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Theory of Lattice Raman Scattering in Insulators*
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The theory of Raman scattering by phonons in perfect insulator crystals is developed here. The Hamil-
tonian for the interacting system of electrons, phonons, and photons is written in second-quantized form,
and a canonical transformation is performed to remove the lowest-order interactions. In the resulting trans-
formed Hamiltonian, the terms causing Raman scattering can be identified. The basic electron-system
eigenstates are taken in the Wannier exciton representation, including bound and continuum states. The
frequency dependence of the components of the Raman tensor is obtained for single-phonon and two-phonon
overtone scattering. As a function of incident photon energy, the Raman tensor has poles at energies cor-
responding to creation of quasiparticles (e.g., virtual excitons). This produces a particularly important e(feet
in resonance Raman scattering, where the creation of virtual excitons dominates the scattering process.
Some numerical estimates for single and overtone resonant-Raman-scattering efficiencies are given for Cd&
and GaAs, and are compared with available experiments. The use of the resonance Raman eGect as a probe
of quasiparticles is suggested.

I. INTRODUCTION

E have reformulated the theory of lattice Raman
eRect' in perfect crystals. In the Raman eHect

in crystals, a photon is scattered producing a change
in the vibrational state of the lattice, but the electronic
states remain unchanged. However, the virtual inter-
mediate states involve the excitation of the electrons.
We assume that the virtual intermediate states are the
exciton states because the Coulomb interaction is
always present between the electrons and the holes.
Each elementary Raman scattering consists of the
three real transitions: (1) the absorption of the incident
photon, (2) the emission or absorption of phonons, and

(3) the emission of the scattered photon. These real
transitions are accompanied by virtual exciton transi-
tions in which an exciton is created, then the exciton
is scattered, and finally it is destroyed returning the
electronic system to its ground state. The real transitions
can occur in any time order. In his theory, Loudon'
assumes that the virtual intermediate states are free-
electron —hole pairs. Grechko and Ovander' explained
the Raman scattering in molecular crystals as the
decay of the polaritons.

The Hamiltonian is written in Sec. II in the second
quantized form for electrons, photons, and phonons.
The electrons are represented in Wannier exciton
representation. A canonical transformation4 is per-
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4 J. L. Birman, J. Phys. Radium 26, 735 (1965). Preliminary
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formed to remove the lowest-order interaction terms
in the Hamiltonian, and the remaining Hamiltonian
is then taken as producing transitions between states
of the free Hamiltonian.

In Sec. III we obtain the first-order Raman tensor
and show its frequency dependence and symmetry.
In Sec. IV we derive the second-order Raman tensor
for the overtones only. We then discuss our theory and
com.pare with the meager experiments now available.
We make specific recommendations for the experiments
to be carried out.

where the unperturbed Hamiltonian H&" is

H(') =H.+Hr, +HE,
with"

H~= P EgE(c,v)G), Kt(cv)GyK(cv),

(2)

(3)

Hr, =p 4)„f(b„ftb„f+s),

HE ——g ho)„(A„,tA„,+ ', ). -
X(-'

Here a),K)(cv) and u), E(cv) are the creation and the
annihilation operators for the excitons having inner
quantum-number )t and wave vector K formed from
conduction band c and valence band v. E),K(cv) denotes
the energy of the excitons. For parabolic bands,
E),rc(cv) is given by

E„,K(cv) =Eg+A~) K('/2(m, *+ms*) R/ms (6—a)

~ For crystals with more than two ions per unit cell, but having
two sublattices, our theory is applicable to those modes of lattice
vibrations in which ions of each sublattice move together.~ Owing to typographical limitations, the vector subscripts z,
g, rf, g will be printed in light face throughout this paper
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II. THE HAMILTONIAN AND METHOD OF
CANONICAL TRANSFORMATION

We consider an insulator with two ions' per unit cell
of mass M1 and M2. The total Hamiltonian is taken as

H —H (())+H (&)+H (s)+H(s)
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for discrete states with e= 1, 2, 3, , and

E), x(cv)=Eg+5 IKI /2(m, *+m),*)+l) Ikl'/2)) (6b)

for continuum. The exciton rydberg R=))e4/25s)(s,
where z is the dielectric constant. The reduced mass
is 1/)a=1/m, ~+1/m), *, where m,* and ms* are the
effective masses of the electron and the hole. Eg is
the energy gap between the c and e bands. g, a, and

stand, respectively, for the wave vector, unit
polarization vector, and frequency of the photons. The
corresponding quantities for the phonons are denoted
by g, g, and o)„. We assume that in the optical branch
co„ is independent of g for small wave vectors. ~„
= (c/r„'")

~ g ~, where )(„is the optical dielectric constant
and c is the velocity of light in vacuum. b„~t, b,~ and
A„,t, A„, are the creation and the annihilation operators
of the phonons and the photons. The commutation
relations for the operators are

Lb.r»~ ~'j=b.~ 4~ (7a)

LA„„A,...tj=b„,a„, (7b)

Latex(cv)&aux't(c 'v ))=bee'b~e'5M'()xx'

/number of electron-hole pairs)
+0I S (7c)

|A'e will assume the excitons to be almost bosons since
the number of excitons will be zero or unity in the
electronic states of interest to us. The perturbation
terms H(" H(2), and H(') are given by

(t) =Q,L(&)+Q,a(&)

+( ) =11, ( )
( )++,L ( )

( )++ ( )

II()—+ ~()

(Sa)

(Sb)

(Sc)

where H, l, is the exciton-phonon interaction and H.g
is the exciton-radiation interaction. H, l.( is linear in
both exciton and phonon operators; this term creates
or annihilates an exciton emitting a phonon. H,L, (l)")
is linear in phonon operator but bilinear in exciton
operators; this term scatters an exciton and emits a
phonon. H, l.(2)(2) is bilinear in phonon operators but
linear in exciton operators which creates two phonons
simultaneously and creates or annihilates an exciton.
H, l, ") is bilinear in both phonon and exciton operators.
H,g(') is linear in both exciton and photon operators,
whereas H.g(2) is linear in photon but bilinear in

exciton operators. The specific forms of the interaction
terms are given below.

+sL = Q (gal, )(cvXK)a), ,xt(cv)bg(tbx, s+gg, t (cvAK)ay, x(cv)bg, ttbx, g} ~

II L (1)
(2)—

cvXK, c'v'P 'K'
Gp)(cvXK)c 'v X K )ayxt(cv)a)~yp (c v )b~ttbx —yp, —~ ) (9b)

eL(s) = Q jd, (,;(.(cAK)a)xt(cv)b„(tb„ptbx, (r).„)+d„(„'(*(CVXK)a),x(cv)b„(tb;(.tbx, w;},
C1)kK

(9c)

D&~&~p(cvXK, c v X K )a),xt(cv)a)!g! (c v )b&~ b& t bx x, (~& ),
cQ,K,c'e'X'K'

(9d)

and the exciton-photon interaction is

H,a(') = P (fx, ,(cAK)a)xt(cv)Ax, bx, „+fr,*(cvXK)a)x(cv)A„,bx, „}+c.c. (9e)

H,r)»= p (F„,(CAK, CUP, 'K')a)xt(cv)ag. x (c'v')A„,bx x,„
ceXK

+F,*(cvxK,c'v'x'K')a), x(cv)a), x t(c'v')A„, bx x, }+c.c. (9&)

The perturbation terms (9a) and (9b) will give Stokes's lines. To get anti-Stokes's lines, we have to include terms
with b,] in H, z,.

Assume that the perturbations affect H only through single-particle interactions. Thus we write the coupling
parameters using Toyozawa's' procedure

g„t(CVXK) = P U,„)x*(I})e'~'~ (lr,~(r,k)&%'„(r, k—K)dr
gl/2 P l

(10)

' Y. Toyosawa, Progr. Theoret. Phys. (Kyoto) 20, 55 (1958).



A. K. GANGULY AND J. L. BIRMAN 162

1
G„t(cvttK, c'v'X'K') =—p U,„)K*(g)U,„y I (g')e'&" K'&'e'+'"'&e e') +,a(r, k)bp@;(r, k—K+K')dry„„

E e.o ,~

1
U,„qx*(Ii)U, „),I (g')e'&"+")'&e-e') 4'„a(r, k+K—K')bP%'„(r,k)drb„, (11)

where%'(r, k) are one-electron Bloch functions and b&t) is the usual electron-lattice interaction for which deformation
potential and polar interaction will be used. N is the number of unit cells in the crystal, and g is the electron-hole
separation. U.„),K(g) is the wave function for the relative motion of the electron and the hole.

For long-wavelength optic mode of a lattice with two atoms per unit cell, the electron lattice interaction (Bir
and Pikus)' is

)'» 1
)Ir„*(r,k)8&+„(r,k')dr=

~

—p f„&"(nk~D"&~n', k—)I), 1/M=1/ M+)1/Ms.
2MNp) / a '

(12)

f &'& are the x, y, and s components of g. The deformation potential

D&'& = r)yp/&) (I;/a),
where &t p is the equilibrium lattice potential and u=ut —us is the relative displacement of the two sublattices;
a is the lattice constant. If the wave vector dependence'"'of the matrix elements of D&'') is neglected, then for long-
wavelength optic phonons, we get

Slid

))) )'» 1
g„t&'»(cAK)=N'"( )

—P P„&')(c)D&') (v)U.,)K*(0)
E2MNo)„t~ a '

(13)

)'» 1
G„& 'p (c XvKc'vVK')=~

~

—P t, ' [(c~D ' )c')g, (cv)Kc'v'X'K')b„, .
(2MNo)„i~ a '

where
—(v'~ D&'&

~
v)qs(cvXK, c'v'VK')b„), (14)

&t, (cv),K,c v'VK') =Q U..),K*(g)U, „.), K. (y)e*'&*-K') e

qs(cv)I.K,c'vVK') =P U,„),K*(y)U, „),K (g).

If c=c', v = v', Ansel'm and Firsovs have shown that &t, and &ts depend on K—K' only due to translational invariance;
and in the limit K—K -+ 0, the following completeness relation is obtained:

q, (cQK,cvX'K') = qs(cvXK, cvX'K') =1 if )I.=Y
=0 if X/P'.

Similarly, making the long-wave and momentum-independence assumptions,

d„t,„.p »&0( cXvK)=N))'
h 1

p p &o(, (j)(c~D&ri) ~v)U, „~K+(0)
2MN(o)„to)„.&)'~s a' a)'

A: 1
D r,„~ &' &(cgK,c'v'X'K') = —P P„&')g„& &[(ciD&"&i'c')g, (cvXK,cVX'K')b, „

2MN(o)pro)s~p) &

—(v'~ D&"&
( v)y (cvXK,c'v'X'K')b„j. (19)

Here the deformation potential is

gRy
D(&$)—

8(N;/a) c) (I;/a)
' G. L. Bir and G. E. Pikus, Fiz. Tverd. Tela 2, 2287 (1960) LEng1ish transl. : Soviet Phys. —Solid State 2, 2039 (1961)7.
s A. I.Ansel'm and Iu. A. Firsov, Zh. Eksperim. i Teor. Fiz. 28, 151 (1955) /English transl. : Soviet Phys. —JETP 1, 139 (1955)7.



LATTI CE RAM AN S CATTE R I N t" I N I NSU LATORS

ie (1 1)"'|'2v-Acorn)'"
@„]+(r)g@„&,, (r)dr=/

I

———
I I I

(/kle' 'll'k'),
p Inly, ~„~p/ 4 v /

where V is the volume of the crystal, co& is the frequency of the longitudinal phonon, and ao is the static dielectric
constant. Because of translational symmetry, k'=k+n, and if we let r&

—+ 0, then the matrix element becomes
diagonal in electron states. In such a case g„t "(' )(cAK) =0 and also

G„t(v")(cvXKC,V'X'K') =G„~(""(CQK. cv, X'K')b„.b„„.=0,
using Eq. (17).As pointed out by Loudon s we should expand e'& ' and retain the term of lowest order in n. Thus

tc 1 1)'~'(2v.hpp~)'~' h(cl j plv)
gp (v")(cvxK) =iel ———

I I I
¹ Ucc&,K*(0) (20)

)(p) k V 1 m(8, —b„)
d

1 )'"|'2v'&(p&)'" "&cl n'pic')
G„,(v") (CVXK,C v'VK') =iel ——

I I I q, (CAK, C'v'X'K)
sp/ E V ~ m(b, —h ~.)

. . . , &"In «lv)—qa(CAK, C v'VK') (&„. . (21)
m(b„—h„)

For polar crystals, there is an additional Frohlich' electron lattice interaction for long-wavelength longitudinal
optic phonons given by

Here g is a unit vector in the direction of g. 8„ is the
energy at the bottom of band e. Since p has no in-band
matrix elements, G&&"&=0 if simultaneously c=c' and
e=e'. This behavior of 6&I'"' is to be contrasted with
the behavior of 6&'», which does not vanish if c=c'
and e= v', because the deformation potential can have
in-band matrix elements. As we shall see later, because
of this difference in the structure of 6&'» and G&&"&,

the deformation-potential interaction contributes to
the Raman-scattering tensor while the polar interaction
does not when we assume a simple two-band model for
excitons.

The coupling parameters f and F are of the same
form as that of g and G in Eqs. (6) and (7), but now

We make a canonical transformation of the total
Hamiltonian B such that the term B(') is eliminated.
The transformed Hamiltonian 8 is

g=e 'sH'e's=H —il S,H)—sLS,LS,H))
+('/6) LS, I S,LS,H)))+"

where 5 is chosen such that

(25)il S,H(P))=H(

Then

+Her. (i) +Her. (s) +Hem +Hcz '
——',iLS,H"')—i[S,Hcz, (i&"'+H.&c "')
—iLS H.l (s)"')—il:S».r "')—sLS I:S»"'))

s LS) I S»c&(i)"'+H s"')) s LS)LS|Hcr (s)' '))
', ((S,((S,H, r, (')))—j—.(26)

%„„*(r)by+„.,&,.(r)dr

ep 2vh

m(V~„~„„i
where we have used the trans a rona proper y o
Bloch waves,

(27)

s,nd using the condition (25), we find

m, &,*(r)e «u, &, „(r)dr, Writing S in the form

S= (1/i) LQ+Q'+I'+I")
1 t 1 t f

4'„,&, (r) =e'~'u„,a(r) .

Assuming the matrix element of e p to be independent
of k, we have

f, ,(c9k) = cV"(e/m) (2v Pi/V—I(„p) )'"
&&Uc.),K*(0)(cl e plv) (22)

and

f„,(CVXK)a),Kt(cv)A,
Q= —p bx, g+c c (2»)

ccXK E),K(CV) —AMxc

f„*(c9K)a),K(cv)A„
O'= Z bK, „cc , (28b)— . .

ccXK EiK(CV)+ACOXc

F,„(cv),K,C'V%K')
= —(e/m) (27r&s/V)(„pc )'"Lqc(CAK, C'V9, 'K')

&((CI e plc')b„, —qs(cv&(K, C'v'X'K')

)&(v I e'pl v)b..). (23)
Ii vanishes if simultaneously c= c' and ~= e'.

' H. Frohlich, Advan. Phys. 3, 325 (1954).

g„)(CAK) a),Kt (CV)b„pl
8K, „

ccxK EgK(cv)+AGl&p

g„p*(cvXK)a),K(cv) b„(t

E),K(cv) —A(d &r

(28c)

(28d)
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The comrnutators in Eq. (26) signify different types
of photon and phonon processes. In Sec. III we will
identify the terms giving rise to the erst- and second-
order Raman transitions.

III. FIRST-ORDER RAMA5 TENSOR

I S, LS,H.r, &r&
&'&+H,g "&]]is the lowest-order commu-

tator that contributes to the first-order Raman effect.
The initial state of the system will be specified by

I
i&=

I e~, iso, eo, 0), where n), m2, and no are the number
of incident photons, the scattered photons, and the
phonons. The zero in the ket refers to the ground state
of the electrons where no excitons are present. The final
state after Raman scattering is

ly)= l~, —1, ~,+1,~o+1, 0).
Since we consider spontaneous Raman scattering, m2

will be taken to be zero. In the following, or~, X~, ~~

and ~2, K~, a~ will refer to the incident and scattered
photons' Q)p will denote phonon frequency. Expanding
the commutator ——,'[S, LS, H, l,~»")+H.zo&)] in Eq.
(26), we fi.nd that the contribution to the 6rst-order
Rarnan effect comes from the six terms Q'H, s&'&P,

Q'H, ( )"'Q', QH, s&'&P QH, r, (» "&Q P'H, g&'&Q', and
P'H, s")Q corresponding to the various time orderings
of the absorption of the incident photon, the emission
of the phonon, and the emission of the scattered photon
accompanied by three virtual exciton transitions. The
other terms do not contribute because (i) a&,rcl0&=0,
(ii) we cannot return to the ground electronic state,
and (iii) processes do not involve two photons and one
phonon.

By first-order time-dependent perturbation theory,
the transition probability per unit time from the initial
to the final state in the case of nonpolar optic vibra-
tion is

2Ã
1V=—,Z l(flLQ'H. "'Q'+Q'H. "'P+QH. "'P+QH. "'Q+P'H. "'Q'+P'H. "'Ql )I'~( — — )

g) xg

(29)

where the Raman tensor E»~" is given by

~-».(0)~""'x2+.*(0)(v
I

eo 1I c&[q (cl &"
I "»- —q~&" I

&"Iv&h- ]&c'I e~.f I")
+12 ( o&ly o&2p ooo)

LEx„(cv)—ho&,+ho&o)LEx. „+„(cV)—hoo,j
U-x,-"(0)~""'..-"*(0)&v I e~ 11c&[q.&cl &")

I "»- —q.&" I
&")

I
v»- ]&" I

eo 1I")
LEx, „(cv)+ho&o+ ho&o)l Ex,„„(c'v')+hooo)

~ x,—xi(0) L vx —x *(0)&vl e&'1&lc&[q,&cl so'1&l c'&8,„—qx&v I
eo'1) lv&a, .]&c'I &o)

I
v )

LE&, x, (cv)+ho&o+ho&o)l Ex x, „,(c v')+hMo)

U-x (0)U""x."- *(»&vleo1lc&[q &cle~ 1l "»- —q~&"Ie~ plv»-)&" I&")I"&

I Ex„(cv)—ho) &+ho&o) LEx. .„„,(c v')+ ho&o]

U-x.(0)~""'..-»*(0)&vl &"
I c&(q.(c I

ei 1&
I

c'&~- —qo&v'I ei 1)
I
v&&- ) &c'I eo pl v'&

LEx„(cv)—hoo, +ho&o) LE&...„„(c'v')+ho&o)

U...,(0)U""'x,+,*(0)&v I
&")

I c&[q.&c I
eo.ul c'»..—q~&" I eo 1Iv»- ) &c'I ei 1 I "&

LExo(cv) —ho&y+ho&o)LEx~, xz+o(c v )—hcavy)

(30)

X&, Ko, and rg are very small, and they will be assumed to be zero in Eq. (30). The subscripts on R)o' indicate the
photon-polarization directions and the superscripts refer to the phonon-polarization direction. In the summation
over X2, the direction of the scattered wave vector is restricted to a small solid angle dQ determined by the geometry
of the detector. The Raman-scattering eKciency' is dehned to be the ratio of the number E2 of the scattered
photons into solid angle dQ about the direction of observation per unit cross-sectional area of the crystal per unit
time to the number Ej, of the incident photons crossing unit area per unit time, and is given by

No e'LV(no+1)(o&g o&o)dQ—
o-('&dQ= o&. Eov(—o&z, o&x—o&o, o&o)oo~l

Xg 2h'3ISm4a'c4~p~j
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where I. is the crystal thickness and R» g——,; $('&R»(". In obtaining (31) from (29), we have converted the sums
over g and X2 into integrals.

In order to obtain the transition probability with the absorption of phonons (anti-Stokes s line) we have simply
to replace z1 and M„by —g and —~„ in Eqs. (9a), (9b), (28c), (28d), (29), and (31). Also, (zzo+1) in Eq. (29)
shouM be replaced by mo.

We calculate R»") approximately using a very simple model. We assume that the exciton spectrum is given by
Eq. (6). Further, we consider electronic transitions between the highest valence band vo and the low'est conduction
band «only. We observe that the first term on the right-hand side of Eq. (30) has the strongest divergence.
For the two-band model, only the first and the second terms in the right-hand side of Eq. (30) survive, and when

Ace~ is close to the band gap, the first term will be the most important. Assuming X1~0 and K~ —+ 0, the 6rst term
of Rzz('& becomes, after using (17),

EA' (»I sz pl«&((«l &'*'I«&—(»I &")lso&)(«l. z pl»&
-zlU, (o) I'

LEz 0(«vo) —A(dzjLEz, o((;0»)—ACOzj

(32)

Using X for discrete and continuum states of excitons, we get

X
Rzz(o~P (z)g (oP o(i)

n

a'I U.(o)l'

R — R
+0———It G) 2 Eg———

ACORN

n' n'

dl
(27r)'

(33)
tz'k'

q /
lz'k'

I E.+—~» II E.+—
2/z ) E, 2/z ).

where the matrix elements have been written in the notation of Loudon' and the sum over k has been replaced by
an integral. Now

I
U„(0)I'= Uo/7rao'zz', where Vo is the volume of the unit cell and exciton Bo'hr ra'dius (zo ——/(A'//ze'

and
I

U/, (0) I
'= (1/X) s(ze /sinhs n, where a =

I
R/(h'k'/2/z)

I
'". Using these values of

I
U„(0) I

' and
I U/, (0) I

',
we obtain

Rzm(()~pa (z)V (~)p Oo)
R' )/ R'

COg
———G02 GOg

———
GDy

n' ) &
'

n'

+ dk
(2~)', sinh~~ I uz) ( I V) ~

"2+ II "g—"z+
2p J ( '

2/ i.

R' R'
M2 eo — —cO~

1 /2/z)z/' 4~2R&
q

1/2 —z 4~2R& ) 1/2 —i-
+

I

—
I

(4zr~R')'/' 1—exp —
I

— 1—expl ——
4zr(»E ))'z I cdg —Q)zl COg

—C01

(34)

where &o,=E,/It and R'=R/fi
If (0,—~z&&4)r'R', we can neglect: R'/zz' in the first term of (34) and in the second term we use the approxi-

mation 1—e x=X for small I and get

R„(')
1 1 1 1 1 |'2/z')) "'

Z —,+-
I

—
I I:(~.—~z+~o)"'—(~u —~z)'"j po-"'" '*'p o'" (35)

K(/ Glp-(Og (d z cog (Oz+Mp & i zz 4gl~pE ))z I
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In this limit the first term in (35) is very small com-
pared to the second and we obtain Loudon's' result.

When &oi—~,—R', all terms in (34) except the term
with n= j in the summation are finite and 8~2&'&

becomes

P2
(2)~ (4)P 2(1)

gg2( )

X (36)
(602

—R —401+Mp) ((4&g R —M 1)—

8~2&') diverges as or~ approaches resonance. In this
respect, our result agrees with that of Grechko and
Ovander' without damping. However, the result of
Grechko and Ovander does not contain the second
energy factor in the denominator of R»&'), as in our
theory. The presence of this second factor in the
denominator is necessary to explain the experimental
results, as will be discussed later. The difference between
our theory and that of Loudon2 arises because of the
different density of states for the intermediate states
in the two theories. The density of the initial and the
6nal states are the same in the two theories.

In polar semiconductors, the Raman efficiency for
the transverse-optic phonon will be given by Eq. (31)
but for the longitudinal-optic phonon there will be
additional contributions due to the terms given in
Eqs. (20) and (21). The contribution to the transition
probability per unit time due to these new terms
alone will be

X
' ""— ("I

si Pl")
E EE,—E,
(+five other terms) . (38)

g' means that the term with c= c', v = v' is to be omitted
A

as explained in Sec. II.As seen in Eq. (38), P12"involves

(2m)4e' 1 1 )
&)4'm'((„' V ((„(((&)

Ni(N(+ 1)co( (22r)'
xp

~
P» ( (ei, (d2, ~&)

~

0 ~ XQ V

X8(K1—K2 lg)5(M1—(e2—CO&) . (37)

n&, co& are the number and frequency of the longi-
A

tudinal phonons. E'~2" contains terms similar to that
of Eq. (30) in which (m~ S(') ~m') is replaced by
&)&(mug pram')/(E —E ).

A

P12 ( &1 (e2 (4&l)

U 1,(0)U*, .&, „(0)(1 i
2 p i c)

V & cv [E&, (cs)&4—2&&4](e[2'i( 4vc) —A(4&1)
X'c'e'

three momentum matrix elements. Therefore, we need
virtual electronic transitions between three different

A

bands. So E»' does not make any contribution to
Rarnan scattering if we assume a simple two-band
model. We do not possess knowledge of the exciton
structures formed from pairs of at least three different
bands between which optical transitions are allowed.

However, we observe from Eq. (38) that P»"
will diverge as (E,—R—)2&01)

' near to resonance, in
disagreement with both Loudon's theory, 2 which
predicts a nondivergent (E,—tick))' ' behavior and that
of Grechko and Ovander, which predicts a (E,—ha&1)

'
divergence as Ace~ —& E,. The symmetry properties of

A

R»&'~ and E»" are the same as those enumerated by
Loud on

IV. SECOND-ORDER RAMAN EFFECT

The second-order Raman effect consists of three types
of processes.

(a) This process consists of the transitions in which
the incident photon is absorbed creating an exciton,
then two phonons are simultaneously created scattering
the exciton to a different state, and finally the scattered
photon is emitted annihilating the exciton. The absorp-
tion of the incident photon, the emission of the phonons,
and the emission of the scattered photon can occur in
any time order. This process contributes six terms to
the Raman tensor. Two of these terms arise from the
cumulator [S,[S,H,c"))) treated in the first-order
perturbation theory. The remaining four terms arise
from when the commutators [S,H, &4(2)) and II,r, (2)(2&

are treated in the second-order perturbation theory.
(b) This process involves the absorption of the

incident photon, the emission of the two phonons
separately (owing to P,& acting twice), and the emission
of the scattered photon. These four real transitions are
accompanied by four virtual exciton transitions. This
process results from the commutator [S,[H.r, (1)"
+H, &4(»7] treated in the second-order perturbation
theory and contributes 24 terms to the Raman tensor.

(c) Second-order Raman transition also occurs by
the iteration of the erst-order process. Six virtual
exciton transitions and a virtual photon or phonon
now occur with the absorption of the incident photon,
the separate emission of the two phonons, and the
emission of the incident photon. This process con-
tributes 36 terms to the Raman tensor from the commu-
tator [S, [S,B,l. (1)")+EX,)4")]] treated in the second-
order perturbation theory.

The wave vector selection rule for the second-order
Raman effect allows phonons of all wave vectors so

long as the two phonons have equal and opposite
wave vectors. However, the coupling parameters

g, 6, d, and D for the electron-phonon interaction were
calculated only for small wave vectors. These parame-
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ters for large g are not known. Therefore, we will
consider only the overtones, i.e., the emission of two
phonons with wave vectors at the center of the Brillouin
zone. The final state for the second-order Raman

transition is denoted by I f&= Inl —1, n2+1, np+2, 0).
For spontaneous process, n2 ——0.

The transition probability per unit time for process
(a) in the case of nonpolar optic phonons is

Eg—E;
(e~.s"'+e'~ s"') l~&0 I~ ~(2)"'

l~&&bl (~"&"e+~""'e'&
w= —p &fl ea„& )eye'a. ~&')e'yp

A' g, e', xm b

I 2) 8((pl—M2—2&op)

GO yM~O

where
I b& denotes the intermediate states and the second-order Raman tensor R»"" is given by

2x 8 nl(np+ 1)(n()+ 2) (22r)'
I Q $&') $&»R12&")(—(ol, (opl 2(op) I'

AI2m4g4g 2~2+2 S1 2 V

)(8 (X1 K2 fJ g—)5 (—(io1—M2—2&iop)
&

R12 ( (i)1) &o2) 2p)o)

-v,„„,(0)v„„., »*(0)&v
I

22 1 I c&(v &c I

&""
I "»- —op&" I

&""
I v»- }(c'I«1I v')

I E1„(cv)—hp)2]LE1, „(cv') —h(ol]

~-1,+. (0)U'". 1 x1(o)*(v
I
&"

I c&(g.&c I e2 1) I
c'&&."—q.&v'I ep 1) I v&~-}&c'I el 1) I

v'&

$Eli X1(c ~v )—hp) 1])El,o+o~ (cv) —h((po+(io pi) ]
~"l~o (o)~""1,-"(0)*&vI
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I c&(V &c I «1 I

c'&t)- —VP&v'
I « 1 I

v&b- }&" I
ep'1)

I "&

LE@,—xo(c v )+h(p2]LE1, 2+, (cv)—h((d„+(op )]
v,„,, „(o)v,.„.l, , „(o)*(vie, pic&{q,(cia&') lc'&a.„.—g,&"In&'J) lv&a„.}&"I

e, pl "&

LE1, «, (cv)+h&ol]LE1, „,(c'v')+hoop]

L'-1.-~ (o)~""'.-(.+")*(0)&v I el ul c)(v &cl 22 1)
I
c'&~- —op&" I

ep 1) I
v&~- }(c'I&""

I
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LE1.—.(cv)+h~l]LE1 .-&~') (c'v')+h(~. +~')]
U' lx (O) U' ' '1'.—(2+2') (0)*&vl e2'1) lc&(q.&cl «'1)

I
c'&8„„—gp&v'I «'vl v&I),.}&c'

CE1 ..(cv)-h 2]I:El,-&~, ) (c"')+h(~.+~.)]
(4O)

4A'lP3Pm4a4c'o) g(oo'

where Zp(2p)p) d&op is the fractional number of modes of frequency 2p) p ln the interval chop and

Rp —Q g(o](i)Rp (~i)

X,& and X2 will be assumed to be zero. Then''= —g, and we consider only the case where p =0. After performing
they, g, and X2 integrations, the Raman-scattering efEciency is given by

e41.V2(no+1) (np+2) (pol —2(op) Zp(2&op)dMp
~.(»do= dQ p2&P Rp~( —Ml) (p1 2MO) 2(oo) pl ~

I
(41)

Vo I}t'Y 20) +

Proceeding exactly as in Sec. III, we find that

1
R12(")(—~1, (ol—»oi »o)-po "'=" ""p o"'

pruop " n'
p

R' )( R'
I

&p——&1+2"p II "2——&1
I

n2 i
1 (2p)'" 4~2+~ j./2

I

—
I

(4~2R')»2 1—e~-
8~~o& h & Q)o

—(io1+2(iop

1

—(1—exp( —42r2R'/(~p —~1))'(2}-'
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and in the limit co~=~,—E.', we get

R,p('» [p, ('&= &'J&p p('&/v-ap'][(pp, —R' —&pg+2&pp) (&d p
—R'—&pg)]

—'. (42)

The ratio of eKciencies for the first- and second-order Raman scattering for incident frequencies near the
absorption edge is

2MQ ppp(&pi —&pp)Z« 07p
—1

p~( ~ h(&py —2&pp)g«(np+2)Z&(2&pp)d&pp &pp+&pp —&d(

(43)

where &ds=&pg R
~ Z«gi ( Z«and Zaa Qi, j f 5 Z«

The transition probability per unit time for process of type (b) is

2W'e4

It2m4g4K 2~2@2 p7r &

(2v.)' n&(np+1) (np+2)
IZ &'*'5"'R(p'"'I'~(~& 1&~ 8 9')~(~& ~p—»p), (44)

M yM~p

where

R(p(» (—&0(, happ, 2&pp)

U,„g„(0)U, .„.g.„*(0)(v~ep p~ c)G(cAKp, c(vgXgq'+Xp)G(cgvgkgg'+Kp, c'vVXg)(c
( eg p( )

[E~„(cv)—hip„][E~.„(c'v')—hip„][E~„.+„(c(vi)—hip„+ h&p„]

+23 other terms . (45)

The Raman-scattering efficiency is then

~,&»de=
4h2E23Pm4a4C4COga)p' Vp

eiI V'dQ( pn+1) (np+2) (&py
—2&pp) Z~(2&pp)d&dp

~ Q pp('&Rp, „(—&p&, &p(—2ppp, 2&pp) p&(»
~

'

For the two-band model using the same approximations as in Sec. III and employing Eq. (17), we obtain

Rgp ( &pj) cog 2Qlpp 2MQ)

~p (p)~~ (i)~~ (»p p(~)

prhgp' ~ n'(&pp —R'/n' —&pg+ 2&pp) (ppp
—R'/n' —

&pg) (ppp
—R'/n' —&p&+ ppp)

1 (2p)'"
(4n'R')'"

S~h~pPE h) 1.—exp( —4vPR'/(&pp —&p&+(dp))'" 1—exp( —4pr'R'/(&p —&p ))'"

(47)
1—exp( —4n'R'/(&pp —&p(g 2&pp) )'"

and in the limit ~~=or~—E', we have

Rlp '~'- (pp. ' =.."=..'i p.p
' /v h&ip )[(ip R ipy+2ppp) ((o R. spy) (ip, —R' &p,+&p )]—'—

Finally, we obtain for the ratio of the efficiencies, in this case

(48)

where

23flL &pp(&p( &pp)g«
h(&pp —R'—&pg+2&pp)',

op('& (&p(—2.ppp)g~ '"(np+2)Z~(2ppp)dppp

» —~ . . t(~)t(z) ~ (~) ~ (i)~CO ~%,j &j Q ~Ac ~Ac

(49)

In this case there is no po1e in the ratio.
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The transition probability per unit time for process (c) is given by

Sm'e' n1(no+1) (no+2)
]»F12» I'sX X, 8 Xt+„.i)(~1—~2—2~p), (50)

~'~'m'~„'~';,"~,~,X2 X "~~&XI ~~aO+n i+~ ~~g—Xl) .- ~
2

where
E'h4

( +lt +st 2+2) 2 f/otot»xt(0)U ot' t'»'xt —tt(0)f o ltxt —tt(0)f ' '1'xt(0)
Cl 'Vl Xl

Cl'Vl)L1
Cl/)

C'2/') '

(1/tl es pic,&{(ctl5)&*'Ic,'&b„t„, q. (2/1'I —&"l»»otot g.)(ct'I e' 12let'&
X-

L»..2(11)— X23L»,»-.(1 1)— Xt-,)
(el" plc)((cl &"'I"»- v

—("I&"'ls»- v.}("Iel pip'&
X +35 other terms . (51)

LE1,„, „(c2/) —h&p„„ll E1,„,(c'1/') —hot„j

Here a' is the unit polarization vector of the intermediate state photon. Under the approximations we have used
so far, Ri2&'&' becomes

&tt')( —ptt tp 2&p )~p &21~~ &t)p pp
~~ &j)p &1)

(/Vh'i' 1
Xl —

I 2 IU, (0) isl V,, (0)12 (52)
( V // 1,1 (E1., p

—htpt+2hp/p)(F), , p
—h&dx, „)(E/, ,p

—htpxt „)(Ex,p hptt)

Here h&pxt „ is equal to h&p2 in Eq. (30). Comparing
Eq. (52) and the first term of (30), it is easy to see
that for process of type (c) there is no pole in the ratio
tr&t)/g &2)

V. DISCUSSION

Equation (43) agrees qualitatively and almost
quantitatively with the experimental results of Leite
and Porto" on CdS. They observed longitudinal
phonons of I'& symmetry. Our theory applies to this
phonon mode since the Cd lattice moves against the
S lattice in this particular mode. The value of 2.521 eV
for the parameter hot/2 at a temperature of 77'K that
they obtained should correspond to the exciton energy
according to our theory. The exact value of the exciton
energy at 77'K is 2.544 eV."The discrepancy between
the two values might be due to the fact that the inter-
mediate states are not pure exciton states but coupled
exciton-phonon states. We have also calculated the
ratio of the intensity of Raman scattering at 77'K in
CdS for phonons of Fi mode at the incident photon
energies 2.41 and 2.53 eV using the following values:
2n,*=0.62n, 2ns*=0.252n, ap ——27.47 A, E,=2.572 eV,
R=0.028 eV, Scop=0.038 eV. We find the ratio to be
2.78X10'. The ratio calculated by Loudon's' theory is
3.05. Leite and Porto" have observed an appreciable
increase in intensity ("at least one order of magnitude" ).

"R. C. C. Leite and S. P. Porto, Phys. Rev. Letters 17, 10
(1966)."D.G. Thomas and J.J.Hop6eldt Phys. Rev. 116, 573 (1959);
119, 57O (1960).

Measurement of absolute intensities are required to
know the correct increase in the intensity of Raman
scattering.

The exciton spectrum of GaAs has been studied by
Sturge. "At 90'K, the exciton binding energy R=0.0033
eV, E,=1.511 eV, /1=0.0651 m, &2p ——133.128 A, and
L)p=0.0360 eV. We would expect a pole in the ratio
of the intensity of the first-order Raman effect and its
overtone at 1.508 eV. The intensity of the 6rst-order
Raman effect increases by a factor 4X 10' as the incident
frequency is changed from 1.37 to 1.506 eV, whereas
the corresponding factor in Loudon's' theory is 8.

We give a brief discussion of the relative strength
of the two types of electron-phonon interaction and of
the electron-radiation interaction. The ratio of the
coupling parameters is approximately

g&p") 2(M1M2)'" ( 1 1 )'/' h&ppep

(~p) 1/2I

g&'» M1+Ms 4 „Kpl K2nDEo
and

g&Pol)/f~K 1/2(1/K —1/Kp)1/2h(&P &P )1/2/E

p is the density of the material. We estimate these
ratios now specifically for CdS and GaAs. For CdS,
Kp=9.3, «„=5.8, p=4.82 g/cc, &2=6.72 At p 3.8X10 ',
egs units, K)~10 eV." The g&p ')/g&opl is found to be
1.02. For GaAs using the values of ap ——13, I~.„=11.6p

p=5.4 g/cc, a=5.644, p 8.1X10 "cgs units, 5) 15
eV, ' we obtain g&p"l/g&'»=1. 08. Polar scattering. and

"M. D. Sturge, Phys. Rev. 127, 768 (1962)."B.Segall, Phys. Rev. 150, 734 (1966).
l'E. M. Conwell and M. 0. Vassell, IEEE Trans. Electron

Devices 13, 22 (1966).
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deformation potential scattering are thus found to be
of the same order of magnitude. On the other hand
giv")/f=7. 4)&10' for CdS and g&r"l/f=5&&10 for
GaAs. Electron-radiation interaction is two orders of
magnitude stronger than the electron-phonon inter-
action. In the perturbation theory they should really be
treated in diGerent orders. However, we have followed
the common practice of treating B,g and H, L, in the
same order of perturbation theory.

VI. CO5'CLUSIOH

Virtual quasiparticles play an important part in
Raman scattering as intermediate states. The Raman
tensor is found to have a pole at an incident photon
energy equal to the exciton binding energy, in agree-
ment with experimental results available at present.
We believe that the Raman scattering might be used

as a tool to probe quasiparticles in crystals.

PHYSICAL REVIEW VOLUME 162, NUMBER 3

X-Ray-Induced First-Stage Coloring of NaCltf
J. L. Ax.vAREz RrvAs*

JNnta de Energia Ngclear, Division de Fisica, M'adrid, Spain

15 OCTOBER 1967

P. W. LEVY

Brookhaeen National Laboratory, Upton, 1Vem Fork

(Received 4 April 1967)

The initial or erst-stage F-center coloring of NaCl, irradiated with x rays at room temperature, has been
carefully studied. Both Korth and Harshaw samples were used. The erst-stage coloring is modi6ed by chang-
ing the experimental conditions. These include altering the dose rate; subjecting the crystals to plastic
deformation before irradiation; and cycles of coloring, bleaching, and recoloring. The observed curves of
F-center concentration versus dose can be resolved into one linear and three additional components. Two
of these can be considered saturating exponentials. The third, which does not occur in every curve, may
also be a saturating exponential, but is too weak to characterize precisely. Changing the experimental con-
ditions alters one or two of the exponential components but leaves the others unchanged. This suggests that
each component is related to a separate process and that the resolution into components is not fortuitous.
The linear component is unaffected by all the above-mentioned changes in experimental conditions. The
exponential component which varies slowest, as a function of irradiation time, is independent of dose rate
and prior coloring and bleaching. Its saturation level is increased by plastic deformation prior to irradiation,
but only after the strain has exceeded a threshold value. Beyond this threshold strain, the saturation level
increases linearly with strain. The saturation level of the next slowest component is unaGected by strain.
However, it is increased by a coloring-bleaching-recoloring cycle and is a function of dose rate. This dose
rate dependence is given by the expression: C&+C21, where C& and C& are constants and I is proportional
to x-ray intensity. The saturation level of the third and fastest-changing component is always less than 10%
of the total exponential contribution and is too small to study in detail. In the 185- to 350-mp, region both
the absorption spectrum and the behavior under the various experimental conditions dier considerably
in the two types of crystals. Also, the coloring curves seem to be strongly dependent on impurity content
in a way that is also diferent in the two types of crystals.

INTRODUCTION'

HE coloring of crystals, or more explicitly, the
formation of color centers by ionizing radiation,

has been studied for many years. The dependence of
color-center concentration on dose or irradiation time
is often called a growth curve or coloration curve. In
most materials these curves are inQuenced by numerous
factors. The most important of these appear to be the
impurity content, ' plastic deformation, ' ' ionizing

t Research supported by the U. S. Atomic Energy Commission.
f. For a preliminary report see Bull. Am. Phys. Soc. 12, 410

(1967).*Guest Scientist at Brookhaven National Laboratory, Upton,
New York.' J. H. Schulman and W. D. Compton, Color Centers in Sobds
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A537 (1964).
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radiation intensity, ' " ' and the presence or absence of
light that can optically bleach the centers formed. "
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