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A reinvestigation is given of Fermi's work on the shift of highly excited states of atoms embedded in a
gaseous medium due to the interaction of the active electron with the medium particles. For the case treated
by Fermi, spherically symmetric medium particles, it is found that effects neglected by him cancel and that
his results are essentially correct. The method is extended to the case where the medium is composed of
diatomic molecules, and it is shown that when rotational excitation is not important, only low-energy
elastic scattering contributes in a manner similar to the spherically symmetric scatterer. A simple two-
rotational-state model is also analyzed in the case where rotational excitation may be important. It is con-
cluded from the model that when the method used is applicable, real rotational coupling is never important.

getting information in energy regions where beams are
not readily available.

In Sec. II, the case where the M.P. is a spherically
symmetric atom is discussed. This is the problem dis-
cussed by Fermi. ' We have generalized his method to
treat nonzero energy electrons, thereby allowing for an
energy-dependent cross section, and we make explicit
allowance for the Iong-range nature of the potential
interaction between the electron and the M.P. EBects
which Fermi did not consider are found to cancel, and
the only additional terms are due to the modidcation
of the effective-range formula because of the presence
of the long-range potential.

In Sec. II the method is further generalized to allow
the M.P. to have diBerent states of excitation which
can be coupled by interaction with the electron. The
method is then applied to the case in which the medium
is made up of nonpolar molecules. In the approximation
treated here, the coupling of the rotational states does
not play an important role and a result similar to the
atomic medium problem is obtained. A treatment in
which rotational coupling is treated more carefully
would appear to be desirable. Therefore, a model of
M.P. with only two rotational states is brieQy examined,
and it is concluded that real rotational coupling is
probably never important.

The basic mathematical method is an averaging
procedure due to Fermi. For denser media, this would
not be adequate and one w'ould have to resort to
multiple-scattering techniques such as those of Watson. 4

However, there is a restriction as to how dense the
medium can be, as pointed out in Sec. II, so that the
simple method used here is probably all that is necessary
in the problem.

I. INTRODUCTION
' ~N 1934, Fermi' analyzed the shift of highly excited
& - atomic states due to the interaction of the atom
with a surrounding atomic medium. He showed that
part of the shift could be related to the interaction
between the electron and the medium particles (M.P.),
and since the electron has essentially zero energy, this
was given in terms of the electron-M. P. scattering
length. Spectroscopic techniques have now advanced
to the point where one can accurately observe the shifts
of these levels and thereby measure the scattering
length. ' Shifts of spectral lines of the order of 0.1 cm '
are measurable. Using equations derived below, this
implies densities of the order. of 10"—10" cm ', which
means an interparticle separation E~ of the order of
10 ' cm. That is, the atoms are separated by the order
of 100 times their radius. This will be a useful fact in
developing our theory.

This, however, does not appear to be an attractively
competing method for making these measurements.
The reason is that well-defined electron beams with
energies of the order of an electron volt are readily
available and the electron-atom cross sections are
expected to be reasonably smooth at and below this
energy, so that the measurements can easily be extrap-
olated down to zero energy. ' Thus, although the
"beam" of bound-state electrons of energy Ry/n-' (we
contemplate states of principle quantum number e, of
the order 20 to 30) has a very low energy, it is not
necessary for this measurement. On the other hand,
there are cross sections such as the rotational excitation
cross sections of diatomic molecules which are energy-
dependent even at such low energies. The separation
of the rotational levels of molecules is of the same order
as, or smaller than, the separation of the atomic levels
in question. Thus the presence of the molecular M.P.
might be expected to strongly perturb the observed
levels of the atom. The method may then be useful for

II. ATOMIC MEDIA

The experiment contemplated here is that of ob-
serving the absorption spectrum of any atomic species
(Cs for instance) tenuously distributed in any atomic
background gas (Ne for instance). We are interested in
excited states of Cs with principle quantum number

* Supported by National Aeronautics and Space Administration
Grant No. ¹G243.' E. Fermi, Nuovo Cimento ll, 159 (1934).

e Sumner Davis (private communication).
s T. F. O' Malley, Phys. Rev. 130, 1020 (1963).

4 M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley R Sons, Inc., New York, 1965}.
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where Z is the position of the ath M.P. and m is the
interaction between the electron and the M.P. The sum
runs over all M.P. U(r) is the interaction of the electron
with the Cs core which for highly excited states may be
well approximated by

U() = —2/' (2)

The term b,E is meant to be the interaction energy of
the M.P. with the Cs core. It is sufhcient to use the
asymptotic form of the polarization potential for the
interaction so that

~E=—P ~/Z, ', (3)

where 0. is the polarizability of the M.P. The sum may
be converted to an integral over the positions of the
M.P. by using gs ~ pJ'd'Z, where we have assumed
that the density is uniform. 7 Fermi uses the inter-
particle separation R~ as a lower limit to the integral,
obtaining

AE = —3n (-,'s-p)'".

m~20 to 30. The requirement that these be well-de6ned
bound states limits the density of the medium since it
is necessary that the length of one orbit, 2xaoe', be
much less than a mean free path of an electron in the
gas (po) ', or p(&5X10 cm '.

At reasonable temperatures, the velocity of the
electron in its orbit is much greater than that of the
M.P. , so that these may be considered 6xed in position.
Thus we must consider the Hamiltonian composed of a
group of M.P. fixed in position and interacting with a
single Cs atom. We can isolate the part of the total
wave function which has the medium in its ground state
and assume that the rest of the wave function is not
strongly coupled. 5 This would seem to be a reasonable
approximation here since the characteristic excitation
energy of M.P. is a few volts, much greater than the
energy of the electron in question. We can thus obtain
a Schrodinger equation for the Cs atom alone. It will
contain the interaction of the M.P. with the electron
and with the Cs core. There will be terms in which the
neon atoms are polarized by the core and interact with
the electron so that the interaction is not the usual
"two-body" one. We neglect this polarization during
interaction as a higher-order term. The Schrodinger
equation' for the electron then becomes

(E—~E—U()+&)4()=Z ( —Z-)0() (1)

p(r)'=E 2d E— U(r—) . (6)

Equation (5) is precisely the equation describing the
scattering of an electron of energy p(r)' by a M.P. The
boundary condition dictated for this local problem is at
~r—Zp~ =R (R is the limit of influence of the single
M.P.). |P(r) =C(P(r)), where (f) is the average of g over
a volume V which is large enough to contain many
M.P. but small enough to treat p(r) as a constant.
Thus Q) is the slowly varying part of tt after the
variation due to the individual scatterings is averaged
out. C is a constant which will be chosen to be unity
(see below). (P) is constant in the vicinity of r =Zs, so
that only the s-wave part of the scattering solution
contributes. Thus the solution of (5) may be written

R N(r)
4'( )=— (4'( ))C

r N(R)
(7)

where N(r) is the regular s-wave radial solution. of (5).
Now returning to (1) with r out of the region of all
scatterers, we may evaluate the right side by using (7).
We note that when r is not near any single M.P., the
contribution of the sum in (1) must be a constant. Its
evaluation is facilitated by averaging the constant over
the volume V. In that case the right side of (1) becomes

1
d'r Q e(r —Z )P(r)

a

1 1
dr v.tP+—P d'r s.P

V V sv

1 1=—Z dr(p'+~'8 (r)+ Zd'r eA—(g)
a e

Here the subscript o, indicates that the integral is to be
taken inside the "volume of infIuence" surrounding Z,
and the subscript 6V means that the integral is outside
these volumes. The last step is just the use of (5). We
have BV= V—-,'sR'E, so that 8V/V=1 —-'ssR'p. Thus
the total wave function is given by CQ) outside of the
volume of influence of the individual M.P. and by (7)
near each M.P. The volume average (P) then defines
the constant C.

ligibly from (3), the polarization energy of the M.P.
Thus (1) can be rewritten (near r=Zp)

(p'()+~')4()= ( —Z)k(),
where the local (constant) momentum p(r) is defined by

Now consider Eq. (1) in the vicinity of one of the
scatterers, the Pth say. Then is the Pth term is excluded
from the electron-M. P. potentials on the right side of
(1) the remaining terms are a constant differing neg-

s H. Feshbsch, Ann. Phys. (N. V.) 19, 287 (1962).
6 Rydberg units are used here and below.
7 The correction due to the correlation of the M.P. with the Cs

core is negligible at room temperature.

8V Ã R
8)=—CQ)+—CQ)

V V N(R)

which may be solved for C to give

3
C= 1—4+R'p 1—

R'u(r) s

~ d'r—u(r),
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-',R'u(R) = rdr u(r),

In general, C diff'ers only slightly from unity. Our
subsequent calculations will be greatly simplified by
choosing R to be one of the solutions of

this becomes

where

and

(8—Z.U+Vs)Q)=0,

h =Z, (E—dE) —47rpA+4s pn/R

Z, = 1—2~pa'ro

(12)

(13a)

(13b)

giving C= 1.This can be done since u(R) is an oscillating
function. We shall see that our results do not depend
critically upon this choice. Now the Laplacian in (8)
may be converted to a surface integral yielding

1
d'r Q s $=4srrR'pp'(p)

a
8 (R u(r)) 4s.np

+4~R'p —
I

—
I 8)— (1t), (9)

ar&r u(R)), g R

where we have used (8b) and the relation (1/V) P =p.
The last term results from the last term in (8). It is
evaluated by using the long-range form of e . The
integrals and sums are performed as described in con-
nection with Eq. (3). Thus the averaged Eq. (1)
becomes

(E AE U(r—)+V'—)Q )

3 a(R (.))= ss'R pl p +——
~

—
I

——l(4'). (10)
R arkr (uR)i„= R'i

R is large enough so that u(r) may be evaluated in
terms of its asymptotic form and the right side of (10)
may be expressed in terms of the s-wave phase shift
for electron M.P. scattering. If v is a short-range
potential, this simply means that R must be greater
than the range. For long-range potentials, the con-
siderations are a bit more complicated. We consider
short-range potentials 6rst.

In that case, E may be assumed to be larger than the
range and the right side of (10) becomes

4ss.R'p (p'+ (3/R) t
—1/R+ p cot (pR+6)1—3n/R4) Q ),

where 5 is the p'-dependent s-wave phase shift. This
should be treated as a potential term in (10), the r
dependence entering through p(r) and 5(p). However,
we note that p will be very small, so that an expansion
in pR is possible. Then this becomes

(tanb)/p n-
—4rp +—Q).

1+(tan5)/pR R

If we further assume that R))(tanb)/p, which is the
case considered by Fermi, then Eq. (10) may be written

$E SE U(r)+ V')(y)— —
= —4s-p((tan8)/p+a/Rfgi), (11)

and if an effective range expansion4 is made for tanb,

Here A is the scattering length and ro is the effective
range. Equation (12) is easily solved. The eigenvalues
are 8„=—Z s/u'. The unshif ted eigenvalues are
E„&s&= —1/u', so that the shift of the level is given by

AE =E„E„&+—27rpA'rs/n'+hE+47rA p
—4s pn/R, (14)

where only lowest order in the density has been re-
tained. The state-dependent term is new, but very small
at densities of interest unless the scattering length and
effective range are very large.

The method used here is somewhat inconsistent.
The long-range potential is used to evaluate hE but
is ignored in the scattering functions I, entering in
Eq. (10). Therefore, we now turn to considerations of
long-range potentials in the scattering. We limit these
to polarization potentials

s(r) —n/r4. (15)

There are two changes in the result (14) due to the
long-range potential. The first is the modi6cation of
the eGective-range formula' and the second is the modi-
6cation of u(r) in (10) (see Appendix A). These yield
an additional term on the right side of (11) of the form

(P)4mnpL-s, harp+-,'Ap' ln(-', pn'")+1/Rj, (16)

which yields an equation of motion replacing (12).

LE—hE—u(r)+ V')Q )=4rp/A 1-sn7rp(r)
+-' Ap'()1(lp() "')j(&)

Notice that the E dependence has been cancelled by
the consistent treatment of the long-range potential.
The r dependence on the right side of (17) can be treated
as a perturbation because of the smallness of p. The
resultant shift in the energy level is'

DE i—AE+4rrpA-
+-;spn$mp„g+4A(p' ln(-', pa"')) (], (18)

where the subscript (u, l) indicates an expection with
respect to the hydrogenic state (e,l). Note that p(r)
becomes imaginary for suKciently large values of
r(r us). It may be set equal to zero for these values
of r without any sign6cant error. Fermi's result is just
the Grst two terms of (18). A consistent treatment of
the "excluded volume" eGects and the distortion of
the wave function cancel and the simple results are
restored.

'L. Spruch, T. F. O' Malley, and L. Rosenberg, Phys. Rev.
Letters 5, 375 (1960).

9 The existence of this state-dependent shift has previously been
noted by J. Ehrhardt.
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The expansions leading to (1'/) are not completely
necessary. If the interparticle spacing E& is large
enough so that N(R) may be evaluated where the
potential v is simple (i.e., r-'), then the right side of
Eq. (10) may be expressed in terms of the known
radial functions in these potentials and the residual
phase shifts. '

(p'+~')4. ()=Z .*( —~)4"(), (24)

dicular to the internuclear line. The result is

58 =58=—(nii+2n4)(4vp)4"= 3—n( 4v p-)4fa, (23)

which is independent of s in the Born-Oppenheimer
approximation for the molecules.

In the vicinity of the Pth M.P., Eq. (20) becomes

S= PSlP$2 ~ ~ PS~

indicating that the nth particle is in the state v(s ).
The total wave function is projected onto the subspace

I'4=2 4.(r) I&) (19)

III. MOLECULAR MEDIA

We now turn to the more complex problem of a
medium composed of diatomic molecules. In this case
no single state of the medium decouples from the rest.
Thus we must consider a wave function which is a
superposition of many medium states. As before, the
M.P. are Axed in positions Z with wave functions
g(v ) and energy eigenvalues w(4 ). The molecules will
all be assumed to be in their ground-electronic state in
a distribution of vibrational states. But as before, the
coupling between the vibrational states due to the
interaction with the electron will be neglected. How-
ever, the coupling between the rotational levels will
not be negligible. We designate the state of the medium

by the notation

where, as before,

p,'(r) =E—268—8. U(—r) . (2&)

(r/4/0') = P N~«(r, /'/—0')g4 I
/m/'m')

lmllml r
X (/m/'m'

I
LM/l') . (26)

Here g~ F~ ~ =—g~ Il'm') is the rotational wave function
of the Pth M.P. and the last factor is the usual vector
coupling coeKcient. The index vp used above is now
explicitly written as l'm'. The dependence on the rest
of the M.P. has been suppressed since it enters only
parametrically into the equations for the radial wave
functions N which are

Now the index s wi11 vary only over medium states in
which all but the Pth M.P. have fixed states, but the
Pth is changed due to the electron collision. These
equations describe the scattering of an electron from a
molecule. It is advantageous to obtain the solution in a
representation in which total angular momentum is
conserved. To this end we write

where e„. is the coupling potential between the states
s and s' of the M.P. Note that only medium states
diGering only by the state of the nth particle can be
coupled by v„.(r—Z ). The channel energies E, are
given by

E,=E 8,—68„—(21)

where 8, is the energy of the isolated medium in state s

N

8,=g w(v, )
s=l

and 68, is the interaction of the Cs core with the
medium. Strictly speaking, this interaction couples
diGerent states of the M.P., but we neglect these oG-
diagonal terms as small. Then 68, may be evaluated
as in Sec. II. The only diGerence is that we must allow
for the diGerent polarizabilities parallel and perpen-

where the sum covers all the rotational states of the
mole cules.

As in Sec. II, we neglect the interaction of the
electron with polarized M.P. The Schrodinger equation
for the p, is

LE.-U()+&3~.()=ZZ'"(-&-)~*(), (20)
a s'

d' l(l+1)
pp +

dr
N («(r, /'/p')

(LM//'I lml'm')(lml'm'I g pvg~. I XpVp')
mm' h, X'/t/, p, '

X(zpÃp, 'ILMV. ')N, «(r,z'/, '). (27)

The dependence of N upon I.has also been suppressed.
The boundary conditions are taken to be

sin(p pr —/4r/2)
N4«(r, /'/0') =

where

+ll', la lo'

+ '
cos(p4. r—/n. /2), (28)

(pi p«)"'

p4.2(r)=E 268 gw—(l,)—w—(l') —U(r). (29)
s=l; s&P

Here E, the coefficient of the scattered wave, is simply
related to the usual reaction matrix for the transition
of the molecule in state lo' and the electron in relative
partial wave l& to the state l' and /', respectively. We
must now solve the boundary-value problem and, as
in Sec. II, obtain a superposition of solutions (26) to
give the function Q,) at r= R. That is, we require that
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a general solution Then an evaluation of the right side of (36) only keeping
terms linear in I' yields

y, (r) =g P ~&~(i„i,')y™(r,ioio') Is,& (30)
ep LM)pip'

satisfy the boundary condition

6(r)l -~=mls&(4 & (31)

A slight simpli6cation results from the substitution

In (30) the notation Iso& means the medium states with
the Pth wave function omitted. It is included in @~~
and labeled by l'rN' Sub.stitution of (26) and (30) into
(31) and some obvious use of orthogonality properties
of the wave functions yields

P up, (R,t'lo')A~~(toto') = (4s.)'"Rbtobz, pg, &. (32)
lplp'

1 — 3 ) RQ'(R, Ol')q 3~-—p(y. & p. +—
I
-1+ '

I

——;~R, (39)
V R'k Q(R, Ol') ) R'

since I' is defined to be oG-diagonal. Thus there is only
virtual coupling of medium states by electrons in this
approximation.

For short-range potentials or large enough R, the
asymptotic form (28) can be used for a straightforward
evaluation of (39). The result for this case is analogous
to Eq. (11)except that allowance must be made for the
fact that the M.P. can be in any rotational state. The
result is

L~.—U( )+&')(e*( )&

AiM(l pip ) (4~)t'sR(g, &I'(L /pto')

so that (32) becomes

(33)

pp

, &os,os= —4 p Zf. (~') +—Q.(r)&, (40)
E

Q sot)o (R,/'lp')I'(L, lot p') = 8)obr, p .
Lplp'

(34)

R
4-(r)= E s&(4.&~ o(r, ~'~ ')I'(~', 4lo'),

g Lplpr r

where we have now taken explicit note of the fact that
only the spherically symmetric part of f will. survive.
Now returning to our starting point, Eq. (20), we again
consider the equation far from any M.P. and resort to
the averaging procedure leading to Eq. (10).The result
1s

1 (Ã.-U()+~')Q. ())=—Z
I
p.'Q.&

V ~

3 8
+——(s I ~-(r) &

——,Q.& Is-R'. (36)
R ar „g R4

In order to evaluate the last term, a solution of (34)
for F is necessary. We accomplish this by noting that
for low energy the electron-molecule elastic cross sec-
tions are much greater than the inelastic ones." We
therefore break the I's into diagonal and oG-diagonal
parts;

Ntt (r &'~o')=~tto3pt 'Q(r ~~')+I't&o(rg&o') (3/)

If I' is known, the solution in the vicinity of the Pth
M.P. can be constructed;

where f, (l') is the fraction of the M.P. in the rotational
state l' in the medium state s. Equation (40) is similar
to (12) and to lowest order in p we get the total eigen-
value

1
8„(,———+Ah+ h,

e
&oi,oiZf (i)

P
(41)

pl' —nL

+Olr, Olr

AE.(,,=AS 4rrp P f,(l')— 4xnp
(42)

pl' —nl

and upon forming an ensemble average over medium
states f,(l') is replaced by f(l', T) in (41). Here f(/', T)
is the average fraction of the M.P. in state l' when the
medium has a temperature T;

where
I )„& indicates the average over the hydrogenic

state (n,l). (Remember that p& and consequently E are
dependent upon r )If we . neglect the coupling of
diferent rotational states of the M.P. by the electron
I as we have already done in solving (34)), then the
M.P. states will not change during the experiment and
the term 8, will not contribute to the shift of the
spectral line even though it will shift the individual
levels. Thus the term 8, may be dropped in the approxi-
mation. The result for the relevant level shift is then

and we assume that Q))P. The solution to (34) may
then be written as a power series in I'. To 6rst order in
I' it is

f(l', T)= (2w/kT)(2l'+1) exp( w/1sT), (—43)

bto3vz, &io(R,~'L)
I'(L,ll') =

Q(R,ll') Q(R,/l')Q(R, OL) "Polar molecules have a sufliciently long-range potential ( r ')
that restrictions analogous to (15) would appear to eliminate the
possibility of using this type of formalism for interesting densities.

' See, for instance, K. Takayanagi and S. Geltman, Phys. Rev.
138, A1003 (1965). Note the difference in energy units there.

where the rotational eigenvalue is taken as w(l')
(38) =wl'(l'+1).
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For homonuclear molecules, "the long-range potential
takes the form"

I'(»; i)= —~/»' —(2Q/»s+~/~)~sP'i) (44)

where

Root (00) most (02)
Nso (20) N22 (22)

where
n = -'s (n) )+2cri),

Cl —3 (orl I 'gi) y

(45)
uos ' '(20) Noo""(22) Nor

' '(22)
1Vs= Nsst &(00) usot & (02) asst & (02) . (49b)

Nss&'& (20) Nso&'& (22) Nos
"&(22)

and Q is the electric quadrupole moment of the molecule.
We must therefore find, the modification of the radial
wave functions moo(», l'l') due to the presence of the
potential (44) and the modified effective-range formula
just as was done in order to arrive at (17). As in Sec.
II, the distortion of the wave function by the long-
range central part of the potential just cancels the last
term in (39). (The distortions due to the noncentral
potentials are higher order in R '.) The remaining
contribution is the modi6cation of the low-energy
amplitude due to the long-range potentials. O' Malley"
has given a discussion of this modified multichannel
effective range formula. However, his derivation starts
from his Eq. (3.3) which was first given by Spruch. "
This equation is incorrect. '4 We have therefore given a
brief description of the modification of Eoi. , oi. caused
by the potential in (40) in Appendix B.The result is

&oi,ov/pv = —&os(l') —a~~pi—-', Ao (I')carpi'ln(-, 'pi tr'i'). (46)

The resultant modification of the energy shift, (42), is

Z Z.,=8+4' g f(/', r)fA„(1')y-,'~~(p, .)„,
fl

+V-(1')-(p '»(!p -'&))- 3 (47)

This is hardly different from the spherically symmetric
case. In order to emphasize the possible differences one
would return to (42) (with the last term removed
because of the long-range distortion of the wave func-
tion) and put in an explicit form for the elastic scat-
tering from the molecule, including p dependence.
What is probably a more interesting problem is to
return to (34) and obtain a solution by including the
coupling between rotational states of the molecule d.ue
to interaction with the electron. To that end we briefly
discuss the model of a molecule with only the rotational
states 1'=0, 2. Inclusion of l'= 1 is trivial since it does
not couple to either /'=0, 2. Equation (34) for I' can
now be solved, explicitly. All I"s for L&2 vanish.
Omitting the details, the result which enters into (36)
is

8&P 1 S2=—Z &(~.&+a -& 00&&~....&-
@ g e fata

"
D2

Here the N's are the radial wave functions of (27), with
»=R and the R dependence suppressed. The prime
means a derivative with respect to E. The previously
suppressed depend, ence of N upon L has been made
explicit as a superscript. The determinants Dq and, D3
can be gotten from E2 and S3, respectively, by re-
moving the primes on si in the first rows. If (48) is
inserted into (36), the sum on tr performed and the
ensemble average taken, the result is

3
LE.—U(»)yV'jQ. &=-;~pRs p

s——
E2

+—
I

—f(0,7')+—f(22') I (y &.
RID,

The effect of the coupling appears on the right side of
(50) through the ratios E/D. It also appears on the left
through the eigenvalue E„which contains the energy
of the medium. If the process of exciting the absorbing
atom does not change the medium state (as is true in
processes not involving intense coherent radiation),
then this dependence may be dropped, in the same way
as was discussed in connection with (42).

The X/D terms in (50) are rather complicated func-
tions of p' and the E matrix. Expansion is possible
through the inequality pR((1, but because of the large
cross sections involved even at these low energies the
inequality pR»E may not hold. In that case the simple
multiple-scattering method used here fails, the reason
being that the cross sections are large enough so that
the electron "sees" overlapping M.p. In the case where
the inequality pR))E holds, expansion of the deter-
rninants leads to a result for the right side of (50) which
is

—4s p (f(0,2')&oo, oo/po+ f(2,7')&os, os/ps),

which is essentially the result of (40) (with the dis-
tortion terms n/R removed. ) Thus we may conclude
from the model that when our method works, the result
(42) (with the distortion term removed) is general.

APPENDIX A

S3
+&12m'&(e... - &—,
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(4g)

Modifications due to a polarization potential (Eq.
(14)j.
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Brittin, B. W. Downs, and J. Downs (Interscience Publishers
Inc. , New York, 1962), Vol. 4.

'4 L. Spruch (private communication) .



HIGHLY EXCITE D STATES OF ATOMS

The integral equation for the s-wave radial wave
function can be written

Zemach" has given a more convenient form of (27).
For our purposes it may be written

00

N(r) =sin(pr+3) —— dr' sinp (r—r') v (r')I(r'), (A1) &qq', ipip'(&) =&qq', ipip'(R) (Pq'Pi, )'is

which for large r is approximated by

QO

N(r) = sin(pr+3) —— dr' sinp(r —r')v(r')

Xsin(pr'+3) = sin(pr+3) —a cos (pr+3)/6pr'

+ (2p)'aLsin(pr —3)S(2pr)+cos(pr —3)C(2pr) j. (A2)

Here we define

/C(x)) "dy (cosy)
~

~(S(x)), y' (siny&
(A3)

The new terms on the right side of (11) may then be
written

2mE.'pn

Q). —(2p)'L(cos23) C(2pR)
sin'(pR+3) 3R'

—(sin23)S (2pR)7, (A4)

Xgi,&v;j i(rr~) «—(ri*)E:„,«(*/~) (p'/pi )"j
Xvii ix (a/&)I &i,i.&i i, ji, (*/~) —rr~(~/~)

Xltix', lolo (*/&)(p~ /pi, )"'j, (83)

where a= (pi/pi )'ls and 6= (pi p. )'". Here E(r) is
the amplitud, e which would, result from the potential
v(r) truncated at r. R is chosen to be some fixed value
large enough for (82) to be used in (83). Equation
(83) is similar to an equation used by Levy and
Keller" for d.eriving a mod, iled, effective-range theory
for single-channel scattering and, their method, may be
used, here. The method, consists of an iteration procedure
of replacing E on the right side of (83) by the previous
iteration. The zeroth order is just given by the erst
term on the right. A clear discussion of the reason that
the procedure works is given by O' Malley. "' The
first-order term is obtained by replacing X by Eo under
the integral. E~'~ results from the scattering from a
short-range potentials so that"

, (o) (R)—p, q+fp, i+$g i(o) (R) (84)
where only the lowest-order terms in e have been re-
tained. We now proceed. as before with the inequalities

pR(1,
pR) tan3,

(A5)

yielding (iP)4npa/R for t-his contribution. The other
modification comes from the change in the eGective-
range expansion which for r—4 potentials can be written'

t anb/p= —A —-'qrap —

-'asap'

ln(p4a'")+O(p'). (A6)

This yields an additional term to the right side of (11)
of the form

Ls+app+ (16~/ )a~p'»(p-'a'") jQ) ( )

, '() .(,) 4),
XX'

(81)

where for large r

vii, yx (r) = —(a/r )3n3i y
—(2Q/r +a /r )
x&1.mu'~z, ~l.uv. '). (82)

APPEIIX 8: MODIFIED MULTICHANNEL
EFFECTIVE-RANGE EXPANSION

Our starting point is Eq. (27) for the radial wave
functions uii, (r,l'/o'). Using the long-range potential,
Eq. (44), the right side of (27) can be written

where A is a generalization of the scattering length. A
straightforward evaluation of the integrals for small p
yields

&ov, ov ~'i/p = —~ ooi' —sqrapv
—4sAoo o apv' ln(pi 4ra' s)+O(pv') ~ (85)

Here, as O' Malley" points out in the spherically sym-
metric case, A00(" is the perturbation correction to
Aoo&oi, and so the entire result (to this order in p) can
be obtained. by dropping the superscripts on the A' s.
Actually, A 00&'& is slowly depend. ent upon energy
through terms like

aqq', xx' pl'

qq'U ' q+g+3 pqi

with additional factors. However, at the energy in
question here the ratio of these momenta are not sig-
ni6cantly diferent from unity, so that no further ex-
pansion is necessary. The result (85) is seen to be
essentially the same as for the spherically symmetric
case.
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