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A general theory of the thermoelasticity of stressed materials is presented. The theory is based on the
geometry of strain, Newton's second law of motion, the 6rst and second laws of thermodynamics, and the
invariance of the internal energy and Helmholtz free energy with respect to an arbitrary 6nite rigid rotation
of the material. Three diA'erent sets of physically significant thermoelastic coefficients are discussed. These
are (a) the second-order elastic constants, which contain the rotational invariance conditions and always
have the Voigt symmetry, (b) the equation-of-motion coefficients, which govern small-displacement wave
propagation and have Voigt symmetry only when the stress vanishes, and (c) the coefficients which relate
the variation of stress to the variation of strain from the initial (stressed) configuration. Relations between
these sets of coefficients are presented for the case of arbitrary initial stress, and also for initial isotropic
pressure. In addition, these second-order elastic coefficients for a stressed material are expressed as series
in the second-, third-, and fourth-order elastic constants evaluated at zero stress; the expansion parameters
in these series are the parameters which measure the strain from the state of zero stress to the stressed state.
All of the general relations are illustrated and tabulated for the example of a cubic material under isotropic
pressure. A detailed comparison of the present results with previous theories is given. The two types of
elastic constants defined by Fuchs and Voigt are generalized to conditions of initial stress, and compared
with the three basic sets of elastic coefficients of the present paper. Finally some comments are made regard-
ing the interpretation of thermoelastic measurements on crystals in terms of static and dynamic calculations
based on atomic models.

I. INTRODUCTION'

HIS paper presents a general theory of thermo-
elasticity of stressed materials. The need for such

a theory arises from the desire to understand materials
from the atomic point of view. For if the atomic inter-
actions are presumed to be known, one can calculate
mechanical properties of the material such as the energy
levels. This can be done for arbitrary configuration of
the atoms in the material, provided only that the
configuration satisfies appropriate mechanical equili-
brium, invariance, and boundary conditions. Then with
the aid of statistical mechanics one can calculate
thermodynamic properties such as the Helmholtz free
energy; in this way the free energy is naturally a func-
tion of configuration and temperature. Through the use
of thermodynamic relations involving the free energy,
one can finally calculate other thermodynamic quan-
tities for comparison with measurements. In the case of
thermoelastic measurements, such as sound velocities
in stressed crystals, one therefore needs thermodynamic
relations between the elastic constants and the free
energy which are valid at arbitrary configuration, or
equivalently, at arbitrary stress.

A theory of thermoelasticity for small strains from
configurations of zero stress was discussed by Voigt. ' In
addition, many of the results which we find in this paper,
for thermoelasticity of stressed materials, have been
given previously, but in widely separated places and in
many diferent forms. ' "We refer to the previous work
at appropriate places in the text below.

*This work was supported by the U. S. Atomic Energy Com-
mission.
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Although our motivation originates in the atomic
description of materials, the theory to be presented is
entirely thermodynamic. We consider a material whose
equilibrium states depend only on the configuration,
denoted by x, and the temperature T or the entropy
per unit mass S.The traditional state functions are the
Helmholtz free energy per unit mass F, and the internal
energy per unit mass U. It is convenient to work with
functions per unit mass in elasticity theory because
mass is conserved, while volume is not generally con-
served, during elastic strains. We take the customary
functional dependence of U and F:

U= U(x,s),
Ii=F(x,T).

Thus, the state function F is used when the independent
variables are chosen to be x and T; in this case the de-
pendent variables are 5 and the stresses. On the other
hand, the function U is appropriate for describing
processes in which the independent variables are x and
5, while the dependent variables are T and the stresses.
Finally, we consider only states which are obtained by
elastic deformation from states of zero stress. The
requirement that deformations be elastic insures that
the state functions are unique (single-valued) functions

' F. Birch, Phys. Rev. 71, 809 (1947).
s K. Huang, Proc. Roy. Soc. (London) A203, 178 (1950).
5 R. A. Toupin and B. Bernstein, J. Acoust. Soc. Am. 33, 216

(1961).' A. E. Green, Proc. Roy. Soc. (London) A266, 1 (1962).
7 C. Truesdell and W. Noll, in Handbuch der Physik, edited by

S. Flugge (Springer-Verlag, Berlin, 1965), Vol. III/3, p. 1.
8 D. C. Wallace, Rev. Mod. Phys. 37, 57 (1965).
9 R. N. Thurston, J. Acoust. Soc. Am. 37, 348 (1965).

T. H. K. Barron and M. L. Klein, Proc. Phys. Soc. (London)
85, 523 (196S).
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of the independent variables and hence that reversible
thermodynamics may be applied.

The theory is based on the geometry of strain, and
on three physical propositions, namely Newton's second
law of motion, the first and second laws of thermo-
dynamics, and the rotational invariance of the state
functions. In Sec. II we study three physically signifi-
cant sets of elastic constants for stressed materials: (a)
those which contain the rotational invariance require-
ments, (b) those which govern dynamic thermoelastic
motion (wave-propagation coeKcients), and (c) those
which govern static thermoelastic motion (stress-strain
coeKcients). These second-order elastic coefficients for
a stressed material are expanded in terms of the second-,
third-, and fourth-order constants evaluated at zero
stress in Sec. III. The various types of coefficients are
tabulated and compared in Sec. IV for a cubic material
under isotropic pressure. In Sec. V we compare our
results with previous theories, including those of Huang,
Birch, Fuchs, and Voigt.

x;=x;(X,t); ng= Bx,/BXg. (2 1)

(b) The displacement gradients uu, used mostly by
physicists:

x;—X;=u;(X,t); up= Bu;/BX;. (2.2)

The subscripts i, j, ~ ~ ~ indicate Cartesian components
and each goes over three values. We always use the
Einstein summation convention, implying a sum over
repeated indices. The two sets of coeKcients are
obviously related by

ng=5;, +up, (2 3)

II. THERMOELASTICITY OF STRESSED
MATERIALS

Basic Equations

We wish to study the thermoelastic motion of a
material about the initial configuration. The initial
configuration corresponds to applied uniform stress, and
hence corresponds to homogeneous elastic strain from
a configuration of zero stress. The position of a material
particle in the initial configuration is X, and the position
of the same material particle in the final configuration
is x. If the final configuration is obtained by applying a
small additional uniform stress, then the strain from
X to x is homogeneous, i.e., uniform throughout the
material. If the Anal conhguration corresponds to a
wave propagating in the material, the strain from X to
x is nonuniform in space and in the time t, and the basic
equations derived below are to be considered as equa-
tions local in X and t.

We measure the deformation from X to x by either of
two different sets of nine independent deformation
parameters.

(a) The transformation coefficients n;;, used mostly
by classical elasticity theories:

p= p(x), pg
——p(X).

The symmetric Cauchy stress tensor is

~ij ~ji ~

(2.5)

(2.6)

The theory is strongly based on the physical require-
ment that the internal energy or the Helmholtz free
energy should be invariant with respect to arbitrary
finite rigid rotation of the material. Thus, U or F
depends only on the relative positions of all the material
particles. Since the relative positions in the con6gura-
tion x are completely specified by the initial con-
figuration X and the g;;, then U and F depend on x only
through X and g;;:

U(x,S)= U(X,q,;,S),
F(x,T)=F(X,g;, ,T). (2.7)

It should be emphasized that this dependence is
necessary and sufFicient to insure rotational invariance
of U and F, for any initial configuration X. As an
abbreviation, when partial derivatives of the state
functions are written, we omit explicit statement of
which variables are held constant, with the under-
standing that all other variables are axed. For example,
(rlU/Bg;;) implies X, S, and all other qk~ are held
constant.

The three basic equations of the theory can now be
written.

(a) The equation of continuity, or conservation of
mass, is based on the geometry of strain, and is well
known' 7:

,/ =J=d tL g]. (2.8)

Here, J is the Jacobian of the transformation from X to
x, and is the determinant of the transformation matrix.

(b) Equations for the dependent variables are
conveniently expressed as follows. From the internal
energy,

2'= (8U/BS),

r;;=pn, kn, ((a U/agk))

From the Helmholtz free energy,

S= —(aF/aT),
7 ii =P&'r«B(~F/~9kr') .

(2.9)

(2.10)

Both sides of (2.9) and (2.10) are evaluated at x, with
the deformation parameters measured from the arbi-

where 5;; is the Kronecker delta. The symmetric finite
strain parameters of Murnaghan, ' also called Lagran-
gian strain parameters, are

gij'2 (&khaki ~~j) 2 (u~j+uji+ukiukj) ~ (2 4)

We treat the q;j as nine independent variables, but
always make sure the calculations are consistent with
p;;= &;;. The density of the material is denoted by p(x)
or p(X), with the abbreviations
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trary initial configuration X. Derivations of these
equations are given in the Appendix; the rotational
invariance of U and F is used in the derivations.

(c) The equation of motion in the absence of body
forces is also well known, and is an expression of
Newton's second law of motion. ' '

(2.9), the stress may be written

T;,= (pt/J) n, in; i(cl U/clrig i) . (2.18)

The derivative on the right of (2.11) is simplified by the
identity of Euler, Piola, and Jacobi [Truesdell and
Toupin, "Eq. (17.9)]:

(2.11)px;= BTg/clx;. 8 O.'j )——=0
8$j

(2.19)
Here x, is the second time derivative of x;, and if the
motion is adiabatic or isothermal the right-hand side
derivative is evaluated at constant S or T, respectively.

Since the deformation from X to x is considered small

(but not infinitesimal), it is convenient to expand the
state functions about X.

Then from (2.18) and (2.19), with the definition (2.1)
Of Aj'i)

8T;, pg Bx, 8 BU- pg 8 BU-
&ilJ BXg Bgk)

(2.20)
8$j J BX~ BSj BTJIr~

ptU X,g...S
=»p(X 0 S)y CB,,&,, +& C&,,„,&,,~„,+, (2.12) Also from (2.12) we can write

piF (X,ri...T)
=p,F(X)0)T)+Cr;,ri,;+2Cr,;i,irlerii, i+. . . (2.13)

By definition, the C coefficients are derivatives of p&U

or piF, evaluated at X, and also these coefficients have
the complete Voigt symmetry.

C';; =pt(~~/~n' ),
C';;=pt(clF/cia, ,),

C ijai= pt(~ ~/cl QiiclQ&&) )I'

C iiii= pi(cl F/ciri'rci 0«) ~'
(2.14)

where all derivatives are evaluated at X. The Voigt
symmetry follows from (2.14) and the symmetry of

g;, , for. constant S or constant T coefFicients this is

pt(ci&/&gw)=Csii+Cs~i .q .+
=C"i+ ', C"i .(n-. n,.—& .)+

(2.21)

The leading term is obtained by carrying out the
differentiation 8/clXi in (2.20), with the aid of (2.21),
and evaluating at X. Since at X we have 1=1, ri,,=0,
o.;;=5;;, the constant entropy stress derivative is

(AT,,/coax;) = PC;i6 g,+C „i,ij(cPxi/BX, BXi) . (2.22)

For the isothermal stress derivative, the C coefficients
in (2.22) are replaced by constant T coefTicients. Let us
introduce the coefficients S,;I,& for the square bracket in
(2.22) and write the equation of motion for either
adiabatic or isothermal motion, with all coefficients
evaluated at X.

C,j——C,;,
C'j'kl= Cklij= Cjij l= ' ' '

~

(2.15) pixi= 5,,ci(cPxi/clX, clXi), (2.23)

We can now interpret the C coefficients. At x=X, we

have p= pi and n;, =8... so from (2.9) and (2.10)

where for adiabatic processes one uses

ij kl Tjl~i7G+C ijkli (2.24)

T';(X)=pt(~U/~n' )= pi(~F/~~'~) (2.16) and for isothermal processes one uses

Thus, the leading coefFicient in each of the expansions

(2.12) and (2.13) is just the stress in the initial con-

figuration

T;;(X)=CB,;=Cr,;. (2.17)

Also, C~;;~~ and C~;;I,z are the usual second-order
adiabatic and isothermal elastic constants, respectively,
evaluated at X.

Equation of Motion for Plane Waves

We consider small motions about the initial con-

figuration X, and linearize the equation of motion
(2.11) by keeping only the leading terms in the dis-

placements. The calculation is adequately illustrated

by taking the case of adiabatic motion. From (2.8) and

S''iii= Tii~'a+C iri, i. (2.25)

The stresess have been introduced by means of (2.17).
The equation of motion for a stressed material was

obtained in the form (2.23) by Huang. » His calculation
was for mechamca/ rather than thermoelastic motion,
since it was based on a classical Lagrangian; hence the
S coefficients of (2.24) and (2.25) are thermoelastic
generalizations of the S coeS.cients of Huang. Although
Huang was not able to provide the correct interpreta-
tion of his S coefficients, in terms of stresses and elastic
constants, the complete interpretation corresponding
to (2.24) and (2.25) has been worked out among several

"C. Truesdell and R. A. Toupin, in IIandbuch der I'hysik,
edited by S. Fliigge (Springer-Verlag, Berlin, 1960), Vol. III/1,
p. 226.
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x—X=u exp[i(k X—(ut) j, (2.26)

papers. ' ' ~' Note that only when T,; vanishes do the
S;;&& have complete Voigt symmetry.

For a plane wave the displacement may be written

Solving for 0.;; gives the following relations:

«j= 2 (&ij+&s'i+~ij ~ji+ 2~ij) s

(&&ij/i7 &mn) g (~im~j n+&j m&in) s

(i7«j/i7isimn) g (~im~jn ~jmtiin) ~

(2.34)

where u denotes the magnitude and direction of the
displacement, k is the wave vector, co the circular
frequency, and t the time. It is convenient to define x
as a unit vector in the direction of propagation and e as
the wave velocity.

(2.27)

Now the derivatives of T;; can be transformed by chain
rule differentiation; for example,

(BT;~/Bei, i) = (BT;r/Bn„) (Bn„,/Be») .

The results are summarized as follows for adiabatic
variations:

With the displacement (2.26) the equation of motion
then becomes

(&T;s/&~i i) =&';ski, (2.35)

P'V I&= S&&'p~K&K~Np. (2.28) 738's7 i= g (T'a&si+ T'i&so+ Ts7A'i

+Tsi~'a 2T;r4i—)+C 's7 i,' (2 36)
Reference to the initial configuration has been omitted
in (2.28) since that equation is valid for any initial
configuration. Therefore, (2.28) can be used to interpret
adiabatic or isothermal plane-wave propagation, with

p and S;,&& evaluated in the (arbitrary) initial con-
figuration. Because of the sum over j and l in (2.28),
only the symmetric combination (S,,»+S;&») is ob-
served in wave-propagation experiments.

Stress-Strain Relations and ComyressibilitJJ

%e wish to derive a relation between the variation of
stress and the variation of strain from the initial
configuration. Here it is convenient to use infinitesimal
strain parameters in order to facilitate a direct com-
parison with previous calculations which have been
carried out for special cases (Sec. V below), and also to
provide a simple derivation of the compressibility.
Again the calculation is illustrated by taking adiabatic
variations in particular. From (2.18) and (2.21) the
stress components may be written

T;;=& '«acisi[C'ii+gC'w .(rim rin &)+—
(2.29)

The first step is to calculate (BT,;/Bn„,) for an adiabatic
variation. We can use Jacobi s identity [Ref. 11,
Eq. (17.8)g:

(~71/an, .)= (n
—'),„J, (2.30)

where e ' is the matrix inverse to e. The diGerentiation
of (2.29) is straightforward; evaluated at X the result is

(d Tij/~irrs) = (Tis~jr+ Ts's~ir Tigrs)+C ijrs ~ (2 31)

The stresses have been introduced by means of (2.17);
note that each side of (2.31) is symmetric in i, j.

The symmetric and antisymrnetric infinitesimal
displacement parameters, e;; measuring pure strain and
co;, measuring pure rotation, are defined as follows:

(2.33)

(BTis/a(ui i) =-', (T;ib, g
—Tg 5;i+T; ib g,—Ts75, i) . (2.37)

The symbol 8;;I,~ is introduced because these co-
ef5cients are complete generalizations of the coefIicients
de6ned by Birch' for the particular case of isothermal
variations for a cubic material under isotropic pressure
(see Sec. V). It follows from the derivation that for
isothermal variations, 88; ~~ is replaced by B~;;~~ in
(2.35), and B~;,7, & is defined by (2.36) with CB@»
replaced by C~;,A, &. It also follows that these equations
are valid for any initial configuration. The result (2.36)
displays the expected symmetry of 8;;I,& in i, j and in
k, 1, although the 8 coefficients do not have complete
Voigt symmetry since 8;;&&/BI,&;; in general. According
to (2.37), (BT;;/8&v&&) has the expected symmetry in
i, j and antisymmetry in k, l In addit. ion, (2.37) shows
that even for infinitesimal elastic deformations from X,
the stress depends on the rotation as well as on the pure
strain. This is to be expected, since if the material
undergoes a pure rotation, with no pure strain, then the
stress must also be rotated to maintain zero pure strain.
This circumstance has been pointed out in Ref. 7,
p. 250. There are, of course, special cases (e.g. , isotropic
pressure) when the stress does not depend on the
rotation.

The relations (235)—(2.37) are just the differential
form of Hooke's law. In other words, a Taylor-series
expansion of the stress about the initial value may be
written, for adiabatic or isothermal variations,

T;s(x,S)= T;;(X,S)+8 „iiepi

+ (&T'~/&~kl)&kl+ ', (2 38)

T,, (x,T) = T,, (X,T)+8;;i,iei, i

+(»,,/~-, i)-„+, (2.39)

where + . . indicates terms of second and higher orders
in the strain parameters. Part of (2.38) and (2.39) has
been given by Sarron and plein. "

It is now quite simple to calculate the compressibility
evaluated at the initial configuration. The adiabatic
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J= j (X)/j (x) = I'(x)/I'(X),

so ks evaluated at X is just

(2.41)

compressibility, for example, is given by

ks ———(1/Ij') (BIj'/BE) s, (2.40)

where V is the volume of the material and P is the
pressure. In view of (2.8),

Then the b~ P contain all the
particular, the following relations

bstl Ps&. n 1 2 3

bstl 2gs&. n 1 2 3

and a=4, 5, 6,
b =48 a=45 6

coeflicients Bs s. In
are easily found:

P= 1, 2, 3. (2.52a)

p=4, 5, 6

P=1, 2, 3. (2.52b)

p=4, 5, 6. (2.52c)

&s= —(BJ/BP) s.
Now (2.30) evaluated at X gives

(2.42) From (2.52a), the nine terms in (2.49) for the adiabatic
compressibility are simply

(BJ/Bn„) =b„„at X;

then with the aid of (2.34) we find

(2.43) ks ——P P bs.s.
a=i P=l

(2.53)

where B is the tensor "inverse" to 8, i.e.,

ijklB klmn g (bimbjn+binbjm) . (2.47)

Finally, if the pressure is varied while the nonisotropic
part of the stress is maintained constant, the total stress
varies according to

dTkl dPbkl, o——r —(BTkl/BP) = —Ski. (2.48)

With the aid of (2.44), (2.46), and (2.48), the adiabatic
compressibility is

(2.49)

Note that there are nine terms in the sum in (2.49).
Although the 8 coefficients do not have complete

Voigt symmetry in general, they do have enough
symmetry to be written in Voigt notation. This fact
allows a practical simplification of the expression (2.49)
for the compressibility. We use Greek letter subscripts
for Voigt indices, in the usual way:

ij=11 22 33 32 or 23 31 or 13 21 or 12
(2.50)

o.=1 2 3 4 5 6

Since 8;;&& are symmetric in i, j and in k, 1, all the
independent coeKcients can be written as a 6g 6 matrix
Bs s, for n, p=1, 6, and where Bs jjAljsjj in
general. Likewise, from (2.47), Bs,,kl have the same
symmetry, and all the independent coefficients are
contained in the set Bs s for u, P=1, , 6. Now let
b~ P be components of the 6&(6 matrix which is inverse
to 8~ P, so that

b aP~ Pv=~av ~ (2.51)

(BJ/B k)j=b,j, (BJ/Bid@)=0, at X. (2.44)

Therefore, (2.42) can be written

ks= —(BJ/Be;;) (Be;;/BTkl) s(BTkl/BP) . (2.45)

The term (Bk,,/BTkl)s is obtained by inversion of the
transformation (2.35):

(Bkij/BTkl) S=~"jkl ) (2.46)

In addition the isothermal compressibility is given by
(2.53) with bs jj replaced by br s, where br jj is the
inverse of Br s as in (2.51). Therefore, in order to
calculate the compressibility, it is only necessary to
invert the 6&6 matrix B~

P or B~ P.

Case of Initial Isotroyic Pressure

We have defined three different sets of thermoelastic
coefficients, which have different physical and mathe-
matical significance, namely, the C, S, and 8 coeK-
cients. In the case of a general initial elastic strain,
corresponding to a general initial stress, these three sets
are all different. However, if the initial stress is an
isotropic pressure P, so that

T,j(X)= Eb... — (2.54)

then there is some simplification. The designation of
constant S or constant T can be omitted here, since the
relations among these coeKcients are the same for
either case.

The equation of motion coeflicients (2.24) and (2.25)
are given by

~ski= Eb;lb'k+C';kl. — (2.55)

These coefBcients still do not have complete Voigt
symmetry unless P vanishes. The stress-strain co-
eflicients (2.36) and (2.37) simplify to

Biikl= E(b, lb, k+8;l—b;k bilbkl)+C, ,kl—, (2.56)

(BTij/BMkl) —0 ~ (2.57)

Now the 8;,&& have complete Voigt symmetry, for
arbitrary P. In addition, the 8 coefficients are eqliealemt
to the equation-of-motion coefficients since the com-
binations symmetric in j, l are the same for both
coefficients. It is easily verified from (2.55) and (2.56)

Rjkl++ilkj = Baj kl+ J3ilkj ~ (2.58)

This means the coeKcients measured in experiments on
wave propagation in materials under isotropic pressure
may be interpreted to be either S,,I, ~ or 8;;I,~, since it is
only the combination (2.58) which is observed. This
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special result for isotropic pressure has been noted
previously, ' "and Eq. (2.56) has also been derived. "

The result (2.57) is also to be expected: The stress is
invariant under pure rotation of the material since the
stress itself is rotation-invariant. Alternately, a pure
rotation of the material, in the presence of isotropic
pressure, induces no pure strain.

If we write (2.56) in the form 8 jj C„p—+—6 p, where
d p are the terms linear in I", then the 6&&6 symmetric
matrix cL has F fo—r each diagonal element, +F for
off-diagonal elements of the upper left 3&3 matrix, and
zero elsewhere. The important point is that the matrix
8 p has the same symmetry as the matrix C„p, for any
of the crystal classes, including an isotropic material.
This means the inversion of 8 p may be accomplished
by the usual equations for the inverse of C p." The
example of a cubic material is discussed in detail in
Sec. IV below.

Since 8 p have Voigt symmetry, so do the elements
b,p of the inverse ma, trix. Then (2.53) for the com-
pressibility becomes

f 11+f 22+ f 33+2(f12+f 23+ f 31) ~ (2 59)

This is valid for adiabatic or isothermal quantities. No
sum is implied in (2.59); all nine terms are written out
explicitly. Thurston" has previously derived the adi-
abatic compressibility in the form (2.59) for the case of
initial isotropic pressure.

material particle in the final con6guration is still x. We
dehne

S2ij= O!2:i/~+jr

qj;s= ', (~—k@k, &—,;).
(3.1)

(3.2)

The density at X is labeled po for abbreviation; po is a
function only of 5 or T. Keeping rotational invariance
in mind, the functional dependence of the state func-
tions is

U(x,S)= U(itis, S),
F(x,T) =F(rj;j,T). (3.3)

poU(rjij, S)=poU(O, S)+',C-
+ (1/3!)C";klm.n,,

~kern.

+ (1/4!)C ijklmnlrqrjis1klrjmnrjyq+ '

poF(qj;;, &)=poF(O, &)+2C"skid;,qjkl

+ (1/3!)C ski

+ (1/4 )C ijklmrrqrqqjisrlkl rjmrrrjpq+ ''

(3.4)

(3.5)

By definition the C coeflicients are derivatives poU ol'

poF evaluated at zero stress, and also these coefFicients
have complete Voigt symmetry as generalized to higher
orders. For example, with all derivatives evaluated
at gg=0,

In the expansion of U and Ii, the terms linear in q;;
vanish because the stress vanishes when q;;=0. We
keep terms to fourth order explicitly.

III. TRANSCRIPTION TO HIGHER-ORDER
ELASTIC CONSTANTS EVALUATED

AT ZERO STRESS

Higher'-Order Elastic Constants at Zero Stress

Cs;;ki= po(&2U/rjr7' rjrtkl),

C i&klmn= po(ij U/ijrjijrjrjklrj8m~),

C ijklmnjrq po(o! U/ij'gijrjrfjklrjrlmsrjrjyq) . (3.6)

In Sec. II we studied the second-order thermoelastic
coeKcients which govern the motion of a material about
the initial configuration. In practical laboratory experi-
ments to which reversible thermodynamics may be
applied, the initial stress is usually small. By this we
mean that the Lagrangian strain parameters which
measure the strain from a configuration of zero stress to
the initial stressed configuration are small compared to
one. It is therefore reasonable to approximate the
second-order thermoelastic coeScients at the initial
configuration by means of Maclaurin expansions about
a configuration of zero stress. This may be accomplished
by expanding the state functions about zero-stress
configurations.

We use a superscript bar to denote quantities evalu-
ated at zero stress. In analogy with the notation of
Sec. II, the position of a material particle in the zero-
stress configuration is X, while the position of the same

"G.Leibfried and W. Ludwig, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1961),
Vol. 12, p. 275.

"See, for example, W. Boas and F. K. Mackenzie, in Progress
ie Metal Physics, edited by B. Chalmers (Interscience Publishers,
Inc. , New York, 1950), Vol. 2, p. 90.

'4 R. N. Thurston, Proc. IEEE 53, 1320 (1965).

These are respectively the second-, third-, and fourth-
order adiabatic elastic constants evaluated at zero
stress and are functions only of S. The isothermal
constants are defined similarly in terms of derivatives
of F. These definitions agree with those proposed by
Brugger. "

where

(qlij+ 2' ij) —(rjrs+ 2~rs)arias j &

ail ——BX;/BXj.

(3.7)

(3.8)

The transformation of variables is then accomplished by

(827is/rjqj„, ) =a„a„, (3.9)

which follows from (3.7). Talking the adiabatic con-

's K. Brugger, Phys. Rev. 133, A1611 (1964).

Relation to Second-Order Constants at Nonzero Stress

The second-order elastic constants at the initial
configuration are defined by (2.14); we merely need to
transform those definitions from the nine independent
variables g;; to the nine independent variables 7ft;;. From
(2.4) for g;j and (3.2) for g;, , we have
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ALE I. Values of pv for particular plane waves for a cubic material under isotropic pressure. For adiabatic or
isothermal propagation, the values of pv are adiabatic or isothermal coeKcients, respectively.

(1,0,0)

(1,0,0)

(1,0,0)

(0,1,0)

S1111 B11 ~11

S1212=B44= C44—P

pV2

1—(1,1,0)
v2

1—(1,1,0) —', (Slit t+Sllss+Stsls+Stssl) 'f (811+8\1+2844) =, (Cll+Cls+2C44 2P)—

1—(1,1,0)
v2

1—(1,1,0)
v2

—', (S„ll+Sls„—S„,s —S,s„)= -', (8„—8„)= —', (C„—C„2P)—

1—(1,1,0)
v2

(0,0,1) S1212=B44=&44—P

1—(1,1,1)
VS

1—(1iii1)
v3

—,'(Sllll+2Sltss+2Slsts+2Stsst) = ', (8»+2—811+4844)= ', (C»+2C-ts+4C44 38)—
1—(1,1,1)

v3

1—(i,i,o)
K2

3 (S1111+2S1212 S1122 S1221) 3 (Bll B12+B44) 3 (C11 C12+C44 3P)

q,j=-,'(ap, at,j—5;j), at X. (3.11)

Ke now have a general expression for C;;I,~ evaluated
at X, in terms of adiabatic second-, third-, and fourth-
order elastic constants evaluated at X, and the param-
eters which measure the deformation for X to X, namely

(pt/pq) and a;;. With the aid of (3.10) and (3.11), the
equation-of-motion coefficients S;;k~ and the stress-
strain coefhcients 8;„I,~ can be expressed in terms of the
initial stresses and the higher-order elastic constants
evaluated at zero stress. A particular example of this is
given in Sec. IV.

A,n important point needs to be emphasized here. In
deriving (3.10) and (3.11), all differentiations were
carried out at constant S. This implies that py/pp and
the a;; in these equations must be evaluated at constant
S. By the same token, if (3.10) is used to relate iso-
thermal constants, the parameters measuring the strain
from X to X must be evaluated for a constant T strain.
It is possible to consider alternative derivations in
which, for example, the strain from X to X is isothermal
while the equation is used to express the adiabatic
constant C~;;1,~. We avoid this procedure since it leads
to "mixed" higher-order elastic constants such as
(BCs,jt,t/BFjmn)q. Although such constants have been

stants for illustration, (2.14) may be written

C s;; t, t pt (t)'U/B—q—I,,Bqt, t)

(p1/pq) asmajnatsqialqp0 (8 U/t)rlmn8 gtiq)'
= (Pl/Pq) asmajnatstlat q/C mn jiq+ C mn pqrs'mrs

+q C mnqiqrstnq)rsq)tn+ ' ' ' 7 ~ (3 ~ 10)

The expansion (3.4) has been used to obtain the last
form for Cs;jt, t in (3.10). The q1;, in (3.10) are to be
evaluated at X:

de6ned, " their calculation from atomic models is
complicated in an essential way by requiring diGer-
entiation with a dependent variable held fixed.

IV. EXAMPLE OF CUBIC MATERIAL
UN'DER ISOTROPIC PRESSURE

Second-Order CoeKcients at Arbitrary Pressure

We assume the material has cubic symmetry under
arbitrary pressure P. Then the elastic constants C;;I,~,

which can always be written in Voigt notation C p,
reduce to the three independent constants Ci~, C~2, and
C44. From (2.28) we calculate the combination of S;jest
which is equal to pe' for a given propagation direction
qq and a given displacement direction u t u is taken to be
a unit vector, since its normalization is arbitrary in
(2.28)7. This combination is transformed to a combina-
tion of B,jt, t by means of (2.58), and to a combination
of C;;t, t and I' by means of (2.55). We drop the designa-
tion for constant S or T, the relations among the
coefFicients being valid for either case, and write C and
B coefFicients in Voigt notation. The results are listed
in Table I.

The relations given in Table I are valid for arbitrary
pressure, and the coeKcients which give p~' values are
functions of P and S or T. In addition, pe' is evaluated,
in the initial configuration, which is also a function of
P and S or T. Even for a cubic material under isotropic
pressure, the S,,I,~ do not have Voigt symmetry and
hence cannot be written in Voigt notation. Note that
the relations between combinations of B„p and com-
binations of C s are consistent with (2.56).

It is easy to invert the matrix of B p coefFicients, since

"R. N. Thurston and K. Brugger, Phys. Rev. DB, Ai&04
(1964).
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b44= 1/844. (4.3)

these have the same symmetry as the C p for a cubic
material. As was noted in Sec. II, this situation holds
for any symmetry when the initial stress is isotropic
pressure. The three independent 8 p are 811, 812, and
844, and the corresponding three independent elements
of the inverse matrix b are

bll (~11j~12)/(~11 +12) (~11j2+12) I (4 1)

b12 j-i12/ (~11 ~12) (~11j2I~12) I (4 2)

are six independent third-order, ' and eleven inde-
pendent fourth-order, "elastic constants; these can, of
course, be written in Voigt notation with three and four
subscripts, respectively. The explicit expressions ob-
tained from (4.11) for the three independent second-
order elastic constants evaluated at q are as follows:

Cii Cli+ gLCllj(Cii1+2C112)7
+2"g [ Cll+ (2C111+4C112)

+ (Cllll+2C1122+ 2C1128+4C1112)7 I (4 12)

C12 C12+rlt C12j(C128+2C112)7

jsri L C12+ (2C128+4C112)

+ (5C1128+2C1122+2C1112)7y (4 13)

From (2.59), the compressibility becomes

k = 3(bit+ 2b12),

= 3/(&11j2%2) (4.4)
C44= C44jrlLC44j(C144j2C166)7

j-2'q2t —C44+ (2C144+4C166)

+ (C„44j2C„66j2C1266j401244)7. (4.14)

In terms of the elastic constants C l2, (4.4) and (2.56)
give

k=3/(Ctt j2C12+P). (4.5)

Again (4.1)—(4.5) are valid either for adiabatic or The three indePendent stress-strain coeKcients are

isothermal coeScients. given in a convenient form with the aid of (2.56):

X,= (1—n)X, ; (4.6)

(1—n)'= (1+29)'". (4 ~)

The parameter rj is defined by (4.7), and is introduced
because of its convenience as an expansion parameter. '
In the following we carry all calculations to second order
in o. or q, this is consistent with keeping elastic constants
of third and fourth order only. We also drop the designa-
tion of constant S or T, but it must be remembered that
n and g are to be evaluated along the line of constant S
or T, accordingly.

From (3.8) and (4.6) it follows

a,j= (1-n)b;j,

and hence with (3.11) and (4.'/), to second order

at X.

Also from (4.6)

(4 8)

(4. 9)

ji/jp=(1 —n) ' (4.10)

We can now evaluate (3.10) for the adiabatic or iso-
thermal case with the aid of (4.8)—(4.10);after carrying
out the sums involving Kronecker deltas and trans-
forming to a power series in g, the result is

Cijk1= Cijkljrj/Cij kl+ Cij klmm7

+2'9 L Cijkl j2Cijklmm jCijklmmy'O7 j ' ' '
~ (4 11)

For a cubic material (point groups 0, Ok, Te) there

Transcriytion to Third- and Fourth-Order
Elastic Constants

If the cubic material remains cubic under arbitrary
pressure, the deformation parameters from X (zero-
pressure configuration) to X (configuration at pressure)
are simple. We follow the notation of Birch'.

~11 C11 ~ )

+12 C12+P
844= C44—E'.

(4.15)

It should be emphasized that this result does not depend
on the Bridgman equation of state; the Bridgman
equation was used merely for convenience in deriving
(4.16).

With (4.16) and (4.12)—(4.15) the expansions for P jl

become

+11 Clt j'QL2 (Cll+ C12)+ (Clll+ 2C112)7
j-2'rj'$ —3C11 4C12+ (3C111+2C12$+10C112)

+ (C 1111+2C1122+2C112$+4C1112)7&
(4'17)

+12—C12+ riL (Cli+ C12)+ (C128+2C11'l)7

+2 9 L2C11j3C12 (Clil+2C112)
+ (5C1128+2C1122+2C1112)7, (4.18)

"P.B. Ghate, Phys. Status Solidi 14, 325 (1966).
'8 P. W. Bridgman, The Physics of High Pressisre (G. Bell and

Sons, Ltd. , London, 1949)) 2nd ed.

For an adiabatic elastic compression from X to X,
there will be a unique relation between g and I'; likewise
for an isothermal compression. In order to calculate
this relation, we used a Bridgman" equation of state
(adiabatic or isothermal)

V= VP(1 —A1P jA2P2),

and calculated A1 and A2 in terms of C p with the aid of
(4.5). Then from (4.12)-(4.14), and noting the relation
between g and V—Vp we find to second order in g

—P=ti(Crt j2C12)jrpt (Cll+2C12)
+-', (C,i,+2C,28+6Ci,2)7 . (4.16)
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B44 C44+'g[C44+ Cli+ 2C12+ (C144+2C166)3
+ 2l7 [ C44 2C11 4C12

+ (Cl11+2C123+2C144+4C166+6C112)

+ (C1144+2C1166+2C1266+4C1244)j ~ (4.19)

(5.1) and (5.2) must be equal.

S'v= C'v= Tv

Sa,kl= &,lfj'k+C'ljkl

(5 3)

(5 4)

Alternatively one can invert the transformation
(4.16), write g as a power series in P, and transform the
series for C p and 8 p to power series in P. We will not
write down these expressions, but instead calculate the
first pressure derivatives of 8 p„evaluated at P= 0. The
inversion of (4.16) gives

g = —-',A 1P+0 (P-");
(4.20)

(~'g/~P) P=o 3A 1= —1/ (C11+2C12) .

Then from (4.17)—(4.19), the pressure derivatives
evaluated at P=O(r1=0) are

Bal /1aP) = —-', A 1[2(Cll+C12)+ (Cill+2C112)j y (4 21)

(13+12/llP) 3A1[ (Cli+C12)+ (C123+2C112)))

(4.22)

(8844/BP) = ——',A 1[C44+Cll+ 2C12+ (C144+2C166)j.
(4.23)

These are written as partial derivatives because it is
implied that either S or T is held constant; then the
constants which appear in A 1 of (4.20) and in the square
brackets of (4.21)—(4.23) are all adiaba, tic or isothermal,
respectively.

The pressure derivatives of C p, evaluated at P=O,
are easily obtained from (4.21)—(4.23) together with
(4.15).

V. COMPARISON WITH OTHER THEORIES

Huang's Expansion of the Mechanical Energy Density

Huang expanded the mechanical energy density in
powers of the displacement parameters 24,; of (2.2), for
the case of initial homogeneous stress. We generalize the
theory of Huang by expanding the state functions U
and F, and thus differentiate between adiabatic and
isothermal coeQicients.

piU(X, 24;;,S)=piU(X, O,S)+S,,24;;

+2S,,kl24;,Nkl+, (5.1)

with a similar expansion for F in terms of isothermal
coeS.cients. These expansions serve as the fundamental
definition of the S coefficients. But (5.1) must be equal
to (2.12) in each order of the infinitesimal parameters
I,;. With the aid of (2.4), (2.12) is transformed to an
expansion in I;;.
piU(X, N;;,S)=plU(X, O,S)+CS,,N,;

+2' (C'jl~ik+C'ljkl)Nij24kl+ . (5 2)

Since all nine I;, are independent, the coefficients in

Here we have used (2.17) to introduce T,;(X). The
relation (5.4) is the same as (2.24); this is our reason
for introducing the 5 coefficients in Sec. II. Relations
analogous to (5.3) and (5.4) hold for the isothermal
coeKcients S~;; and S~,,I,g.

Now in (5.1) the I;, are arbitrary, and in particular
not necessarily symmetric. Therefore, (5.1) does not
contain any information about the rotational invariance
of U. But such invariance is completely contained in
the expansion (2.12), and hence also in (5.2). Thus the
restrictions placed on the S coefficients through (5.3)
and (5.4), along with the symmetry properties of T,;
and C;;I,~, should contain the rotational invariance
conditions. For adiabatic or isothermal coeS.cients,
these restrictions are found to be

S"~)—SI~"=o

S',71—S;*ki+S'1&jk—Sjl~'k= o.
(5.5)

Higher-Order Elastic Constants

Birch3 used the finite strain theory of Murnaghan
(see, e.g. , Ref. 2) to calculate the elastic coefficients
which relate a further infinitesimal stress and strain for
a cubic material under isotropic pressure. His calcu-
lations were for isothermal variations, since he worked
with the Helmholtz free energy per unit mass. The 8
coeKcients of Sec. II are complete generalizations of
Birch's coeKcients, since they give stress-strain rela-
tions for a material of arbitrary symmetry under
arbitrary stress. For a cubic crystal under isotropic
pressure, Birch wrote the final stress as T;;=—P5;;
+T, , where P is the initial pressure. Also the P,; of
Birch are the same as our 6;; of (2.32). With this
notation of Birch, and dropping the rotational de-
pendence of T;„(2.39) becomes

T;j'= B~,jklp761, Birch notation. (5.6)

When (5.6) is written out in Voigt notation for Tii',
T12', and T44', we recover Eqs. (20) and (23) of Birch,

These are just the relations which Huang' found by
requiring the energy density to be invariant with
respect to infinitesimal rotation.

As was noted in Sec. II, Huang' used his energy
expansion [of the form (5.1)]to show that the equation
of motion is given by (2.23). He also showed that only
when T;; vanishes do the S;,y~ have complete Voigt
symmetry [this is also obvious from (5.4)$. This lack
of Voigt symmetry led Huang to say that elastic
constants can only be defined at zero stress'; as is
evident from Sec. II, this diTiculty is now completely
removed.
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with the identification

B~
p
——c gg' of Birch. (5.7)

adiabatic and isothermal third-order elastic constants
Ltheir Eq. (5.9)j.This difference does not represent an
error, but only a dift'erence in expression.

Birch wrote the initial pressure P and the B~
p as

functions of g and the second- and third-order elastic
constants evaluated at P=O. His third-order elastic
constants are defined with different numerical co-
efhcients than ours; see, e.g., Ghate, "footnote 13.%hen
Eqs. (21)—(23) of Birch are expanded in powers of 2i to
second order, and the differences in definitions of third-
order constants is taken into account, there is complete
agreement with our expansions (4.16)—(4.19), except,
of course, for the fourth-order constants, which were
not included by Birch.

Ghate'7 has extended the calculations of Birch, for a
cubic material under isotropic pressure, to include
fourth-order elastic constants. His Eqs. (22)—(24) may
be compared directly to our (4.17)—(4.19); the agree-
ment is not complete in terms of order g'. The first
pressure derivatives of 8 p, evaluated at P=O, arise
from terms linear in g and are given by Qhate" in Eqs.
(74)—(76); these agree with our results (4.20)—(4.23).

Thurston and Brugger" have studied wave propa-
gation in stressed crystals. They express results in
terms of the directly measured quantities pplV' and its
first pressure derivative, all evaluated at P=O, where

pp is the density at P=0 and W= 2LpF, with Lp being
the specimen length at P=O and Ii the measured
repetition frequency at any pressure. For a cubic
material,

NZZ ~Z p

Nay='Yxy ) NyZ= PyZ y NZX= PZa j

+ye= Nzy= +zz= O

(5.13)

The Huang expansion (5.1) now gives the internal
energy in terms of the Fuchs deformation parameters.
The S coefficients in (5.1) simplify for a cubic material
under isotropic pressure, since

S' = —P~ (5.14)

and also since Ss,,21, given in this case by (2.55), depend
on only three independent CB;,I, ~. In view of these
simplifications, and with the aid of (5.13), the Huang
expansion for U becomes

Elastic Constants of I'uchs

Fuchs" calculated elastic constants for primitive
cubic lattices under zero stress, in terms of a particular
set of infinitesimal strain parameters. Since several
workers have used Fuchs' formulae to interpret ultra-
sonic measurements for cubic materials under pres-
sure, ""it is advisable to generalize the calculations of
Fuchs to the case of nonvanishing pressure.

Fuchs defined a set of six nonsymmetric deformation
parameters e„ey, e„y,y, yy„and y„; in terms of these,
our 24@ of (2.2) are given by

ppR"= pe', (5.9)

psW'= (I/I. p)pcs, (5.8)

where L is the specimen length at any pressure. From
(5.8) it follows for P=O

p1 U(X,24;;,S)=pt U(X,O)S) P(e,+—e„+e,)
+ 2 $S 1111(E+zey +'ez )
+2S 1122(ezev+ eyez+ ezez)

+S 1212('Yzy +buzz +Vzz )g (5.15)

ppW'= C11 (5.11)

Also, from (4.20) and (4.21), (5.10) is evaluated to
give, for P=O,

d(ppW )/dP= —1—sA1L2C11+C111+2C112$. (5.12)

In this way we find agreement with all the results of
Table I of Thurston and Brugger. "There is a differ-
ence, however, in that for adiabatic propagation, for
example, (5.12) should contain all adiabatic constants
in Ar Lsee (4.20)] and in the square brackets, while
Thurston and Brugger use an isothermal A~ and mixed

"P.B. Ghate, Phys. Rev. 139, A1666 (1965).

d(p pW')/dP = 22 1ppW'+ —d (-pvs)/dP, (5.10)

where all terms are evaluated at P =0 and 3A~ is given
by (4.20). Also, all quantities in (5.9) and (5.10) should
be either adiabatic or isothermal. For a cubic material
under isotropic pressure and for a [1,0,0j longitudinal
wave, Table I gives pcs=811. Then at P=O, (4.15)
gives

There are no sums implied in (5.15). Note that since
y;; are not symmetric, coeKcients such as 5 ~2~~ do not
appear in (5.15). An expansion of F is analogous to
(5.15) and contains isothermal coeflicients.

Fuchs expanded the potential energy per atom; this
does not differentiate between adiabatic and isothermal
variations. The generalization to the expansion of U or
P is obvious, and by comparing Eq. (4) of the first paper
of Fuchs" with (5.15) we identify the Fuchs coeKcients
F p (his c p) as follows:

Pll Sllll z F12 S1122 ) F44 S1212 p (5.16)

for adiabatic or isothermal coeKcients.
%e now calculate the coeKcients corresponding to

the three choices of deforrnations which Fuchs labeled
deformations (A), (B), and (C).

"K.Fuchs, Proc. Roy. Soc. (London) A153, 622 (1936); A157,
444 (1936).

"W. B. Daniels and C. S. Smith, Phys. Rev. 111, 713 (1958).~ R. E. Schmunk and C. S. Smith, J. Phys. Chem. Solids 9, 100
(1959).

~ W. B. Daniels, Phys. Rev. 119, 1246 (1960).
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(A) Compression in one direction, expansion in
another, conserving volume.

1+e„=1/(1+ e,); e, and p;t= 0.
2 =-,'pi(cl' U/cia, ') . (5.17)

Voigt-Tyye Elastic Constants

Following Leibfried, ' "it is convenient to work. with
the symmetric and antisymmetric infinitesimal dis-
placement parameters e;; and co;t of (2.32) and (2.33).
These two equations can be solved for e;; to give

It is now necessary to expand e„ to second order in e,
g1ving

ett= eg+eg

Nit= s (eij+eji+otij ccji) ~

With (5.23), the Huang expansion (5.1) becomes

(5.23)

P+F—ii Fis. — (5.18)

With the definition (5.17), we find from (5.15) and
(5.16)

piU(X, tt;;,S)=piU(X, O,S)+Sa,;e,;
+sS ijkl[Eijekt+eij(Mkl cclk)

+k (td'icckt cc'ice—tk tds'tc—kt+ tds'iostk) 7+ ' (5.24)

(3) Shear in one plane, conserving volume.

e,=0;
&= spi(~'U/». w') .

Again from (5.15) and (5.16) we find directly

8—2 F44 e

(C) Uniform volume expansion.

(5.19)

(5.20)

where we have taken account of the symmetry of ~;; to
simplify (5.24). The adiabatic Voigt elastic constants
V8,;1,~ are defined by

Vs;;kt= pi(B'U/cte, sctekt) . (5.25)

In view of the symmetry of e;;, only the part of S;,q~

which has complete Voigt symmetry survives the sum
in the term ~S;,I,&e,;e&&. Since S;;&&=S I,h, is already
satisfied )see (5.5)], then (5.25) is written

6x 6y 6z) Psj=0.
(1+")= (1+")(1+")(1+").

C=-;„(a U/a, „).
(5.21)

To second order in e„ the three equal principal strains
are given by

the result is

C=-s'(2P+Fii+2Fis) . (5.22)

The above zesults for Ii p and the three combinations

(A), (3), and (C) are related to the P p and C p for
cubic materials under isotropic pressure with the aid of
(5.16), (2.55), and (4.15).The relations are summarized

in Table II and hold for either adiabatic or isothermal
coefficients. It is seen that the quantities (A), (8), and

(C) are linear combinations of the 8 p, with no explicit
terms in P. Therefore, these combinations may be
related directly to the equation of motion coeKcients,
i.e., directly to p~' values for any pressure, as listed in
Table I. This has been the customary procedure. ""
Also, 2C is the inverse of the compressibility, at any
pressure.

TABLE II. Relations between the I'uchs elastic coef6cients
F p, the stress-strain coeScients 8 p, and the elastic constants
C p, for adiabatic or isothermal coeKcients for a cubic material
under isotropic pressure P.

V, kt= 4 (S,",kt+S ikt+S;; tk+S, tk); (5.26)

obviously (5.26) always has complete Voigt symmetry,
so V~; ~I, can always be written as V~ p.

The expansion (5.24) also shows how the internal
energy U varies if the material is rotated in the presence
of the initial stress. It is easily verified, with the aid of
(5.4) and the Voigt symmetry of Cs,,kt, that if the
initial stress vanishes or is an isotropic pressure, the
terms in cc,t sum to zero in (5.24).

The infinitesimal displacement parameters used by
Voigt' and others" ' are different from e;;, in particular
they have used e;; given by

e;s'= e~ = (2—itis')eit ~ (5.27)

and they take only six indices n for the set ij (Voigt
notation), instead of all nine. It is easily verified that
the elastic constants so defined, i.e.,

Vp.p =pi (O'U/cte. ctep), (5.28)

are the same as (5.26).
With the aid of (2.24) or (2.25), the Voigt constants

for either adiabatic or isothermal cases are

Vstk t = 4 (T'kit t+ 2'it~tk+ &tA't+ &tPik)+ Citk t (5.29)

For a general initial stress, V;,&& are different from any
other sets of coefhcients which we have considered. For
initial isotropic pressure (5.29) simplifies to

Fuchs Stress-Strain Elastic Constants V'skt = —sP (tt''k&st+&'t&tk)+C'tkt (5 3o)

Fll
F12
F44

P+F11 F12
28 —F44
2C = '; (2P+F11+2F12)

~11
~12
844
+11 ~12
+44
3 (~11+2~12)

C11
C12
C44 —P
C11—C12—2P
C44 —P
—,'(C +2C +P)

24 G. Leibfried, in IIandblch der Physik, edited by S. I'liigge
(Springer-verlag, Berlin, 1955l, Vol. VII/1, p. 104.

2' G. I-eibfried and H. Hahn, Z. Physik 150, 497 (1958).
"A. E. H. Love, 3IIathesttaticot Theory of Elasticity (Cambridge

University Press, Cambridge, England, 1927), 4th ed.
2' M. Born and K. Huang, Dynamical Theory of Crystal I.attices

(Clarendon Press, Oxford, England, 1954).
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For a cubic material under isotropic pressure, there are
three independent Voigt coeKcients; in Voigt notation
these are

~12 C12 )

V44= C44—~E.
(5.31)

Even for this simple case, the set V p is different from
all the other sets we have considered.

VI. SUMMARY

(6.2)

where g;; is measured from the initial configuration and
these equations are evaluated at the initial configuration
(rl;;=0). These elastic constants always have complete
Voigt symmetry. In addition, if one approximates U or
Ii by the potential energy of the interacting atoms in a
simple crystal, the C,;&& are the constants which exhibit
Cauchy relations.

(b) The. coefficients which govern the adiabatic or
isothermal motion of small displacement plane waves
according to (2.28):

p8 S;=5;;I,~w;z~lq.2 (6.3)

These Huang coeKcients have complete Voigt sym-
metry if and only if the initial stress vanishes; their
relation to the elastic constants, for either adiabatic or
isothermal cases, is

S;,g(
——T; tb, y+ C;,s t . (6.4)

(c) The coefficients which relate the variation of
strain away from the initial state to the variation of
stress, for adiabatic or isothermal processes:

(BT,,/Be») =8;,I.( (6.5)

In terms of the elastic constants, these coefhcients are

&'~I r = 2 (TaÃ~~+ T'i~, ~+ T; I o't+ T'~ 8'a
2T,;"o»)+C;,». (6.6)—

For general initial stress the 8;;J,~ do not have Voigt
symmetry. For initial isotropic pressure, however, the
8;;» have Voigt symmetry and also, in view of (2.58),
they can replace 5;;&& in the equation of motion when
the initial stress is isotropic pressure. Since 8,;1,~

We have developed a general theory of thermoelas-
ticity of stressed materials, which provides a basis for
interpreting measurements on materials of arbitrary
symmetry in states of arbitrary homogeneous elastic
deformation. In this theory there are three different
sets of physically signi6cant thermoelastic coefficients.

(a) The coefficients which contain the rotational
invariance requirements placed on the state functions
UorP:

measure stress-strain relations, it is these coeScients
which determine the compressibility according to
(2.51) and (2.53).

In (3.10) and (3.11),we have given an expression for
C;;~~ in the initial state, in terms of the strain in the
initial state and the second-, third-, and fourth-order
elastic constants evaluated at the corresponding state
of zero strain. With the aid of this expression, (6.4) and
(6.6) can be used to express S;;q~ and 8;,» in a similar
way. In using (3.10) to relate adiabatic or isothermal
elastic constants, one must measure the strain along a
line of constant 5 or constant T, respectively.

Fuchs and Voigt have defined elastic constants as
coefficients in the expansion of the energy in powers of
particular sets of in6nitesimal strain parameters; these
are discussed in Sec. V. These two sets of coefficients
and the three sets defined above are all different in
general. Relations among all five sets for the case of a
cubic material under isotropic pressure are listed in
Tables I and II and in Eqs. (5.31).

We should like to make some comments regarding the
interpretation of thermoelastic measurements on crys-
tals in terms of static and dynamic calculations based
on atomic models. We have recently extended the
general theory of lattice dynamics to allow the initial
configuration to correspond to arbitrary homogeneous
applied stress. ' This was done by studying the system
composed of a finite lattice plus externally applied
forces, and the rotational invariance condition was that
the energy of the system should be invariant with
respect to rotation of the entire system. In such a rota-
tion, the externally applied forces do no work. and the
lattice configuration changes only by a rotation. Hence,
this rotational invariance condition is entirely equi-
valent to the present treatment, in which the rotational
invariance ignores the stresses since they are dependent
variables, and requires the energy of the material to be
invariant with respect to a rotation of the material.
Indeed, we find in Sec. II above that the stresses must
rotate with the material if the energy is to remain
unchanged. Another point of importance is that if the
lattice has more than one atom per unit cell, the strain
parameters, say q;;, measure the homogeneous de-
formation of the primitive lattice, while the relative
displacements of the sublattices are dependent variables
and must be eliminated. '

In the lattice-model calculations, the largest contri-
bution to U or Il is usually the potential energy of the
interacting atoms; it is therefore customary to approxi-
mate either state function by this potential. ' "' "One
can then use the method of long waves to calculate the
coefficients 5,,~~ in the equation of motion, ' ""or use
the method of homogeneous deformation to calculate
the C;;A, g constants. " Of course, the elastic constants

'~ K. S. Krishnan and S. K. Roy, Proc. Roy. Soc. (London)
A210, 481 (1952).

'9 G. Leibfried and W. Ludwig, Z. Physiir 160, 80 (1960).
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obtained in this way are neither adiabatic nor iso-

thermal, but an approximation to either. Ke have

shown quite generally, regardless of the initial con-

figuration of the lattice, that the two calculations give

complete agreement when the relation (6.4) between

5 and C coefficients is taken into account. ' This hnding

removes a previously encountered difhculty, 30—"in

which the two methods of calculation were believed to
give diEerent results.

In recent years several workers have included

approximately the vibrational part of the Helmholtz

free energy, in order to calculate isothermal elastic
constants. """The constants so calculated are ex-

plicitly temperature-dependent, and in addition the
vibrational part introduces departures from the Cauchy
relations.
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APPENDIX: DERIVATION OF EQUATIONS
FOR THE DEPENDENT VARIABLES

Here we present two different derivations of Eqs.
(2.9) and (2.10), which give the dependent variables as
derivatives of the state functions with respect to the
independent variables. The two derivations have
ultimately the same physical basis, but are cast in
different languages.

The first derivation is in the language of solid-state
physicists, and simply generalizes a derivation of
Leibfried and Ludwig" to the case of arbitrary initial
configuration. The initial configuration is X, the final
configuration is x, and we proceed to calculate the
virtual work done by the stresses T;, (x) when the
material undergoes a virtual homogeneous deformation
hx from x. We write

we have

A'gmn s (nymAnyn+npnAnym)

= s (num»gqnqn+npn»ysnsm)
= snn-n. -(».s+»sn).

Define I1 as the matrix inverse to n, so that

p, in, t.=~'s,

then (A3) can be written

(A4)

AW= Au;I xsT,,ds, = T;;Au;, dr = T,,Au, ;V (x),

(A7)

where V(x) is the volume of the material in conagura-
tion x. Since T;,= T,;, only the symmetric part of Au, ,
survives the sum on ij in (A7); this symmetric part is
given by (A5) and we can write

AW= V (x)T,;dr)„„p,p„, . (A8)

Let us now write the combined first and second laws
of thermodynamics in differential form per unit mass:

dU= dW+TdS, per unit mass. (A9)

Multiplying (A9) by the density p in the configuration
x, and identifying pdW with V 'AW of (AS), gives

A~..P,P„;=', (Au;;+Au, ;-). (A5)

Let the surface of the material in configuration x be
s, with surface elements ds. The i component of force
on surface element ds, due to the stress applied in the
configuration x, is F;= T,,ds;. The virtual displacement
of ds in the i direction is Ax;= hu;~xI„evaluated at ds.
The virtual work. done by the stress acting on ds is

Fz+xz = +2g'de'AN7, Irxlr, . (A6)

The total virtual work. done on the material is AW and
is just the integral of (A6) over the surface in the
configuration x; this integral is transformed by Gauss's
theorem to a volume integral and is evaluated as
follows:

(@+Ax),= (o;,+Au, ,)x;= (f'i;, +Au, ;)n,sXs,

and since n,;= (r)x;/r)X, ), it follows from (A1)

(A2)

pdU= T;,P,P„;dr) „+pTdS. (A10)

Also, since F= U —TS per unit mass, (A10) leads to

pdF= T;,P,P„;drj „pSdT. —(A11)

From (2.4), which gives r);, in terms of n;;, and (A2)

' K. S. Viswanathan, Proc. Indian Acad. Sci. 39A, 196 (1954);
41A, 98 (1955).

~' J. Laval, J.Phys. Radium 18, 247 (1957); 18, 289 (1957); 18,
369 (1957).

&s Y. LeCorre, J. Phys. Radium 19, 541 (1958); 19, 704 (1958).
3' D. Saint-James, J. Phys. Chem. Solids 5, 337 (1958).
"N. Joel and W. A. Kooster, Nature 180, 430 (1957);182, 1078

(1958); Acta. Cryst. 14, 571 (1961};Soviet Phys. -Cryst. 7, 423
{1963).

O' T. H. K. Barron and M. L. Klein, Proc. Phys. Soc. (London)
82, 161 (1963}.

Tsr =pns-ni. (&U/&g .). (A12)

Similarly for a process at constant T, (A11) gives

Ti &
= pnsmnin (r)F/ r)r)mn)

The equations for the dependent variables follow
directly from (A10) and (A11).

For a process at constant S, (A10) gives

TvP-P- =p(~U/~n-),

or, in view of (A4),
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For a process at constant rt;;, (A10) gives

T= (ct U/BS),
while (A11) gives

(A14)

S= —(itF/i)T) . (A15)

This completes derivation of (2.9) and (2.10).
An alternative derivation is provided in the language

of classical elasticity theory. Truesdell and Noll, ' in
Sec. 82, give the following equations:

the same as the corresponding parts of (2.9) and (2.10)
above, and are valid in any configuration. We trans-
form (A16) from the nine independent variables n,; of
(3.1) to the nine independent n;; of (2.1); the result is

T;;= pn g, (itU/itn, t,)=pn, s(itF/itn;s). (A18)

Now since U and Ii depend on n;; only through the p;, ,
because of rotational invariance, we can transform the
derivatives in (A18) to derivatives with respect to rt, t

T;,= pn, t(BU/rtn, t) = qn, t (rtF/an;, ); (A16)

T= (8 U/BS), S= —(BF/i)T) . (A1'7)

In view of (2.4),
(Brtrj/Bnr8) = s (nr8js+nrj6rN) ~ (A19)

Here o.;; measures deformation from a configuration of
zero stress, as in (3.1). The equations for T and S are

The transformation of (A18) then gives

T;s= pn;&ns&(BU/itrt&t) =pn, tn;t(BF/itrt~t) . (A20)
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Three-Center Corrections to the NaCl Valence Band*
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The tight-binding method including certain three-center terms has been applied to obtain the structure
of the valence bands for NaCl. Two methods have been used. In the first method, which uses the traditional
method of applying tight-binding theory, three-center terms are neglected, except those due to the long-
range part of the ionic potential. In the second method, a spherical averaging technique is employed to
include the three-center terms due to the short-range-potential terms. It is seen that there is a small dif-
ference in the band parameters obtained from the two methods; however, the effects on the band structures
themselves are rather pronounced. Results are obtained with and without spin-orbit interaction. Some
discussion of the diferent results is included and suggestions are made for future improvement of calcula-
tions of this nature.

I. INTRODUCTIOÃ

HE tight-binding method has been used success-
fully to study the valence states of rare gas and

ionic solids in recent years. ' ' With the exception of the
result by Howland for KCl, ' these calculations have
found the valence bands to be about 1 eV wide if spin-
orbit effects are neglected. Howland's bands tend to
be somewhat broader, on the order of 2 eV, and a width
of 1.5 eV is achieved only after a considerable number

(8) of atomic orbitals are included in the basis set. This
calculation differs from the others mentioned in that a
more accurate treatment of the lattice potential is used.

*Work supported in part by the U. S. Atomic Energy Com-
mission /Contract No. AT-(30-1}-3408).
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Recent calculations on KC17 and KI' by the augmented-
plane-wave method indicate that the bands are of the
order of 1 eV in width if spin-orbit effects are neglected.
In fact there is rather good agreement between the
predictions of the augmented-plane-wave method and
the predictions of tight-binding theory, excepting those
of Howland. Semiempirical band structures have been
obtained for the alkali halides by Phillips. ' These
band structures result in widths for the valence bands
which tend to agree with those of Howland.

In this calculation, tight-binding theory is applied
to NaCl, and results are obtained with and without the
spin-orbit interaction. Results are obtained in two ways.
First, the traditional tight-binding method is em-

7 P. DeCicco, Solid State and Molecular Theory Group, Massa-
chusetts Institute of Technology Quarterly Progress Reoort 56,
49, 1965 (unpublished); 54, 9, 1965 (unpublished). P. D. DeCicco
has by perturbation theory studied the effects of adding non-
spherical terms to a muon tin potential and concludes that their
effect on the energies of the KCl valence band is about 0.001 Ry.
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