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The lattice dynamics of crystalline bcc helium is treated by using the time-dependent Hartree approxima-
tion together with the results of variational calculations of the ground-state energy using correlated trial
wave functions. The phonon spectrum has been calculated for various densities of bcc He' and He4. We pre-
sent dispersion curves, density-of-states histograms, and sound velocities for selected densities. In addition
we have calculated (for these densities) the mean-square displacement and the specific heat Cv which is
expressed as a temperature-dependent Debye temperature Q(T). It is found that the reduced 0 Trelation--
ships follow a universal curve for all densities considered. This is a theoretical confirmation of the experi-
mental fact that the bcc phase of crystalline helium (like the other crystalline phases of He' and He') shows
a thermodynamic behavior very similar to that of ordinary crystals. The calculated Debye temperatures are
about 15—20% higher than those recently measured by Sample and Swenson. A possible cause for this
discrepancy is indicated.

I. INTRODUCTION

~CRYSTALS of the various isotopes of helium and~ molecular hydrogen cannot be treated by the
"classical" theory of lattice dynamics. ' This difficulty
is due to the small mass of these substances and the
weakness of the attractive part of their van der Waals
interaction. Therefore, the quantum-mechanical zero-
point energy in these crystals is comparable to their
potential energy, and the root-mean-square (rms) devia-
tion of a particle from its lattice site is not small com-
pared to the nearest-neighbor distance. The problem is
not simply that the anharmonic terms are large; it is
that the harmonic approximation itself breaks down.
This result has been demonstrated by de Wette and
Nijboer, ' who found that the traditional theory, when
applied to crystalline helium, yields imaginary phonon
frequencies at each point of the first Brillouin zone, so
that the harmonic Hamiltonian is not Hermitian. Be-
cause of the failure of the traditional lattice-dynamics
formulation for these solids owing to the relatively

*Based in part on work performed at the Argonne National
Laboratory under the auspices of the U. S. Atomic Energy Com-
mission. Also partially supported by the U. S. Air Force OfFice of
Scientific Research under Grant Nos. AF-AFOSR 840-65 and
AF-AFOSR 1257-67, and by the U. S. Atomic Energy Commission
under contract No. AT(i 1-1) 1569.' M. Born and K. Huang, Dy~araical Theory of Crysta/ Lattices
(Oxford University Press, London, 1956).'F. W. de Wette and B. R. A. Nijboer, Phys. Letters 18, 19
(1965).

large zero-point motion, they have been called quantum
crystals. '

In view of the existing experimental evidence regard-
ing these crystals, the instability found from the clas-
sical theory may seem puzzling. After all, the crystals
do exist and x-ray measurements' show that they have
well-defined structures. In addition, the heat capacities
have been extensively studied~~ and seem to be un-
usual only for bcc He' very near melting. Furthermore,
sound velocity measurements ' have yielded no sur-
prises. It is true that these crystals have large com-
pressibilities, ""but the thermal expansion" seems
quite normal, again except for bcc He' near melting.
Thus the picture presented by the existing experimental
results is that these crystals show no behavior quali-
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4 A. F. Schuch, E. R. Grilly, and R. L. Mills, Phys. Rev. 110,
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196Z, edited by R. O. Davies (Butterworths Scientific Publica-
tions, Ltd. , London, 1962); W. R. Abel, A. C. Anderson, and
J. C. Wheatley, Phys. Rev. Letters 7, 299 (1961).

9 F. P. Lipschultz and D. M. Lee, Phys. Rev. Letters 14, 1017
(1965).' E. D. Adams, G. C. Straty, and E. L. Wall, Phys. Rev.
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tatively different from that of ordinary crystals which
are adequately described by traditional lattice dynamics.

The theory which we present in this paper has as its
objectives not only the calculation of various properties
of these crystals from as fundamental a point of view
as possible, but also the understanding of the basic
physical reasons for their observed "mundane" be-
havior. A preliminary account of this work has already
been published. "Our starting point is the Hartree ap-
proximation, in which the wave function of the crystal
is written as a product of single-particle wave functions,
each centered about a different lattice site. The virtue
of the Hartree approximation is that it yields a self-
consistent solution in which the particles are indeed
localized, i.e., it is a convenient way to introduce the
structure of the crystal into the calculation.

It is well known that the Hartree approximation does
not treat the correlations in this system properly. In
particular, we expect both short- and long-range cor-
relations to be of importance in these crystals. The
short-range eRects are present because of the very
strong short-range repulsion which exists between two
atoms, whereas the long-range correlations are present
because there must be collective motions (phonons) in-

volving all of the particles.
We treat the phonons by means of the time-dependent

Hartree approximation. "Here it is assumed that the
system wave function in the presence of externally im-

posed disturbances may still be factorized for all times
into a product of single-particle functions. With this
assumption it is possible to calculate the response of
the system to a weak space- and time-varying perturba-
tion. In this way the phonon frequencies appear as poles
of the response function in complete analogy with the
way the collective excitations appear in the electron
gas or in magnetic systems. "

We treat the short-range correlations by adopting
the results of a variational calculation of the ground-
state energy using cluster-expansion techniques. '"This
calculation assumes that the trial wave function is a
product of single-particle functions times a product over
all pairs of a two-particle function. The two-particle
function is chosen to have a simple form which vanishes
rapidly for small interparticle separations, thus avoid-
ing the hard-core repulsion, and which contains a free
parameter chosen so as to minimize the energy. It turns
out that the single-particle function is the solution of the
Hartree equation for a crystal but with the replace-
rnent of the true potential by an eRective potential
which no longer has a singular repulsion. Although this

"L.H. Nosanow and N. R. Werthamer, Phys. Rev. Letters 15,
618 (1965). We refer to this paper as NW.

"D.R. Fredkin and N. R. Werthamer, Phys. Rev. 138, Aj.527
(1965).We refer to this paper as FW.

"See, e.g., R. H. Bront, I'hose Trasss&iosss (W. A. Benjamin,
Inc., New York, 1965).

'~ J. H. Hetherington, W. J. Mullin, and L. H. Nosanow, Phys.
Rev. 154, 1/5 (196'Il. We refer to this paper as HMN.

calculation yields ground-state energies which are about
10 cal/mole higher than experiment, it produces values
for the pressure and compressibility which are accurate
to about 10%.

In the present paper we synthesize the time-dependent
Hartree and cluster-variational techniques to calculate
the phonon frequencies of bcc He' and He'. Our ap-
proach is simply to replace the potential in the time-
dependent Hartree calculation by the eRective poten-
tial deduced from the cluster-variational approach. A
review of the necessary formal background and a
derivation and discussion of our final formulas for the
phonon frequencies are given in Sec. II. The results of
the numerical evaluation of the frequencies are pre-
sented in Sec. III, in the form of dispersion curves,
density of states, and low-temperature speci6c heat
and mean square displacement. These results are as-
sessed and discussed in Sec. IV, and in an Appendix we
comment on the numerical procedures used in obtaining
them.

II. FORMAL DEVELOPMENT

Reviewing the formal basis for our calculation of the
phonon spectrum, we begin by summarizing the theory
of Fredkin and Werthamer (FW) appropriate for a
nonsingular interatomic potential. This theory regards
the phonons as being among the set of normal modes of
small-amplitude oscillation of the system about its
equilibrium state. That is, the phonon frequency &a(k)

is given by a pole of the response function of the system
to an in6nitesimal disturbance of wave number k. The
equilibrium state is approximated in an especially sim-

ple way, namely by the Hartree description, so that the
time-dependent response about this equilibrium is just
the familiar random-phase approximation (RPA). As
is usual in the RPA, modes of different wave number do
not interfere with each other, and hence the phonons
are undamped to this approximation.

The Hartree representation for the equilibrium state
(we specialize here to T=O) is a set of single-particle
eigenfunctions y (x) and eigenvalues 0 satisfying the
self-consistent equation

—(js'/2M) V'+ p d'x' user(x')v(i x—x'+~ i) q ~(x)
v+0

where ~ is a lattice vector, 0.=0 is the lowest-energy
state, and ~ is the interatomic potential taken to be of
the Lennard- Jones type,

rt(y') =4e((o/r) —(0/r) g

If we assume an in6nitesimal disturbance which is
applied with frequency os and wave vector k, and which
couples to a one-particle observable O(x), then FW
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R(k,co) =
aa', yy'

d'x q (x)0(x)q (x)

arrive at the formula for the response of 0, will turn out to be the phonon polarizations. Then using
the dipole sum rules of FW, Eqs. (38) and (39), we find
that Eq. (6) for )t= 1, 2, 3 reduces to

X [OR-t(k,~)]... „,(n„—n„.) (S, ,—S, ,,) togs(k)e~), — g (1—e
—'~ r)

MN ~ 8%8%
dsJrdss yes(x)

d'x' q, (x')0(x') q, (x'), (3)
X q s'(x') v(

~

x—x'+~
~ ) eke. (9)

with the matrix 5R de6ned as

[OR(k,&o)). ..=re'8 „8,, —[X)(k)]...,„,
[n(k)]... „,.= (a.—n„.)sg. ,,b...,.—(fl.—n..)

Choosing the ck~ as eigenvectors of the tensor on the
right-hand side in Eq. (9) is sufficient to guarantee that
the tt elements exhibited in Eq. (8) indeed diagonalize

(4) OR. Furthermore, noting Eq. (8), we find that the dis-

placement-displacement response tensor given by Eq.
(3) with 0(x) =x can be re-expressed as

X(S.,,—a. ,,)iV-' P e-". ds~d'~' q.(x) q, (x') R(k, to) = P eppes), . g ['lt t(k, to)]g,. ~

aa', yy'

x [OR-'(k,~)]- .~7 [&(k,~)]»,~, (1o)

Since we assume a Sravais lattice, X is the total num-
ber of particles in the system.

The poles of the response function, and hence the
collective mode spectrum, are given by the zeros of
OR(k, to). But since OR is a very large matrix, of dimen-
sionality equal to the square of the number of eigen-
states of the Hartree Eq. (1), it has an equally large
number of zeros. The problem then arises as to which
three (for given. k) are the phonon inodes, a problem
treated adequately by FW only for k= 0. The phonons
are defined as those modes for which the response is
nonvanishing when 0 is chosen to be a,n atomic dis-
placement, 0(x)=x. The easiest way to proceed is to
introduce the similarity transformation 'll, which diago-
nalizes S, so that

2 [&(k)]- ,- [tt(k)]» ,
= '(k)[tt(k)]- ,' (6)

Then we can write

[OR
—'(k,o))]... „=P [ro'—o&),'(k)] '

X [tt(k)]-«,~['tt '(k)]~, ' (7)

Although we are unable to specify 'll completely, we are
at least able to exhibit three elements of the matrix

and so using Eq. (7),

R(k, to) =Q eppes), [(o'—ro), '(k)]-'.

'I'(xt, -,xx) =II po(x, —R;) II f(lxi —
x%%dl) ) (12)

was adopted, where R, is the position of the ith lattice
site. The correla, tion function f was chosen in a, form to
modify the hard-core region of the potential,

Thus the three modes exhibited are the owly ones which
contribute to the displacement-displacement response,
and thus are unambiguously identified as the one-phonon
modes. Equation (9) is similar to the usual eigenvalue
equation in the harmonic approximation but with the
positions of the two interacting atoms averaged over their
mean ground-state distribution. Equation (9) was the
basis for the numerical work of Nosanow and Werthamer,
but it was not recognized there or in F% to be the exact
projection of Eq. (6) onto the one-phonon manifold. "

So far the discussion has been limited to nonsingular
potentials, and hence cannot be applied directly to
helium. To overcome this de.culty we look to the
cluster-variational calculations'" of the ground-state
energy, where a trial ground-state wave function,

f(r) = exp( —&[(~/r)"—(~/~)']), (13)

X d'x q (x)egg. xq»(x),

['tl. '(k)]). . .= d'x q (x)egg xq .(x),

A. = 1,2,3,

with the ci,), being three orthonormal unit vectors which

and E was left free as a variational parameter. The ex-
pectation value of the Hamiltonian in this trial state
was reduced to a manageable form by making a cluster
expansion. Wraith only two-body clusters retained, ' the
resulting trial ground-state energy was varied func-
tionally with respect to yo, leading to an equation

"The development leading to the proofs of Eqs. (9) and (ll)
is due to Dr. N. S. Gi's, whom we thank- for permission to quote
these resu&ts.
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generalizing Eq. (1) which was integrated numerically.
The qo so determined was well approximated by a
Gaussian,

(14)po(x)—(A/~)' 4 exp( ——'Ax')

except for large x. Making use of result (14) in an alter-
native calculation, "we again adopted the wave func-
tion of Eq. (12), but po was restricted to a Gaussian in
form with the parameter A left free. Then both two-
and three-body clusters were retained and the parame-
ters A and IC were determined variationally. While the
three-body cluster terms played a significant role in
determining the minimum of the energy with respect to
A, especially in the dependence on density, at the
minimum the three-body clusters were approximately
two orders of magnitude smaller than the two-body
terms. Thus it is reasonable to conclude that the cluster
expansion is converging rapidly for the choice of f
given by Eq. (13).

The conclusions to be drawn from this work which
are most relevant to the present calculations are that
the single-particle ground-state wave function qo is
well approximated by a Gaussian, and that the pre-
dominant eGect of the correlation function in deter-
mining yo is to alter the interatomic potential appearing
in Eq. (1) into an effective potential,

.~W= f2[.—(a2/2m)V2infg. (15)

co),'(k) eg), —— P (1—cosk ~)
JIB ~ 8~8~ (2z 7 0

Xr8'(r) [exp(—$A (r r)~)—
—exp( —~~A (r+ r)')j egg. (16)

We have appealed to these results in justification of the
heuristic modifications we have made in the phonon
eigenvalue Eq. (9), namely the replacement of v by W
together with the Gaussian approximation (14) for qpo,

where the parameters A and E are taken from the
energy cluster-variational calculations. "Of course this
procedure is rather arbitrary, because it implies the
assumption that the short-range correlations, which
cancel the eGects of the hard core in e, are independent
of the longer-range correlations which are involved in
the phonon modes. This seems true for k 0, but our
intuition might argue for a close interconnection be-
tween short-wavelength phonons and the correlated
motions by which particles avoid strong hard-core in-
teractions. Nevertheless, we feel that the procedure we
have adopted is the simplest one which removes spurious
hard-core eGects in a reasonable manner.

With these modifications —the use of the effective
potential (15) and the Gaussian single-particle wave
function approximation (14)—the integrations in Eq.
(9) can be reduced to a one-dimensional form, so that

Equation (16) is the 6nal expression which has been
programmed for numerical evaluation.

Since it is to be expected that these crystals can, at
sufFiciently low temperatures, be described in terms of
noninteracting elementary excitations, it should be a
good approximation to calculate the specific heat per
particle using the elementary formula

k~ [kv), (k)/k~T]' exp[—ho)g(k)/ksTj
Cv= —P (17)

X &.& {1—exp[—A(ag(k)/k~T j)'
with the frequencies computed from Eq. (16). Un-

fortunately, this formula does not follow in any direct
way from the RPA, since the phonon spectrum in the
RPA only enters into the response function and not
into the equilibrium properties. The free energy can be
expressed formally in terms of the displacement-
displacement response as in. Eq. (53) of FW, but this
involves a mass integration at fixed density. This formu-
lation fails for bcc helium, because for large masses the
frequencies become imaginary. ' At temperatures for
which the elementary excitations begin to interact,
there is a correction to Eq. (17) due to the temperature
dependence of the phonon frequencies. However, it is
to be expected'~ that this correction will be smaller by
a factor of the order of (T/O~)', and will be negligible
for crystalline helium which melts at T/O~~ 0.1.

III. PRESE5'TATIOH OF RESULTS: He'

A. Phonon Frequencies

The squares of the phonon frequencies coq(k) are
the roots of the secular equation of Eq. (16), namely

det ~q'(k)8r. , ~
— P (1—cosk ~)

BEE ~

g2

X g(l. l) =0, (18)
Br~87.g

where $ and $' stand for x, y, and z, and

(A y'~'1
e(l ~ I) =

I

—
I

— «»II'(r) {exp[—-'~(»—r)'3
&2~&

—exp[—qA(r+»)'j) . (19)

Equation (18) has initially been solved for a coarse
mesh of 5525 different k vectors distributed uniformly
over the irreducible part (1/48) of the Brillouin zone
(BZ) of the bcc lattice. This has been done for the four
densities of bcc He' (corresponding to the molar
volumes V = 19.0, 20.7, 22.5, and 24.5 cm') for which
the Gaussian single-particle wave function go has been
determined by Hetherington, Mullin, and Nosanow
(HMN) "

"J.I. Kaplan, Phys. Letters 11, 227 |,'1965).
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Various results that are immediately obtained from
these calculations are presented in Figs. 1 through 9.
In Figs. 1, 2, and 3 we have plotted the dispersion
curves coq(k) along the [$00], [@0j, and [gi ) directions
and their connections along the zone boundary, for the
highest density considered (V = 19.0 cm'). In Figs 4, 5,
and 6 we give the same curves for the lowest density
(V =24.5 cm'). Note that these dispersion curves have
the familiar shape that is characteristic for monatomic
bcc lattices.
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FIG. 1. Phonon dispersion curves for bcc He' at molar volume
of 19.0 cm', along the directions L&00), ($/0), and the connecting
line on the zone surface. (L and T refer to the longitudinal and
transverse branches, respectively. )
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FIG. 4. Phonon dispersion curves for bcc He' at molar volume
of 24.5 cms, along the directions L&00), pi f0), and the connecting
line on the zone surface.
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In Figs. 7 and 8 we present the longitudinal and
transverse sound velocities in the various symmetry
directions as functions of the molar volume (solid
lines).

For comparison the earlier results of Nosanow and
Werthamer" are shown (dashed lines), which were based
on a less accurate Gaussian yo. In Fig. 7 the experi-
mental results' have also been indicated. These Figs. 7

and 8 have been taken directly from HMN, on whose
results for go our calculations have been based. y~&

II Finally, in Figs. 9 and 10 we have plotted the histo-
grams of the density of states for the highest and lowest
densities. Like the dispersion curves, these histograms
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Fro. 2. Phonon dispersion curves for bcc He' at molar volume
of 19.0 cm', along the directions [+0), Pf'I'I), and the connecting
line on the zone surface.
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Fro. 3. Phonon dispersion curves for bcc He' at molar volume
of 19.0 cm', along the directions Pffg), Lf'&0), and the connecting
line on the zone surface.
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Fro. 5. Phonon dispersion curves for bcc He' at molar volume
of 24.5 cm', along the directions Lf00),

(fan

f), and the connecting
line on the zone surface.

B. Thermodynamic Quantities

The thermodynamic quantities that are of most
interest to calculate, once the phonon frequencies are

have a shape that is characteristic for a monatomic bcc
lattice. The resolution in these histograms is rather
limited, because in obtaining them, we have only used
the frequencies calculated for the coarse k mesh (see
below), and we have not made use of knowledge about
the location of critical points.

Experimental data. in regard to the phonon spectrum
are very limited; no inelastic neutron scattering experi-
ments have been carried out on helium, and sound-

velocity measurements only exist for unoriented crystals.
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known, are the speci6c heat at constant volume, and.
the mean square displacement of the particles, which
figures directly into the Debye-&aller factor. It gives
the most direct measure of the large zero-point vibra-
tions which exist in solid helium.
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FIG. 6. Phonon dispersion curves for bcc He' at molar volume
of 24.5 cm', along the directions PI I'fg, (ff0$, and the connecting
line on the zone surface.
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FIG. 8. Transverse sound velocities in symmetry directions as a
function of molar volume. Solid curves are the present results;
dashed curves are the previous results of Nosanow and Werthamer
(Ref. 12) using less accurate variational parameters in the Gaussian
single-particle wave functions.
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FIG. 9. Histogram of the phonon density of states of bcc He' at
molar volume of 19.0 cm'.

FIG. 7. I.ongitudinal sound velocities in symmetry directions
as a function of molar volume, Solid curves are the present results;
dashed curves are the previous results of Nosanow and Werthamer
(Ref. 12) using less accurate variational parameters in the Gauss-
ian single-particle wave functions. Measurements of Vignos and
Fairbank, and of Abel, Anderson, and Wheatley, on unoriented
crystals are indicated.
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The mean square displacement, which we discuss erst,
is given by the expression"

2ESI ~,~

cothghro~(k)/2knTi

top(k)
(20)

and is closely related to the Debye-%'aller factor for scat-

See, e.g., A. A. Maradudin, E. W. Montroll, and G. M. Weiss,
Theory of Lattice Dynamics in the Harmonic A pProximation
(Academic Press Inc. , New York, 1963), Chap. VII.
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FREQUENCY 00II 31c ')

FIG. 10. Histogram of the phonon density of states of bcc He'
at molar volume of 24.5 cm'.
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Fro. 11. rms atomic displacements in bcc He' normalized to
the nearest-neighbor distance, as a function of temperature at
four diferent molar volumes.

In Fig. 11 we have plotted the quantity (u')'~'/R,
i.e., the rms displacement divided by the nearest-
neighbor distance, as a function of temperature. The
melting temperature in each case has been indicated
by a vertical bar.

The large values of (u')'~'/R at absolute zero give a
quantitative confirmation of the long-known fact that
the zero-point amplitudes in solid helium, especially at
large molar volumes (lowest pressures), are very large.
We further note that the mean-square displacement in-
creases by only a small fraction of its zero-point value
before melting takes place, as is especially evident for
V =24.5 cm'. This illustrates the point, made long

I

DEBYE TEMPERATURE

35—

Vm = 19.00 CITI3

tering with momentum transfer K, viz. , expL —2W(K)].
For cubic crystals 8' has the simple form

2x 2E2
W(k) = (u').

3

ago by London, " that meIting of solid helium at low

pressures is predominantly a mechanical eQect. This is
also immediately evident from the fact that the thermal

energy at melting is only a small fraction of the zero-

point energy at these low pressures and temperatures.
We also present the results obtained for the specific

heat C~. The numerical procedures used to obtain these
results are discussed in the Appendix. In Fig. 12 we

have expressed the specific-heat results in terms of the
temperature-dependent Debye temperature Q~(T) for
the four molar volumes considered. The limiting values
0's ——O~(0) are given in Table I.

In Fig. 13 we present 0'(T) curves (solid lines) for
the same molar volumes for which specific-heat measure-

ments have recently been carried out by Sample and
Swenson~ (indicated by the dashed lines). Our results

were obtained by interpolation from the data presented
ln Fig. 12.

The main difference between the experimental and

the theoretical curves is that the latter give larger

Debye temperatures (i.e., smaller specific heats) and

are much less temperature-dependent.
The experimental curves for 0'(T) exhibit a sharp

drop at low temperatures and a somewhat less sharp
decline at high temperatures. Both features are mani-

festations of anomalous contributions to the specific
heat in these temperature ranges, the origins of which

are still unknown, although it has been suggested that
the high-temperature anomaly is caused by creation of
lattice imperfections. ""In order to avoid the low-

temperature anomaly, Sample and Swenson have
chosen to identify the maxima in the experimental
0'(T) curves as representing the zero temperature Os's

of the true lattice specific heat. If this is a correct pro-
cedure, then there exists an important discrepancy (of
order 15—20'P~) between theoretical and experimental
Debye temperatures Os which we are unable to explain.
Other quantities calculated with this theory, such as
ground-state energy and compressibility, are typically
accurate to about 10%%uz. However, the possibility can-

not be excluded that at the maxima of the experimental
O~(T) curves the low-temperature as well as the high-

temperature anomalous contributions to the specific
heat are both present to some extent. In that case the

TABLE I.
30—

Vm= 20.70 cm3
Molar volume

ln CIQ

Nearest-neighbor
distance in A ep in 'K

Vm= 22.SO Cm3

25—
Vm= 24.SO Cm'

8cc He'

19.0
20.7
22.5
24.5

3.45
3.55
3.65
3.75

36.92
32.54
28.84
25.61

I I I I I I I I
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

T ('lC)

Fxo. 12. The Debye temperature of bcc He' as a function of
temperature, at four difterent molar volumes.

» F. London, SuperguMs (Dover Publications, Inc., New York'
1950), Vol. II.

2P D. O. Edwards, A. S. McWilliams, and J. G. Daunt, Phys.
Letters 1, 218 (1962)."F. W. de Wette, Phys. Rev. 129, 1160 (1963).
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true lattice O~s wouM be larger than that derived by
the procedure of Sample and Swenson, and part of the
discrepancy would be removed. It should also be noted
that the theoretical O~s values quoted here differ by
about 10% from those obtained earlier by HMN,
although the sound velocities are virtually identical.
We attribute this to use by HMN, and also by NW, of
a simple Houston's interpolation method for approxi-
mating an angular average over k space from values
computed along just three symmetry directions.

Finally, in Fig. 14 we have plotted the reduced
0-T relationship Li. e., O~(T)/Os versus T/0'sg for the
lattice specific heat of bcc He'. It turns out that for
all densities considered, these reduced 0"-T relationships
follow one universal curve with an accuracy of about

ro%. This important result is yet another manifesta-
tion of the completely classical behavior of the lattice
specific heat of solid He . In addition, the existence of
this universal O'-T relationship enables one to subtract
from the measured specific heat what we believe to be a
reasonable estimate of the lattice contribution, so that
the part of the high-temperature specific heat of bcc
He' which is anomalous can be more accurately deter-
mined. We intend to carry out this reduction of the
experimental data in a future article.

IV. PRESENTATION OF RESULTS: He'

The calculations on He' described in the previous
section have also been carried out for bcc He' at the
density of V =21.0 cm'. However, we find that the
results are all so close (within 1%) to those for He' at

I I

'BCC He+

0.98—

Q98—

0.94-

I

0.02
I

0.04
I

0.08
T/So

I

0.08
I

O.IO

FIG. 14. A reduced plot of the Debye temperature of bcc He~
as a function of temperature. All four molar volumes coincide to
within the width of the line drawn.

V =24.5 cm' that we do not show any of these sepa-
rately here.

V. DISCUSSION

If a. comparison is made between the dispersion
curves and density-of-states histograms for ordinary
bcc crystals" and those which we have calculated for
bcc He', it is immediately apparent that there are no
qualitative differences. Thus our calculations agree
with experiment in the sense that they yield an entirely
conventional excitation spectrum. The mathematical
reason for this result is that Eq. (9) is just the tradi-
tional eigenvalue equation for the phonon spectrum,
but with the usual factor e(r) replaced by the factor35, I I

DEBYE TEMPERATURE

THIS WORK
EXP. SLS

30—

—ylr = 20.I8 Cms

y =21.46 cm

ym=22. 86 cm

M 25— I
I
I yfrI= 23.80

cm3
~ y~=2p. I8 cm

CITI3

/

]

3
Vffl = 22.86 cm

20—
46

V~=23.80 cm
I I I I

I .0 1.5 2.0 2.5
T ('Kl

Bcc He'
I5—

I

0 0.5
I I

3.0 3.5 4.0

Fro. 13. Debye temperature of bcc He' (solid curves) as a fuuc-
tion of temperature, interpolated from the results of Fig. 12 to the
molar volumes appropriate to the data of Sample and Swenson
(Ref. 7) (dashed curves).

in our expression. One may look upon this change as
replacing the force constants of the harmonic approxi
mation by a new set of force constants which allow for
the large zero-point motion of the individual atpms. It
is just, this zero-point motion which expands the crysta
to its observed density. The two expressions become
equal in the limit that the particles are fixed to their
equilibrium positions.

One might have anticipated that the only change in
the equation for the frequencies would be the altera-
tion of the force constants. After all, excitations verbose
wavelengths are long compared to the nearest-neighbor
distance shouM hardly be aQected by the zero-point
motion of the helium atoms whose amplitude is com-
parable to the nearest-neighbor distance. Furthermore,
many of the features of the excitation spectrum are
determined primarily by geometric considerations.

ss See, e.g., LaNice Dytsataics, edited by R. F. ~aiba (pergamou
Press, Oxford, England, 1965).
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The importance of including the eQ'ective interaction
W(r) in Eq. (16) and of using the wave functions deter-
rnined by the cluster-variational procedure should also
be noted. If we had merely used the Lennard-Jones
potential and the Hartree wave functions, we would
have found frequencies which were much too high.
This is because the uncompensated hard cores would
keep the particles too localized, so that the kinetic
energy would be too large, and the crystal would be
much too sti6. In contrast, the cluster-variational cal-
culations" have produced compressibilities which agree
with experiment to within approximately 10%, so that
it is reasonable to assume that our phonon frequencies
should be at least as accurate.

%e should also like to point out that the phonon
eigenvalue Eq. (9) based on the RPA resembles a,

formula recently obtained by Koehler23 from a strict
variational technique. In that work, the trial ground
state of the system is selected to be a correlated Gaussian,

+(xa, . ' xtv)

~expL —s Q (x;—Rc)'G;; (*,—»')j~ (22)

which is also the exact ground state of some harmonic
Hamiltonian whose dynamical matrix is related to G.
Varying the energy of this state with respect to all
independent elements of G leads to a determination of
the optimum such dynamical matrix, whose eigenvalue
equation is

rois(k)e„i, = P L1—(exp —ik ~)g
3fÃ ~

82
X (n(~x—x'+e~)) equi. (23)

8%8'c

The difference from Eq. (9) is that here the expectation
value is taken with respect to the hartnonic phonon
ground state, so that the phonon frequencies are deter-
rnined self-consistently. Equation (23) is also quoted
by Ranninger24 as having been obtained by Choquard"
using a perturbation expansion —resummation method.
The physical diGerence between this formula and Eq.
(9) is that the latter takes account of the mean prob-
ability distribution of the interacting particles due
to the single particle aspects of the-ir motion, while the
former attributes the probability distribution to the
coQec6ee aspects of the motion. At the present time, it
is not clear whether Eq. (9), Eq. (23), or some synthesis
of the two is the most accurate description of the phonon
frequencies.

» T. R. Koehler, Phys. Rev. Letters 17, 89 {2966)."J.Ranninger, Phys. Rev. 140, A2031 (1965).
"P.. Choquard, Setected Topics in Lattice Dynamics (W. A.

Benjamin, Inc. , New York, to be published).
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APPENDIX: NUMERICAL PROCEDURE FOR
CALCULATI5'6 SPECIFIC HEATS

In principle the speci6c heat Cv(T) is obtained by
carrying out the k summation in Eq. (17) over the k
mesh for which the phonon frequencies coi(k) have been
evaluated. However, for crystals at very low tempera-
tures one encounters a particular difficulty, caused by
the discreteness of the k mesh. Since the mesh is 6nite,
there exists a smallest frequency, ~;„in the calculated
spectrum. For temperatures smaller than A&o; /ho, the
specific heat as calculated with (17), becomes anoma-
lously sma11 as a result of the exponential in the numera-
tor. In order to obtain the Cy at the lowest temperature
of interest (which happen to lie well below A&o;„/hit),
a special procedure has to be followed.

It turns out that the original coarse k mesh of 5525
points in the irreducible part of the BZ is quite in-
sufFicient for the calculation of C~ at the temperatures
of interest. In order to remedy this, however, it is not
necessary to refine the k mesh throughout the entire
zone. It sufficies to increase the mesh density towards
the center of the BZ, since at lower temperatures the
inner parts of the zone give the main contribution to
Cv. Accordingly we have used three different k meshes,
each containing 5525 points: a coarse mesh covering
the entire zone, an intermediate mesh covering the
inner 1/27 of the zone (linear dimensions rs of the coarse
mesh), and a 6ne mesh covering the inner 1/729 of the
zone (linear dimensions —,'of the coarse mesh). Even
these three meshes are insufFicient to give accurate
values for the specific heat of helium for temperatures
below about 0.5 K. A further refinement of the k
mesh, however, is unnecessary because the difFiculties
now occur in the linear dispersion region where the
Debye approximation is strictly valid. With this in
mind we have devised the following numerical procedure.

The quantity Cy that we wish to evaluate may bc
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expressed in the following form

1 Qi, (k))
S(T')=—E f T* i

where k&P(8, q&) is determined by the relation

Q,Lk,&(8, &)g= Qs. (AS)
(A1)

However, in the linear dispersion region we have

Qi, (k) = kS),(8,q), (A6)
l
cf. Eq. (17)).Here Te is a dimensionless temperature,

Qi, (k) a dimensionless frequency, and

f(x)=
(1—e *)'

Sz(8, p) being the sound velocity of the polarization
branch li in the direction (8,y). Changing the integra-

(A2) tion variable from k to x=Qi(k)/T* we obtain

Our first step is to select three constant-0 surfaces in

the BZ, defined by Qq(k) = Q' (k=1,2,3), where Q is a
fixed frequency lying in the linear dispersion region in

all directions. "We can now divide the k summation

in (A1) into two parts, one over the k values for

which Qi, (k) &Q', and the other for k values for which

Qq(k)) O'. We thus have

sinod8dp

( Te l s 941 T+

Xl, I &»'f(x). (A7)
&Si(8q) e

Since, according to (A5) and (A6), k„o(8,y)S„(8,~)= Q&,

(A7) may be written as

(Q),(k))
S(T*)=—2 2 flW», [»&&)«'] k Te i

Qg(k))
+—2E ~ 0.a~o)»&t Te i

V
Si———Q sin8d8dq Lkq'(8, p))'

(Te) s Qo/T~

X l l
dx x'f(x) . (A8)

Qsi

=Si(T*)+Ss(T*). (A3)

At this point we recall that, theoretically, the k summa, -

tions in (A1) and (A3) have to be carried out over the
full k mesh, containing as many points as there are unit

cells in the crystal (=10").Jn the numerical evaluation

of Ss the k summations are straightforwardly carried

out over the sampling meshes described above, i.e.,
the outer mesh, the intermediate mesh, and the part of

the fine mesh lying outside the constant-0 surfaces. Of

course, the contributions of these meshes have to be

weighted properly, but this poses no special problems.

The k summations in Si (one for each h), which are

still to be taken over the full k mesh, may be replaced

by k integrations over those parts of k space enclosed,

respectively, by the three constant-energy surfaces.

Using the identity gq —+ VJ'd'k we have

The two integrals are independent of one another.
Substituting the expression (A2) for f(x) we note that
the second integral,

T4c) 3 QO IT+ x4e—z

=—3
&Qoi Qoi

dx~
(1—e *)'

(A9)

is closely related to one of the Debye functions. "'
Furthermore, it is easy to show that

1

3
sin8d8dy /k''(8, p)j' (A10)

is the volume in k space enclosed by the constant-
energy surface Q&,(k)=Qe. We thus arrive at the very
simple expression for Si..

V
Si(T*)=—EE ~

t Qi, (k))

( T+ i

V T*q
S (T*)= J lP V„. —

s Q'i i
(A11)

[Qa (&)&~0j

V ay(e, ~)

sin8d8d p dk
S ~. 0

H we had chosen a diferent constr, nt-energy surface
for each of the three polarization branches, we would
have obtained the expression

Qg(k)

T* i'
V T*y

cv & Qg'i
(A12)

where p, 8, and y are the polar coordinates of k, and

' 0 may be chosen differently for different P. However, for
simplicity of the presentation we have chosen one single 0 here.

"See, e.g., Handbook ot 3futheesaticul Functions, edited by
M. Abramowitz, and I. A. Stegun (U. S. Department of Com-
merce, National Bureau of Standards, Washington, D. C., 1965),
Appl. Math. Ser. 55.

"H. C. Thacher, Jr. , J. Chem. Phys. 32, 638 (1960).
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It is evident that the evaluation of S1 in either of these
expressions has become exceedingly simple. In the form
(A11) one has to evaluate only one single integral for
each temperature T*, while the form (A12) contains
only three integrals. The volumes Vq are easily ob-
tained by adding up the elementary volumes associated

with those k points of the fine mesh, which are omitted
in the evaluation of S2.

We conclude the Appendix by quoting two rational
approximations for the integral J'(1/x) (A9). From
Thacher's work" we derive that for the range 0&x&10,
J(1/x) is very accurately approximated bythe expression

3x8

e- —1

3953.632—800.6087x+85.07724x' —4.43582x'+0.0946173x4

3953.632+682.0012x+143.1553x'+ 15.12149x'+x4
(A13)

in which the absolute error is smaller than 2.1)C10 '. For x& 10 we have used the expression

3xe ' 12 x4
+——e *f6+6x+3x'+x')

8 —1 X 15

jn which the fractional error is not larger than 5 X10 '. Expression (A14) has been obtained from a series expansion
of the appropriate Debye function. '7
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Polariton SPeCtrtt111 Of a-Qttgg tZ

J. F. ScoTT, L. E. CHEEsMAN, AND S. P. S. PQRTo

Bell Telephone Laboratories, Murray Hill, %em Jersey
{Received 11 May 1967)

Mixed electromagnetic-mechanical excitations known as "polaritons" are observed in Raman forward-
scattering experiments on o,-quartz using an argon laser. Dispersion relations of the polariton frequencies
are extended from the case of simple diatomic lattices to a more complex system, namely, n-quartz, which
has nine atoms per unit cell. The dependence of frequency upon scattering angle observed for these mixed
excitations in quartz is shown to be in very good agreement with that predicted. Polaritons associated with
the transverse phonons at 1072, 797, and 450 cm ' in a-quartz are discussed in the present work. The
po]ariton associated with the 1072-cm ' phonon mode is observed to range in frequency from 1072 to
822 cm ~; the polariton associated with the 797-cm ' phonon mode is observed at frequencies from 797 to
700 cm 1; and that associated with the 450-cm ' phonon mode is observed from 450 to 407 cm ~.

Dt TRODUCTION
' 'N the study of the optical properties of solids much

- interest is currently focused on the nature of
interactions between optical phonons and other crystal-
line excitations. Among these are interactions between

phonons and plasmons, phonons and cy'clotron res-

onance excitations, and phonons and photons. Until
now the study of these interactions has been almost
entirely restricted to simple crystals possessing diatomic
lattice structure and a single phonon mode. ' In the
present work we consider phonon-photon coupling in

n-quartz, which has nine atoms per unit cell and eight
TO phonons of species Ewhich can couple with photons
travelling through the crystal.

'An exception is Barker's work on phonon-plasmon effects xn

SrTi03. A. S. Barker, Jr., in Proceedings of the Internal Colloquium
on Optical Properties and Electronic Structure of Metals and Alloys,
Paris, 1965 (North-Holland Publishing Company, Amsterdam,
1966).

Transverse optical phonons in polar crystals interact
strongly with electromagnetic waves when their energies
and momentum vectors are nearly equal. The resulting
mixed excitations, called "polaritons" by Hopfield, '
were first observed in Raman experiments on cubic
GaP by Henry and Hopfield' and on hexagonal ZnO by
Tell et a/. ,

4 who made use of the uniaxial properties of
the latter crystal to produce large shifts in the frequency
of the excitation. A general theoretical discussion of
polaritons has been given recently by Hop6eld. '

While both GaP and ZnO have diatomic lattice
structure with only one TO branch, the polariton eRect
is also expected in more complicated crystals. In the

' J. J. Hop6eld, Phys. Rev. 112, 1555 (1958).' C. H. Henry and J. J. Hop6eld, Phys. Rev. Letters 15, 964
(1965).—

4 S. P. S. Porto, B.Tell, and T. C. Damen, Phys. Rev. Letters
16, 450 (1966).

~ J. J. Hopheld, in Kyoto Semiconductor. Conference, Kyoto,
Japan, 1966 (unpublished) .


