave function (43) can then be written as a sum of

terms of increasing order in the 6's:
The second. term on the right-hand side of Eq. (36)
represents the contribution arising from the neutron-
proton interactiori.

From Eq. (36), one derives the following dispersion
formula for the eigenenergies, which is formally identi-
cal to (17):

l(A T.)0)=(Z & .-' =.')'"(Z &. ' ')""I»

+0(h')+ . . (48)

The 6rst term in (48) is of the form of the component
with definite A and T, of a BCS ground state, which is
the product of a proton wave function times a neutrori
wave function. Such a product wave function

l
BCS),„

= lBCS) X lBCS)„, which is an eigenstate of the pair-
ing Hamiltonian H»+II „within the usual quasi-
particle approximation, has been the starting point of
Elliott and Lea" for their treatment of pairing corre-
lations between neutrons and protons.

As in the case of identical particles, we now note that
if the 6 (2p) and 2 „(2p) are «1 the second- and
higher-order contributions on the right-hand. side of
(48) are small, and we can approxima, tely write

1—2p (A —2, T,+1)»

2&~p ezQ n)0

with

(40)e „=e. ,'Gp—„(—A 2, T—,+1).
Thus the eBect of the neutron-proton interaction
amounts to a renormalization of the single-particle
energies e in the eigenvalue equation (36). This
equation can be solved graphically, once the two oc-
cupation numbers p (A —2, T,+1) and p „(A—2,
T,+1) are known.

The equation for the energy difference ez ——Es(A, T,)—Es(A —2, T,—1) between the ground states of two
isotopes (Z,E) and (Z, E—2) can be obtained by ex-
changing the role of protons and neutrons.

It reads

l(A, T,)0)=(p c..a, ta.- t)zj'

X(Z cp.ap.'ap„')&&slo). (49)

Clearly, both the wave functions (43) and (49),
though conserving the number of protons and neutrons,
i.e., A and T„do not have a definite isobaric spin T.
We shall come back to this point in the discussion of the
degenerate model.

g e&0

with
= e —-', Gp (A —2, T,—1}.

and the relative deviationsp.„t,'a —2, T,~»,
=((A —2, T,+1)0la „ta „l(A—2, T,+1)0) (37)

B. The Ground-State Wave Function

Starting from a system with given A and T, and
stepping down by successive approximations, one ob-
tains the following wave function:

Z/2

1(A,T,)0)= H LP c..(2P)a..'a-..'&
y 1 a

K/2

X H LQ cp.(2P')ap. 'ap, 'BIO). (43)

Vfe can proceed now as in the case of identical par-

C. The Degenerate Model

For the degenerate model, we have

p (A, T,)= (A —2T,)/4Q, p„(A,T,)= (A+2T, )/4Q. (50)

Hence ez and eN are given by

ez ——2e—(G/2Q) (-',A+ T,)+G(-,'A —T,—2)—GQ, (51)

e~ ——2e—(G/2Q)(-', A —T,)+G(-,'A+T, —2)—GQ. (52)

The pairing contribution Ws(A, T,):to the ground-state
energy of the system with Z protons and E neutrons can

's J. P. Klliott and D; A. Les, Phys. Letters. 19, 291 (1965).
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Tanr. E IIL Values of o t see Eq. (SS)j in percent for the case 0= 10.

2

6
8

10
12
14
16
18
20

0

4.29

4.21

4.12

4.00

3.85

0

2.76

3.18

3.27

323

- 2.00

2.50

2.63

2.58

1.54

2.11

[0
1.22

1.60

I0
P Nl

0.98

1.25
0.77

0.91

7

0.57
0.34

9 10

then be written

P's(A, T,)= —(G/40) (-',A '—T,') —-', GA

+-',G(xsA'+ T,') —-,'GAQ. (53)

Here the energy is no longer exact as in the case of
identical particles. Actually the ground state (43),
which does not contain any neutron-proton corre-
lation; reduces in the degenerate case to an exact
eigenstate of the charge-dependent pairing Hamiltonian
H»+H„.

It is now interesting to compare the approximate
energy (53) to the exact one, which can be written

I)= —l (l —
I *I)

+-',G(4A'+ T.') ', GA0. (5—4}—

Comparing the two expressions (53) and (54) (from
now on we assume T, ~) 0 for the sake of simplicity) we

see that the relative error o involved in. (53) is

Several attempts" "have been made thus far to take
into account neutron-proton pairing correlations by
means of a generalized Bogoliubov transformation. In
this context it has been shown" for the degenerate case
that the state of lowest energy is obtained when the
generalized transformation reduces to a product of two
ordinary Bogoliubov transformati. ons on neutrons and
proton separately. In other words, the quasiparticle
ground state turns out to be the product of a

I
BCS),

wave function for protons times a
I BCS),wave function

for neutrons.
The energy corresponding to the

I
BCS) „=IBCS)

X
I
BCS)„ground state is written" for the degenerate

model

"(A T.)= —(G/4Q)(-'A'+ T ')
+-,'G(-.'A'+ T.') ;Can. (57)——

Comparing this expression to the exact one (54),
obtain the relative error in (57), which we call o':

gl exact

Ws'*'"—IVe 1 A (40—A) —4T,(2Q—T,) gr exact gr n os
(55)

Ws'"'" 20 A (4Q A+6) 4T—(1+Tt)— 20

It is easily seen that

0&«1/20, (56)

3A (40—A) -4T,(20+T,)
X (58)

A (40—A+6) —4T,(1+T,)
the equality sign on the left-hand side occurring when

T,= ~A, namely, when one has only one kind of particle.
In Table III we give the relative error a, in percent,

for all the possible values of A and T, corresponding
to 0= 10. It appears that the energy (53) is a very good
approximation to the exact ground-state energy (54).
This is easily understood on the basis of the results
obtained in Ref. 20. There the overlap of the eigen-
functions of H =H»+H„„+H„„(charge-independent
pairing Hamiltonian) and H'=H»+H„„belonging to
the eigenvalues (54) and. (53), respectively, has been
plotted as a function of T for different values of A. For
T)0 the overlap is remarkably large (close to 100jo),
showing the lack of neutron-proton correlations in the
ground state of even-even systems when the residual
interaction is assumed to be a pairing force.

st J. Flores and P. A. Meiio, Nucl. Phys. 88, 609 (1966).

This error is bounded by the following limits:

1/20 ~& o '(3/20. (59)

Clearly, for a given A the smallest value of 0-' is obtained
when T,=-',A, namely, in the case of identical particles '

In particular the minimum value 1/20 is reached only
when A =20—2. The two errors 47 and o.' can now b
related to each other. One obtains

1 16T,(Q—T,)
o' =30'+ & 3o, (60)

2Q A (40—A+6) —4T,(1+T,)
the equality sign holding only when T,=O (aside from
the trivial case T,= Q, where o =a'=0).

"B.H. Flowers and M. Vujiki6, Nucl. Phys. 49, S86 (1963).t' A. Goswami, Nucl. Phys. 60, 228 (1964).~ P. Camiz, A. Covello, and M. Jean, Nuovo Cimento 36, 663
(196S); 42, 199 (1966).
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Tsar.z IV. Values of n' /see Eq. (58)) in percent for the case 0= 10.

2
4,

6
8

10
12
14
16
18
20

12.86

12.63

12.35

12.00

11.54

9.00

11.38

11.59

11.45

11.13

8.89

10.57

10.83

10.70

10.32

8.75

10.00

10.20

10.00

8.75

9.51

9.60

9.27

8.33

9.02
8.00

8.46

8.18

7.50

/. 71
6.67

5.00
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In Table IV we give 0.', in percent, for all the values
of A and T, for the case 0=10. %e see then, as has
already been pointed out in Ref. 23, that as fax as the
ground-state energy is concerned, the BCS approxi-
mation for a system of protons and neutrons is only
slightly worse than the usual BCS approximation for
identical particles. It is to be stressed, however, that
the overlap of the ~HCS)„„vacuum with the exact
ground state for a system with a given number of par-
ticles A, isospin T, and its third. component T„is fairly
poor. In the case 0=4, for instance, the weight of the
component with definite A, T.and. T= T, in the ) BCS)„„
wave function (with fixed average number of particles
(A)=A and isospin projection (T,)=-T,) is always
smaller than =18%%uz,

" which is much worse than is
usually encountered for the case of identical particles.

On the other hand, , as we discussed before, the ground-
state wave function (43), which does conserve A and T,
has a very large overlap with the exact wave function
for T,&0. These considerations, which are valid. in the
degenerate case, suggest that the wave function (43)
may also be useful for the treatment of even-even nuclei
with T,&0 in the general case of nondenegerate single-
particle levels.

IV. CONCLUSIONS

Ke have derived an approximate method. to treat
pairing correlations in even-even nuclei conserving the
number of particles. One of the most interesting features
of this method is that the eigenvalue prob)em for any

number of particles is reduced to the solution of a dis-
persion relation. From the numerical results obtained
for the model of the Ni isotopes, it appears that our
approximation yields ground-state energies which are
considerably better than the BCS method, and com-
parable to those obtained by means of other number-
conserving approaches. This is well understood within
the framework. of the present approach when noting
that the ground-state wave function may approximately
reduce to the form of the A-particle component of the
quasiparticle vacuum.

Concerning the possibility of treating neutron-proton
pairing correlations by means of the same method, the
study of the degenerate model encourages further work
in this direction.

Finally, we wish to conclude by stating that the
present treatment of pa, iring correla, tions should be
considered as a 6rst step towards the treatment of
more realistic interactions. It remains to be seen, how-
ever, if suitable approximations can be devised to cope
with the greater complexity of the problem.
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