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account, and. that is the question of the distortion of
the ionic wave functions due to the lattices. This
question is dificult to answer at present, because of
the complications encountered in any attempt to obtain
self-consistency in a calculation of this magnitude. "
However, preliminary investigations made by solving
for a chlorine and an alkali ion in the Madelung 6eld of
the NaC1 crystal indicate that the chlorine ion would
be compressed in comparison to the free case and that
the sodium ion is larger than in the free case. In this
event, the more compact chlorine wave functions
sample less of the detailed structure of the ions com-
prising the lattice, and hence one would expect the
bands to narrow. That is, if one included a more
accurate lattice potential in a tight-binding formalism,
and also used wave functions obtained by solving the
ion in the Madelung 6eld, one would 6nd the bands
narrowing again. To this extent, the bands obtained in
the present paper, including the complete lattice to a
spherical approximation, could be considered as a
determination of the maximum width of the NaCl
valence band. .

The author feels it would be useful to determine the

~s D. G. Shankland, Bull. Am. Phys. Soc. 11, 387 (1966).

bands by a combined use of tight binding and orthog-
onalized-plane-wave formalism" as this latter
formalism treats the lattice potential in an essentially
exact manner. It is felt that a use of an augmented-
plane-wave model would not be totally satisfactory in
that such a model requires that the crystal potential be
spherically symmetric about a given nucleus in the
region about that nucleus and that it be constant in all

other regions. 7' Thus such a model would treat in a
highly approximate manner regions in which the shape
of the potential is seen to be important. In addition the
augmented-plane-wave model has the defect of neglect-

ing nonspherical parts of the potential in the regions
around the nuclei.
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The equations governing the propagation and growth of coupled 6elds in a rotatory dispersive nonlinear
medium are derived, making use of the method of Armstrong, Bloembergen, Ducuing, and Pershan. The
results obtained for the intensity of harmonic radiation and the conditions for phase matching are compared
to those obtained previously for propagation along the optic axis of crystals of point symmetry 32, and are
found to be identical in the limiting case of nonattenuation of the fundamental wave. The coupled solutions
for buildup of second-harmonic radiation are examined in the phase-matched case, and it is shown that
the growth of circularly polarized harmonic light results from the depletion of the fundamental of opposite
sense of circular polarization.

I5'TROD UCTION

'T has been shown that new phase-matching con-
& - ditions exist for harmonic generation in a nonlinear
medium which is rotatory dispersive. ' The treatment
followed, that of Franken and Ward' whereby the far-
field harmonic-radiation intensity was obtained by
surIUning the radiative contributions of the dipolar
distribution in the medium produced. by the incoming

*A preliminary report of this paper was presented at the
%ashington, D. C., meeting of the American Physical Society,
24 April 1967 )Bull. Am. Phys. Soc., 12, 578 (1967)g.' H. Rabin and P. P. Bey, Phys. Rev. I56, 1010 (1967).

~ P, A. Franken and J. I'. Ward, Rev. Mod. Phys. 35, 23 (1963}.

la,ser beam. This calculation was carried out in the
limiting case in which the fundamental wave propagat-
ing through the medium was unattenuated, the so-
called small-signal case.

It is of interest to extend this analysis to the more
general case in which coupling between the fundamental
and harmonic waves is taken account of making use of
the method of Armstrong, Bloembergen, Ducuing, and
Pershan. ' Besides showing the manner in which rotatory
dispersion can be fitted, into the coupled-wave forma-
lism, it is instructive to examine the predictions of the

3 J. A. Armstrong, N. Rloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962}.
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coupled-wave solutions in an optically active medium
and. to compare the results in the appropriate limit to
those obtained, earlier employing the alternative
Franken-Ward analysis.

As in the earlier treatment the cases of second-
harmonic generation (SHG) and third-harmonic genera-
tion (THG) for propagation along the optic axis of
uniaxial crystals of class 32 have been selected for
evaluation, and the third-harmonic analysis is also
appropriate to isotropic media. Both cases are evaluated
in the limit of nonattenuation of the fundamental wave,
and a solution of the coupled-wave equations for SHG
is also obtained.

y;;~ reduces to the form

Vvi= (cf/~)ee~ (3)

where c is the speed of light in vacuum, co is the angular
frequency of the propagating wave, eij& is the unit
permutation tensor of third rank, and f is a pseudo-
scalar measuring the magnitude of specific rotation at
frequency co. Equation (3) is appropriate for the specific
cases to be treated subsequently in the nonlinear
problem.

Substitution of Eqs. (1) and (3) into Eq. (2) gives the
expression for the transverse components of electric
displacement,

II. OPTICAL ROTATION IN A LINEAR MEDIUM
AFTER LANDAU AND LIFSHITZ

For an optically active medium the dielectric per-
meability tensor &;; is taken as a linear combination of
the permeability tensor without rotatory dispersion

and terms involving the 6rst-order spatial
derivatives,

8
6ij 6ij ~Pij l..(0)~

Bxi

This second-rank tensor connects the electric displace-
ment and, field components in the usual manner

Di Eig'~~/ (2)

where the sun@nation convention applies to the three-
dimensional suffixes. p;j& is a third-rank tensor, obeying
the sy.nunetry condition y;j~= —yji~ and. for a nonabsorb-
ing rotatory dispersive medium it is real. In those cases
in which the propagation of a plane polarized wave is
described by a single refractive index (e& &)'Is, for
example isotropic media, cubic crystals, or propagation
along the optic axis of doubly refracting crystals,

4 L. D. Landau and E. M. Lifshitz, EIectrodywamics of Comtinl-
oes Medso (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts 1960), p. 337.

I. THEORY

The coupled-wave solution of harmonic generation is
obtained from the wave equation containing a non-
linear source term. In the present problem where the
nonlinear medium is taken to be rotatory dispersive,
it is accordingly necessary that the wave equation be
generalized, to include optical rotation. This generaliza-
tion follows from the treatment given by Landau and
Lifshitz4 of the propagation of waves through a linear
optically active medium. It is instructive to present
this linear treatment in order to provide the mathe-
rnatical framework for the nonlinear problem. Optical
rotation in a linear medium is carried, out below in
Sec. II, and in Sec. III the nonlinear problem is con-
sidered. for the special cases of SHG and, THG referred
to in the Introduction.

which in turn is substituted into Maxwell's equations
for a lossless dielectric medium. Assuming a plane-
wave solution of the form E;(~,z)e ' ', the transverse-
electric-Geld components E(co, )sand E„(&v,z) at fre-

quency ~ are then d,escribed. by the time-ind. epend. ent
wave equation

( fl
(V'+ks)S,,+~ —~e... E,(~ z) =0

4 c) ax(
(5)

Eg(cv, z) =-', LE~+(o,z)+E,—(~,z)) (10)

where the held components depend only on one spatial
coordinate s, the direction of propagation. The wave
vector k is defined by the relation

ks, (ol („/c) s

Solutions of Eq. (5) yield two circularly polarized
modes with opposite senses of rotation, and with
different wave vectors. Four field components satisfying
Eq. (5) can be written in shorthand notation

E +((u,z)=+iE„+(co,z)=Ese" ' (7)

in which a given equation is written with either the
upper or the lower of the indicated signs (+ and —).
The constant factor Eo is chosen as the amplitude
common to both circularly polarized, modes, k+ is the
wave vector associated. with the left-handed circularly
polarized wave with components E + and E„+, and. k
is correspondingly the wave vector of the right-handed
wave with components E.—and E„—.The wave equation
requires that the above solutions are subject to the
subsid, iary conditions,

k+ k=(uf/c-
k = (k+k-)'"=-'(k++k-) .

the latter approximation holding in the case where
ks» (cuf/2c) s

It is easily verified that Eq. (7) describes a plane-
polarized, wave of amphtude Eo by defining
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for j=x and y. Substitution gives the expressions

E,(&u,z) =Epe'"' costs

n=-,'(k+—k
—

)=po f/2c. (13)

The approximation of Eq. (9) is seen to require that
k')&cP the validity of which will be assumed throughout
the following discussion.

III. OPTICAL ROTATION' IN A
NONLINEAR MEDIUM

The above treatment of optical rotation in a linear
medium can now be extended to a rotatory-dispersive
nonlinear medium in which harmonic waves are
generated. We follow the method of Armstrong, Bloem-
bergen, Ducuing, and Pershan' in treating the inhomo-
geneous wave equation obtained by the inclusion of a
nonlinear polarization term. In the present problem the
wave equation is generalized to include optical rotation
of the propagating waves.

We consider coupling of the harmonic and funda-
mental waves along the s axis, and the frequency com-
ponents are designated as co;. The x and y components
of the Geld for a plane wave are written

E„(po,s) =Epe"* sinnz,

corresponding to a rotating plane-polarized wave with
specific rotation along the s direction given by

and
k;= (k;+k; )'" —', (k;++k; )

a;= 2(k;+ k; )=-po;f;—/2c—

(20)

(21)

We also define

specific cases to be considered. It should be noted that
in Eqs. (16) and (17) a particular sense of rotation of
the nonlinear polarization is taken as the generator of
Gelds with the corresponding sense of rotation. The
wave vector k; associated with the frequency co; is
defined in parallel form to Eq. (6)

k.2,(o) ((u;/c)'.

Also in Eqs. (16) and (17) we admit the possibility
that the quantity f is dispersive, and we associate f;
with a particular ~;.

We now look for solutions of the inhomogeneous wave
equations of the form

E,+(po; z) = +iEp+(a&;,z) =E„,+(s)e."'+' (19)

where E„,. (z) and E,+(s) are the complex amplitudes
of the right-handed and left-handed circularly polarized
waves at frequency co;. These amplitudes are a function
of the coordinate s allowing for growth or decay of the
propagating waves. In other respects the above expres-
sion is analogous to the former solution, Eq. (7) of the
homogeneous wave equation, with the requirement from
Eqs. (9) and (13) that

E +((o z)e-'""

and the corresponding nonlinear polarizations are

P.NL+(~. s)e irugt— (15)

E,( ', )=ALE; (;, )+E;-( ', )3 (22)

in an analogous manner to Eq. (10), and the components
of nonlinear polarization at frequency co; are written
in terms of right-handed, and left-handed, circular forms,

These expressions lead to the following generalization
of Eq. (5) for a nonlinear medium

a2E,+(~,.) cogf~ BEy (ppg~z)

+kPE,+(po; s)+
8S2 C BS

P,N L+ (po;,z) = WiP„"L+((o;,s) . (23)

Upon applying Eqs. (19)—(21) and (23) to the wave
equations (16) and (17), the simplified form is obtained

dE„P(z) 2mi t'po;)'
~

—
~

P "L+(~ s)e *"'* (24)
dz k; kc)

and

—4m~ —
~
P "L+(po s)

kc)

pope BE~ (cog)s)

Q)~)
=4+ —~P "L+(po s)

c

O'E„+(po;,s)
+k,2E„+(po,,s)—

as2

(16)

(17)

where it is assumed that the term involving the second-
order derivative is small compared to the term con-
taining the first-order derivative and can be ignored.

We now examine this equation for specific cases of
SHG and THG. Phase-matching conditions are derived
and the nature of the solution is examined in the small-
signal limit, and in the case of SHG when coupling
between the fundamental and harmonic waves is taken
into account.

We have anticipated in Eq. (14) both right-handed and
left-handed circularly polarized field variables (desig-
nated —and +, respectively) in accord with the earlier
solutions of Eq. (5). Furthermore, right-handed and.
left-handed modes for the nonlinear polarization,
Eq. (15), are also assumed. Explicit forms of these
polarizations will subsequently be derived for the

A. SHG along the Optic Axis of Crystals
of Point Symmetry 32

The axis of a crystal of symmetry class 32 is chosen so
that the s axis corresponds to the threefold or optic axis
and the x axis is a twofold axis. The wave vector of the
incident wave is assumed to be directed along the
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thus have the expressions

(p NL(~ z) ld {L(E +(s))zcE —(s)ei(kz=kl )z

+E (s)(E -(s))*'""-"')+")
(p NL(~ z) ld {[(E+(z))2e2ikz+z

+(E (s))2ekikg z)+c c } (37)

(P NL (~ s) 1id {L(E —
(z))4E + (z) ei(kz+—k| )z

—(E +(s))*E (s)e'("'=k'+&*)+c c.} (38)

E.,+(o)=E.;(o), (25)

where co~ is taken as the frequency of the fundamental
wave. Writing &dm for the second-harmonic frequency

(26) and(02= 2Q)y
&

positive s axis, and it is further assumed that the inci-
dent wave is linearly polarized along the x axis upon
entering the crystal face oriented, along the a=0 plane.
The latter can be assured, from Eqs. (19) and (22) by
requiring

it is assumed that the a=0 boundary condition on the
second-harmonic wave is

E,+(0)=E, (0)=0. (27)

We now consider the resultant Geld in the medium
produced by the superposition of the fundamental and
harmonic waves, given by the expression

(p NL((g2 s) f~d»{$(Ee~+(z))2e2
(E—„—(s))'e"" ')+c c ) . . (.39)

It is now possible to identify the complex functions
Pz (&v&,s) and pz. (&0k,s) by comparing the expressions

(PP'(~»s) = ALP "'(~»s)+(Pz"(~~ z))*) (4o)

and
»+(~~ ~2») =Ez'(~»s)+Ei'(~2») ~ (2S) (P.NL(g2 z) = 2[P,NL(iz&2 z)+ (P 'NL(g2 z))@] (41)

and.
(P."L=d»(8.'—8„')

(V "~=—2d»&.&y,

(31)

(32)

where d» is the appropriate second-order susceptibility
tensor for crystal class 32 for propagation along the
optic axis, ' and where

6 = ~ (6++@
—). (33)

It is next desired. to obtain the expression for the
complex nonlinear polarization amplitude P,NL+(&u;, s)
appearing in Eq. (24). The procedure is as follows. We
write

hz=«E&(~»~2)z)=2LEz(~»iz2~s)+(E](~»kz2)z))*]~ (34)

where

E;(~»&ak,s) =-', LE, (kz»cu2, s)+E,-((ogp)2, s)]. (35)

The quantities (P;NL in Eqs. (31) and, (32) are evaluated
on the basis of the deGriitions given in Eqs. (30), (34)
and (35). These polarizations show terms which are
associated with dc sects and frequency-dependent
effects in coj, M2 and. higher harmonics. Ke are only
interested in the present problem in terms associated
with id~ and a&k, and we designate (PzNL(e(, s) to be that
portion of (P,NL which is associated with ~~, and simi-

larly (Pz. (iz2,z) is that portion associated with ~k. We

where as before j refers to the x and, y coordinates.
Defining the real quantities

h;+= ReE,"((o»co2,s) (29)

and substituting from Eq. (19), we have

(4'»~kP) =~iEw (&»~28)
+(z)eikg z+E +(z)eikz z (30)

The associated second-order nonlinear polarization com-
ponents written as real quantities, are

P,"L+
(k&2, z) = +i p „NL+(id2, z)

=-,'d»(E~, +(s))'e"'+' (47)

which are recognized as the assumed forms given in

Eq. (23).
Upon substituting Eqs. (46) and (47) into Eq. (24)

the following two sets of coupled-amplitude equations
are obtained:

dE„P(s) isdgr (id)'
I

—
I
(E-P(s))*

ds u, Ec)

and
)(E w(s)ei[(kk) empt(kz& eHG]z (48)

dE.,+(s) i2~d» ~~y'

ds u, [ cl

g (E T(s))2e—i[(kk) s&riki-(ka) ekri&] z (49)

with Eqs. (36)—(39). We have then

P "'(~ z) = ld»HE-, +(s))*E- (z)e""='"'
+E-;(z)(E-, (z))*e"""" '), (42)

P NL(~ s) ld $(E +(s))2ekikg+z

+(E (z))'e""' *) (43)

P "L(~ s)=-'id f(E —(s))*E +(s)e'('"—"&*

—(E-,+( ))'E-, ( ) '"'='"'), (44)
and

P NL(~ s) lid ((E +(z))2e2ikt+z

—(E-, (z))'e""' *) (45)

By inspection these equations yield the circularly
pola, rized forms of nonlinear polarization

P NL+(id s) —~iP NL+(iz&1 z)

=ld (E-,'())'E-.+() '"*" '"'* (46)
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(Ak) BHG= km —2k1, (5o)

quantities:
&-,~(s) =p-, '(s)

(~~) BHG=~1+2~1,

and from Eqs. (20) and (21) we have used the identity
k+= k;&n, and, from Eq. (26), co2

——2~1——2&v.

It is now a simple matter to examine the harmonic
amplitudes in the small-signal case where the funda-
mental amplitude is unattenuated in traversing the
medium which we take to extend from z=0 to z=l.
Equation (49) is directly integrated to yield the left-
handed and right-handed second-harmonic amplitudes
at the exit face of the medium,

&-.'(s) =6-,'(s) (58)

First, the phase-matching condition (Ak) BHG=—(An)BHG is considered. Upon substituting Eqs. (57)
and (58) into Eqs. (48) and (49), the following coupled
equations are obtained:

and

dp„, (s) E
=—p- (s)p-'(s)

Cz kg
(59)

and the amplitudes of ~& to be completely imaginary:

21I ~» Gl

&-.+(l) = —
I
(&-;(0))'

c)
dp„,+(s) 2E

(p- (s))',
dz k2

(60)

&
—i[(a&) sHG+(~~) SHGI l

(~k) BHG+ (~&) SHG

(52) where E'= 1rd»(~/c)'. Multiplying Eq. (59) by
(2/k~)p„1 (s) and Eq. (60) by (1/k1)p„,+(s), and adding,
it follows after integration that

2&d11 &)
&-. (l)= —

I
(&-"(o))'

k, c)
k2

(p- (s))'=(p- (0))'— (p-.+(s))',
2k'

(61)

IsHG ~
sin jzlL(d k) BHG —(An) BHG))

L(+k) SHG (+&)BHG]

sin'h1slE(hk) BHG+ (6&)BHG j)
(55)

1(~k) sHG+ (&&)BHGj'
Two phase-matching conditions

1 e—i[(Ak) sHG —(b, a) sHG] l

(53)
(~k) BHG (~&)SHG

where the boundary condition stated in Eq. (27) is
employed, and we have written E„P(s)=E„,+(0), a
constant independent of z. The intensity of second-
harmonic radiation at the exit face of the nonlinear
medium is given by the following proportionality

~. .-&-, (l)(&-.+(l))*+~-;(l)(&-;(l))* (54)

Substituting the amplitudes from Eqs. (52) and (53)
and employing Eq. (25) it follows that

where the boundary conditions stated in Eqs. (25) and
(27) have been used. )It can be shown that Eq. (61)
deviates from the expression for the power-Row integral

(p-, (s))'+(p-;(s))'=(p-, (0))'

by terms of the order of the approximation inherent in
Eq. (24), which in turn are traceable to the approxi-
mate equality in Eq. (20).$ Substituting Eq. (61) into
Eq. (60) and integrating we have

(2k1)' / 2 )*
p,+(s) =

) [ p„,
—(0) tanh X( [ p„,

—(0)s (62)
4 k1 I kk1k1f

1/2

p„, (s)=p, (0) sech E p, (0)s . (63)
kgk2

Sy a completely analogous treatment for the other
phase-matched condition, (LM) BHG

——(60.) BHG, it can
similarly be shown that

(56)(~k) SHG ~ (~~) BHG )2k''~' — ( 2 q'~'
,„;(s)=l [ p„,+(O) tanh Z(

) p.,+(O)s (64)
E k1 ) kkrkglare apparent from Eq. (55).

In the case of perfect phase matching, the coupled-
wave equations also have a solution which describes the and
depletion of the fundamental wave at the expense of
the growth of the harmonic. Here we obtain a solution
in a manner analogous to that given by Bloembergen'
b choosin the am litudes of co to be corn letel real

1/2

p„,+(s) =p„,+(0) sech I p.,+(0)s . (65)
kgk2

p 1 p y
The signiicance of these results will be left for the

discussion section. We now turn our attention to the
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(P;NL=3C 8,(h,2+ b„2), (66)

where C~~22 is the nonvanishing component of the fourth-
rank electric-susceptibility tensor. ' Equation (66) is an
expression involving real field and polarization quanti-
ties and, in the notation adopted these quantities are
written in script symbols. As was pointed. out earlier'
the form of Eq. (66) is equally applicable for an
isotropic medium.

The procedure is now identical to that carried out
above in Sec. IIIA. Equation (25), (27)—(30), and (33)-
(35) hold as before, with the exception that ~2 is now
replaced by the third-harmonic frequency, co3, and
similarly k2 replaces k2. Equation (26) becomes ra2

——3~1.
We repeat the procedure leading to the complex non-
linear polarizations. Upon substitution into Eq. (24)
the following coupled. -amplitude equations are obtained:

dE~2 (z) 2272rc1122 (& )
I

— IL(&. +(s))'&- '(s)
&c&

)&c
—'&+2»«+&~~»«'* + terms of the

order of E„12E„,and E„,2$, (67)

where we de6ne

and

(&k)THG = k2 —3k1,

(+a)THG =&2

era= 3ory= 3'.

(68)

(69)

We can now examine the third-harmonic amplitude
in the small-signal case. Equations (67) are directly
integrated by dropping the indicated terms of order
E y E„, and E„,' in comparison to the lead ing E„,'
term. Assuming the medium extends from 0&s&l, the
left-handed and right-handed third-harmonic ampli-
tudes at the exit face are given by

272rc1122 t M)
i

-
I (~., (o)) ~.,'(0)

4k2 kcf

&t~~&) &HG+(~~ &HGI &

(70)
(&k)THG~ (&+)THG

where we have written E„P(s)=E„P(0).Assuming

'P. D. Maker and R. W. Terhune, Phys. Rev. 137, A801
(1965).

B. THG along the Optic Axis of Crystals of Point
Symmetry 32 and THG in Isotropic Media

We next calculate the intensity of third, -harmonic
radiation generated by a wave propagating along the
optic axis of a crystal of class 32. The orientation of
coordinate axes is the same as that defined above in
Sec. IIIA, and the x and y components of third, -ord, er
nonlinear polarization are given by

(~k)THG ~ (+&)THG ~

IV. DISCUSSION

(72)

This calculation has shown that when a linearly
polarized fundamental wave propagates through a non-
linear medium which is rotatory dispersive, two phase-
matching conditions occur in the harmonic-generation
process. These conditions are in contrast to the single
phase-matching condition which typically occurs in the
absence of rotation of the plane of polarization. In
principle, the rotation of the plane of polarization may
occur either by natural optical activity of the medium
or by Faraday rotation, and. the rotatory dispersion
may be normal or anomalous. In the present treatment
it was assumed that the medium was nonabsorbing at
the frequencies of interest.

A primary objective of this paper was to compare
results obtained earlier' based on the method of Franken
and Ward with the coupled-wave method developed by
Armstrong, Bloembergen, Ducuing, and Pershan. The
Franken-Ward treatment is carried out in the limiting
case in which the fund, amental wave is assumed to be
essentially nonattenuated; the fundamental sets up a
dipolar array at the harmonic frequency and the prob-
lem reduces to computing the resultant harmonic radia-
tion emanating from this array. The intensity functions
and, phase-matching conditions derived, on this basis are
given in Eqs. (23) and (24) for SHG and Eqs. (40) and
(41) for THG in Ref. 1.These expressions are identical
to corresponding results obtained in the present paper
in Eqs. (55) and (56) and (71) and (72), where the
coupled. -wave equations were evaluated, in the limit of
nonattenuation of the fundamental. This agreement not
only serves to con6rm the earlier analysis, but tend. s to
put both treatments on an equal footing for the analysis
of problems in the limiting small-signal case. These
alternative approaches each offer certain advantages in
the elucidation of the harmonic generation problem.

In the present paper, Sec. IIIA, we have given a
particular solution of the coupled-wave equations for
phase-matched SHG along the optic axis of crystals of
class 32. This solution d.escribes the buildup of the
harmonic wave at the expense of the fund, amental. It
is of particular interest that the right. handed and left-

E„,+(0)=E„, (0), the intensity of third-harmonic
radiation is given by

sin'{ 21l((d k) THG —(hn) THG) }
L(~k) THa —(~&)THG j'

sin {2 ll (hk) THG+ (hn) THG j}
(71)

L(~k) THG+ (~&)THG&'

upon substituting Eq. (70) into the right hand side of
Eq. (54) in which ra2 is replaced by A&2. Again two phase-
matching conditions are apparent from Eq. (71),
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handed circularly polarized components of the funda-
mental wave act independently of one another. Each
fundamental component couples to the harmonic corn-

ponent of opposite sense of circular polarization to yield
coupled. -amplitude equations analogous to the non-
rotatory case.' ' Equations (62) and (63) show, for ex-
ample in the phase-matched case (Ak) sno ———(hn) sno,
the lef t-handed second-harmonic amplitude p„,+(s)
grows as the hyperbolic tangent of s as the right-handed
fundamental amplitude p„, (s) decreases as the hyper-
bolic secant of z. Equations (64) and (65) indicate the
corresponding result for opposite senses of circular
polarization for the (Ak) sHG —(6(x) SHG phase-matching
case. Thus, complete conversion to second harmonic
could in principle only be attained in an optically active
medium when the incoming fundamental wave is com-

pletely circularly polarized. It should be mentioned that
the above remarks pertaining to coupliog between

opposite components of circular polarization in the
coupled-wave solution also apply in the small-signal
case as given in Eqs. (52) and (53). We see for example,
that a circular polarized fundamental wave yields a
second harmonic of opposite circular polarization.

The third-harmonic problem differs in several sig-

ni6cant respects from that of second harmonic. The
coupled-wave equations for THG, Eqs. (67), contain
additional terms associated with the quadratic Kerr
eftect, and these are described as reactive terms which
alter the phase velocities of the propagating waves. ' It
is of interest to mention that the effect of optical rota-
tion is to modify certain of the Kerr terms such that
they are transposed from purely reactive terms to terms
which directly alter the power Qow of third-harmonic
radiation. The detailed nature of these terms will be
presented in a later communication.

There is also a unique difference between the second-

and third. -harmonic cases in relation to the polarization
of the fundamental wave. Ke have seen that in SHG
the circularly polarized components act independently
of one another in producing second-harmonic radiation.
This simple separation of circularly polarized compo-

nents apparently does not occur in the more complex

coupled equations for THG. In the small-signal solu-

tion for THG given in Eqs. (70) both senses of circular

polarization of the fundamental wave must be non-

vanishing to yield a nonzero third-harmonic amplitude.
This is basically traceable to the (h,'+h„') factor in

the expression for third-order nonlinear polarization,

Eq. (66). It is clear that this factor is constant for pure
circularly polarized fundamental radiation, and hence,

a circularly polarized fundamental wave is unable to
generate a 3~ nonlinear source term. This is not the

case for linearly polarized fundamental radiation as we

have shown above and in earlier work. These conclu-

sions could easily be tested in a third, -harmonic experi-

ment, for example, in an isotropic medium or in quartz

(along the optic axis) by suitable transformation of the
fundamental wave from linear to circular polarization.
There is no third-harmonic signal generated through
the third-order nonlinear polarization with circularly
polarized fundamental radiation, and the fundamental
wave is modified only by quadratic Kerr terms. It is
thus possible with circularly polarized light to produce
pure quadratic Kerr eBect without simultaneous third-
harmonic generation.

In conclusion, there are several extensions of the
present work. which are indicated.

First, the present analysis can be extended, to other
optically active nonlinear media. The general features
of the results would be expected to be largely unchanged.
For example, in SHG diferent phase-matching condi-
tions would be expected for the two senses of circular
polarization with correspondingly diferent coherence
lengths for each. The specific form of the nonlinear
polarization term can lead to interesting results, as has
been noted with respect to Eq. (66). There are un-
doubtedly other syInmetry classes where the form of the
nonlinear polarization is such as to produce unique
effects depending on the polarization of the propagating
waves.

Second, in addition to harmonic generation other
nonlinear processes in rotatory dispersive media might
be profitably investigated, such as frequency mixing,
parametric amplihcation, self-focusing, etc.

Third, as has been indicated above the analysis for
rnagnetooptic rotation such as in the Faraday eGect is
in principle analogous to that of natural optical activity.
Faraday rotation, because of the obvious possibilities
for tuning in nonlinear processes, would appear to oGer
a particularly fertile area of theoretical and experimental
investigation.

Note added ie proof. N. Bloembergen and J. Simon
)Bull. Am. Phys. Soc. 12, 687 (196/)) have reported
on experimental studies of second harmonic generation
in optically active crystals of symmetry class 23. For
propagation along the threefoM axis the form of the
second order polarization is identical to that given in
Eqs. (31)—(32) for symmetry class 32. Bloembergen
and Simon have conhrmed that the sense of circular
polarization of the fundamental is opposite to that of
the second harmonic, and there are diferent coherence
lengths for the two senses of circular polarization. In a
private communication, Professor Bloembergen has
indicated similar unpublished 6ndings for quartz with
symmetry 32.
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