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need to cut down on computer time. For both of these
reasons, we 6rst did the calculations by approximating
the 3s and 3p K+ ion orbitais by single Slater functions
with parameters chosen according to the usual prescrip-
tion. This calculation gave not unreasonable results,
but the approximation was too gross to be very satis-
factory. Had we continued using it, the extent of the
H polarization would most likely have been mislead-
ingly small. The calculations were useful, though, in
that they provided good starting values for the param-
eters I(l. and Ps in the trial functions of the more exact
calculations with HF ion orbitals. In connection with
H polarization eRects, we d,id, a limited. number of

calculations to ascertain if it would be a good approxi-
mation to neglect the electronic structure on the four
1nn ions at right angles to the displacement of the H
ion. We soon found out that these ions are quite im-

portant, especially to the polarization eRect.
We hope to extend these calculations soon to the

sodium halides and thus obtain further insight into the
valid, ity of some of the approximations.
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A new insulating phase in semiconductors and semimetals has been discussed recently in the literature.
This paper extends the analysis of this excitonic phase to the more general case of an anisotropic band struc-
ture of the underlying two-band model. The thermodynamic properties of the excitonic phase are worked
out. Whereas the anisotropy does not lead to qualitativly new features in the case of a positive band gap
(semiconductor region), important changes occur in the case of a negative band gap (semimetallic region).
The latter situation is discussed in detail. Finally, the phase diagram of the excitonic phase is calculated for a
particular anisotropic band model.

I. DTTRODUCTIO5'

ECENTLV a new kind of insulating phase has
been discussed in the literature. The idea is based

on observations by Mott' and Knox' that in semimetals
and semiconductors with small energy gaps the elec-
trons and holes will under certain conditions form
bound pairs of the exciton type. The properties of the
new phase which has been called the "excitonic in-
sulator"' have been investigated theoretically in several
papers. '—' While most of these papers deal with the
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National Science Foundation.
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' N. F. Mott, Phil. Mag. 6, 287 (1961).
~ R. S. Knox, in Theory of Jixcztons, Solid-State Physics (Aca-

demic Press Inc. , New York, 1963), Suppl. 5, p. 100.' D. Jerome, T. M. Rice, and W. Kohn, Phys. Rev. 158, 248
(1967).' J. Des Cloizeaux, J. Phys. Chem. Solids 26, 259 (1965).' L. V. Keldysh and Yu. V. Kopaev, Fiz. Tverd. Tela 6, 2791
(1964) (English transl. :Soviet Phys. —Solid State 6, 2219 (1965)g.' A. N. Kozlov and I.. A. Maksimov, Zh. Eksperim. i Teor. Fiz.
48, 1184 (1965); 49, 1284 (1965) (English transls. : Soviet Phys. —
JETP 21, 790 (1965); 22, 889 (1966)g.' Yu. V. Kopaev, Fiz. Tverd. Tela 8, 223 (1966) )English
transl. : Soviet Phys. —Solid State 8, 175 (1966)g. In fact Kopaev
shows from an analysis of the electron-hole vertex part that the
instability of the normal state does not occur, if the anisotropy
is large enough. However, his "gap equation" is in error as may
be compared with our corresponding Eq. (32).

simple case of an isotropic band structure, Kopaev' has
pointed out the importance of anisotropy in the
description of the new phase.

In this article we investigate in detail the excitonic
phase in the more realistic case of anisotropic energy
bands. In Sec. II we derive the thermodynamic proper-
ties of the new phase quite generally. The inhuence of
the anisotropy is discussed in detail in Secs. III and IV.
For a positive band gap we 6nd essentially the same
results as in the isotropic case' ' ' apart from quanti-
tative corrections. In the semimetallic region (band
overlap), however, the description differs quali-
tatively from the corresponding isotropic case. The
electron system condenses only partly in electron-hole
pairs, whereas parts of the system remain in the normal
state. It follows especially that the normal semimetallic
state is stable against pair formation, if the anisotropy
is large enough as has been shown 6rst by Kopaev. ~

We consider the familiar two-band picture of valence
and conduction electrons and assume that Coulomb
interactions of electrons within one band have been
taken into account in the calculation of the energy
bands. The dynamics of the system are then governed

E. V. Baklanov and A. V. Chaplik, Fiz. Tverd. Tela 7, 2768
(1965) )English transl. : Soviet Phys. —Solid State 7, 2240
(1966)g.
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by the many-particle Hamiltonian

&=2{"(1)W'W+ "(I)bp'bp}

+- & ~(q)ap+«'apbp «'b-p" (1)
0 spy'

Here the u, ut and b, b~ are annihilation and creation
operators of valence and conduction electrons, respec-
tively. The corresponding energies are denoted by e,
and ~~ and are reckoned from the chemical potential.
For simplicity we assume that the valence band has a
single maximum at p=0 and that the conduction band
has a single minimum at y=w. )We can effectively
eliminate the vector w from the Hamiltonian (1), if the
operators bp and bpt and the energy e&(p) refer to
conduction electrons with momentum p+w. j In the
effective-mass approximation and taking into account
anisotropy effects we describe the energies near p=0 by

1/p2 p2 pm

es(y) =&+-i + +
2(mb* mv„nZV,

1/p2 p2 p2
e.(p) = —A+-i + +

2 ktsgg play Bzgg

(2)

In the semiconductor case both A and 8 are positive
and the gap separating valence and conduction band is

G=A+8.
If we deal with a semimetal both A and 8 are negative
and 6 describes the overlap of the two bands. In this
case the noninteracting ground state is partiaHy filled
with holes and electrons. For given A we may calculate
8 from the condition of electrical neutrality.

In the interaction part of the Hamiltonian (1) we
retain only the direct Coulomb interaction of valence
and conduction electrons with

leads to
BC/Bp= 0, Trp=1

p =e e~/Tre e~.

(7)

We obtain an upper bound to the true thermodynamic
potential when p is restricted to a certain class of
operators. Choosing

p =exp( PH)/T—r exp( —PH), (9)

where H is an approximate Hamiltonian, we get the
upper bound

C = —(1/P) ln Tr/exp( —PH)$+(IX—8), (10)

(8)=Trp8.

Within the spirit of emphasizing bound pairs of valence
and conduction electrons, we then consider the pair
Hamiltonian

8=+{e.(y)aptap+et(y)bptbp+$6(p)bptap+c. c.]}, (12)

energy spectrum. At 6nite temperatures excitons may
be described by a nonvanishing thermal average

(b„,ta,)ao,
where Q is the exciton momentum. From the theory of
superconductivity it is well known that only "coherent
pairing" (i.e., constant pair momentum Q) leads to
macroscopic effects. Therefore we have to choose a
common momentum Q for all excitonic pairs, and as the
Q=O excitons have lowest energy, we con6ne our
attention to zero-momentum pairs.

The thermodynamic potential 4 can be written as a
functional of the density matrix p'.

C =TrLpH+ (1/P) p lnpj, (6)

with the property that CLpj attains its minimum for
the correct density matrix. Thus

V(q) =4m.e'/E(q)g',

where E(q) is an effective dielectric constant.

D. GENERAL DESCRIPTION OF THE
EXCITONIC PHASE

In this section we derive the basic thermodynamic
properties of the new phase for the two-band model
given by the Hamiltonian (1).

The approximation scheme we adopt for the present
problem is the finite temperature version of the Hartree-
Bogoliubov variational principle.

It has been realized that the normal ground state
of (1) becomes unstable against the formation of
excitons on a macroscopic scale. This leads, in obvious
analogy to the theory of superconductivity, to the
problem of recalculating the ground state and the

' N. D. NerDIin, Phys. Rev. 137, A1441 (1965).

=0.
»(p)

thus the approximate thermodynamic potential 4
LEq. (10)) achieves its lowest value.

As the Hamiltonian H can be diagonalized by a
Bogoliubov transformation, the calculation of the
thermodynamic potential (10) is straightforward.
Introducing new Fermi operators

ap =Npup+vpPp )

bp=QVPp —vpnp, Np +'vp = 1,

(4) which besides the noninteracting part of the true
Hamiltonian (1) contains a term describing annihilation
or creation of excitons. The parametric function d, (y)
can be chosen real and positive, as any phase factor e'q'

can be removed by a corresponding phase trans-
formation of the operators ap(ap~ e '&ap). The func-
tion A(y) is axed by imposing the stationary condition
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FIG. 1. Fermi surfaces and particle
distribution of the anisotropic semi-
metal in the normal case. I', is the
Fermi surface of valence electrons;
Fb is the Fermi surface of conduction
electrons. I, II, III, IV: the diferent
regions of distribution.

Another useful formula for the thermodynamic
potential C is obtained from

(21)

we get

&y= 1+
I

yy= 11 I
n'y= (15)

2 Ef' '
2& E)' '' 2E'

with the abbreviations

4 2L~&(p) y+(p) j & vy 2L~&(p)+yN(p) j & (16)
—(( 2++ 2)1/2

In terms of the new operators (14) the pair Hamiltonian
becomes

(17)

c p.)—c(o)=— (1 nE+„—nE „)— . (22)
y 2E

As the temperature factor on the right-hand side is
always positive, we conclude quite generally that C

attains its minimum for the nontrivial solution of the
gap equation, if it exists.

Finally we derive expressions for the average occupa-
tion of valence- and conduction-electron states in the
new phase. Using the thermodynamic relations

(a,ta, )= BC/Be, (p), (bytb, )= BC/Bet, (p), (23)

where P is the coupling constant and the integration
goes over all intermediate values. From (18) and using
(13) and (19) we get

and using this result we may calculate the thermo-
dynamic potential

1
(g—E)+- ln((1 —ns+„)(1—ns „))

p

we obtain from (18) using (15)

(ay&ay&= uy'(1 —ns „)+ay'n~, „,
(b, tby) =uy'n~+, +yy'(1 nay „),—

whereas the excitonic pair is described by

(24)

Q2

+—(1—ng~„—ng „)

1——Z I'(p —p') (1—»+.—«-.)
0 II ' 2E

(bytay) = —(6/2E) (1—n@+„—nE „) ~
y. (25)

It should be remarked that we do not distinguish
between singlet or triplet exciton states, as we have
suppressed spin indices and neglected exchange
interactions. '

III. INFLUENCE OF AN ANISOTRGPIC
3Am STRUCTURE(1 ng +„nJ, —„), (18—)2E'

In the general derivation of the last section we did
not have to consider the particular band structure.
For a more detailed discussion we now have to dis-
tinguish between the two possible cases, namely,
semiconductor or semimetallic case.

A. SemicorIdlctor. In this case both conduction- and
valence-electron energies eb and e, satisfy1 A(a)

A(p) =—QV(p —q) (1 nE+„ns „)~. —(19)—
0 e (26)eb)0, e(0 for all p,

where primed and unprimed quantities refer to p'
and p, respectively, and where e, is the Fermi distri-
bution function. The stationary condition (13) leads
to the gap equation

Inserting this into the expression (18) we get a final which via (16) implies

E&$& (g~ for all p. (27)

I =P (g—E)+-in((1 ns+„)(1 ns —„))—
Q2

+ (1—ng+„—nay „)
2E

(20)

The last two equations in principle determine the
thermodynamics of the system,

(ay ay)&=y=my ~

(by tby) z=p vy', ——

(by tay) r=y 6/2E, —— —
(28)

This means that all arguments of the two Fermi func™
tions in the formulas of the preceding section are
positive, and the functions tend to zero at T=O. From
(24) and (25) we especially obtain
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This means that the ground state which in the normal
case is a completely filled valence band contains
electron-hole pairs, if 6/0. The positive kinetic energy
we need to form this state is more than compensated
by the binding energy we gain from the formation of
pairs. It is to be remarked that a possible anisotropy
of the band energies does not aBect this picture quali-
tatively, but can only alter the quantitative calcula, tions
of thermodynamic quantities in the isotropic case
considered in the literature. ' Especially it follows that
the gap equation (19) has a n.ontrivial solution as long
as the band gap G satisfies

0&G&Eg, (29)

where E& is the binding energy of an exciton in the
usual exciton theory, taking into account the anisotropic
band structure.

B. Seminsetal. In this case both constants A and 8
in the one-particle energies eb and e are negative, and
the normal ground state contains an equal number of
holes and electrons. (If not stated otherwise, "holes"
refer to the valence band and "electrons" to conduc-
tion electrons. ) Due to the anisotropy in the energy
dispersion the corresponding Fermi surfaces do not
have the same shape. The situation is shown in Fig, 1.
In this two-dimensional plot we denote the Fermi
surfaces of holes by I' and of electrons by I'b. The
different regions I, II, III, and IV have the following
meaning. Region I lies entirely within I' and I'b and is
therefore occupied by holes and electrons in the normal
state. Region IV is outside of both Fermi surfaces and
is therefore empty. Region II is occupied by electrons
alone, but contains no holes; similarly region III is
occupied by holes, but there are no electrons. Note that
in the case of identical Fermi surfaces one only has to
deal with the regions I and IV. This is the usual case in
the theory of superconductivity and the situation so far
considered for the excitonic insulator. ' ' '

In the excitonic phase the average occupation at T=0
can be read off from the formulas (24) and (25) as
before. Figure 2 shows the modified situation. We now
have to distinguish between the following regions in
momentum space:

E&
f $ f

&
f g f, n g „=n Jr+„=0

in I and IV (I:$(0, IV: $)0), (30a)

which via (24) and (25) leads to the distribution

(~u~u') = (»'bu) = eu'

(beta~) = 6/2E, (I and IV) . —(31a)

The former regions II and III each split into two
subregions. First we have II~ and III~ with

—ri)E& f)f, ns, ——0, n g+„=1
in IIr(g(0),

30b
ri&E&

f g f, ns, ——1, n~+„0——
in IIIr(g) 0),

FIG. 2. Particle distribution in
the excitonic phase. The broken
line denotes the "common" sur-
face )=0. I, IV, III, III'. different
regions of condensed particles.
GI, IIII .. regions of normal p&
distribution.

and the distribution

(aiba, t)=0, (bptbp) = 1, (bt tat) =0 in IIr,
(31b)

(a~a~t)= 1, (b~tb~) =0, (bantu~) =0 in IIIt.
From this we see that the particles in the regions II~
and III~ do not participate in the condensation process,
but remain "normal. " This novel situation may be
explained by the fact that in the normal state only one
of the partners which form a pair is present. The
amount of kinetic energy needed to create the missing
partner would be greater than the gain in binding
energy. Only in the small regions II2 and III2 which are
near either of the two Fermi surfaces (Fig. 2) is the
binding energy large enough to compensate the kinetic
energy. The regions II2 and III2 are defined by

in II2(ri(0) and III~(g) 0), (30c)

and the distribution is the same as in I and IV LEq.
(31a)j. As can be seen from the inequality in (30c),
the extent of these regions in momentum space is itself
determined by 6 and vanishes with vanishing h. If on
the other hand the Fermi surfaces I', and I'b lie close
together, the binding energy may be larger than the
required kinetic energy in the whole regions II and III,
and the whole system condenses in electron-hole pairs.
This will be the case for very small Fermi surfaces when
the negative band gap G is nearly zero, i.e., G&0.

It should be emphasized that the pair function
(b,ta, ) vanishes in the regions IIt and IIIt though the
corresponding gap function A(y) is not zero. Actually
the function A(y) no longer reflects a gap in the quasi-
particle spectrum. The quasiparticle energies may be
taken from the pair Hamiltonian (17) and are given
by co and cop, respectively:

It is obvious from (30b) and (30c) that te vanishes
on the boundary between III& and III2, whereas cop

vanishes on the boundary between II& and II&.
At finite temperatures this simple picture does not

quite hold, as all states are thermally populated. This
means especially that in II& and III& the pair function
(b, ta, ) starts out at T=0 with zero value, increases to
a certain finite value, and decreases again until it
vanishes at the critical temperature.

As we are dealing with a cooperative phenomenon,
one Ands that the system not only distinguishes between
condensing and noncondensing particles, but also that
the condensation process itself is greatly affected by the
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FIG. 3. Phase diagram of the anisotropic excitonic phase. The
broken line corresponds to the isotropic case (Refs. 3 and 6).

presence of normal particles. This may be seen by
looking for nontrivial solutions of the gap equation
at T=O'

~(q)
&0)=-Z' I'(p —«)

0 2E~
(32)

There are two important differences from the fa-
miliar isotropic case. First, the temperature factor,
1—nx~„—nx „, in (19) vanishes in the regions IIi and
IIIi which restricts the integration in (32), as indicated
by the prime. Roughly speaking this diminishes the
gap function as compared to the isotropic case. Secondly
we shall conclude that the condensation will not occur
for a sufFiciently weak interaction, as Eq. (32) will

in that case only have the trivial solution; in other
words the system is stable against formation of excitons,
unless the attractive interaction between holes and
electrons exceeds a critical value.

This is in obvious contrast to the situation in the
isotropic case and to the situation in superconductivity.
In the isotropic case the linearized gap equation

~(tl)
~(p) =-2' I (I-q)

n s
(33)

exhibits a logarithmic singularity which comes from
an integration over the Fermi surface )=0, and which
eventually is responsible for the existence of a non-
trivial solution of the gap equation (32), no matter how
weak the interaction is. In our anisotropic case the
"common Fermi surface" )=0, entirely lies in the
forbidden region as indicated in Fig. 2." The inte-
gration in (33) extends over the regions I and IV which
in three dimensions touch the surface )=0 in two lines
only, namely, the intersection of the Fermi surfaces of
the valence and conduction electrons, denoted by F,
and I'b The corr.esponding line singularity in (33) is
integrable in three dimensions. Therefore the right-hand
side of Eq. (33) will be finite and, if the interaction is
weak enough, will be smaller than the left-hand side.
In this case we are left only with the trivial solution
h(y)=—0. A quantitative estimate for nearly isotropic
bands is given in the next section.

' It should be remarked that portions of the surface )=0
actua]1y lie within the "allowed" regions D2 and III'. But as the
linear dimensions of these regions are themselves determined
by d, as stated below Eq. (30c), their contributions to the right-
hand side in (32) are of higher order in 6 and do not appear in the
)inearized equation.

IV. PHASE BXAGRAM

In Fig. 3 we plot qualitatively the transition tem-
perature T, versus band gap G. This phase diagram
was originally suggested by Kohn" and divers signifi-
cantly from the isotropic case on the semimetallic side
(G&0).'s In order to calculate the characteristics we
con6ne ourselves to an isotropic valence band

e,= —[cf+p'/2 sm,j,
whereas we assume an anisotropic conduction band

(34)

eb= 8+ (1/2rrtb) (Pe'+P„'+yP.'), 0&y&1 (35)

with a larger e8ective mass mb/y in the s direction.
(a) The limit for the excitonic phase in the semi-

conductor region is determined by the linearized gap
equation (19) at T=O. Introducing

4(tl) =
eb(q)- "(a)

(36)

p ma

8=1—n(1 —y), n=rrt. /(m. +sstb)

(38)

(39)

It is clear that the largest possible band gap G corre-
sponds to the lowest eigenvalue of (37), i.e., the binding
energy E~. Kohn and Luttinger" have studied the
solutions of Eq. (37) in connection with impurity states
in Si. Writing

~B(B) f(B)+B(1)I +B(1)= &tt(e'/K)', (4o)

where E&(1) is the binding energy in the isotropic
case, we conclude from their work that the function

f(B) increases monotonically between the limiting
values

f(0)=4. (41)

In our case, 8=0 is not permissible, as in the extreme
anisotropic limit (y=O), 5 is still finite, 8= 1—n;
therefore the function f(8) ranges between 1 and a
value somewhat less than 4.

(b) Touchirtg bands. Kozlov and Maksimov have

n W. Kohn, in Physics of Solids rtt Hsgtt Presslres, edited by
C. T. Tomiznica and R. M. Emrick (Academic Press Inc. , New
York, 1965), p. 561.

n W. Kohn and J. M. Lnttinger, Phys. Rev. 98, 915 (1955l.

and Pourier transforming we obtain the Schrodinger
equation

1 O' B' B' ) e'
+ +B I

— ~()=-G~(), (37)
2tt Bx' By' Bs') Kr

where we have explicitly introduced the interaction (4)
with a static dielectric constant E, due to electrons in
low-lying energy bands. p, is the reduced mass for the
isotropic case:
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~p= (8/ ')Ee(1) (42)

The corresponding transition temperature in the
anisotropic case is determined by solving the linearized
gap equation at the Qnite temperature T, :

calculated the maximal energy gap which occurs for
G=O. In terms of (40) the result for isotropic energies is

From (40) and (45) we inay deduce a relationship
between the binding energy Ee(8) and the transition
temperature for touching bands:

F'(n, 7)=C =CR(n,7).
f(1—~(1—7))

~(p) =
(2')'

4vre'/K 6(«)
d'q

II —«I' p(«)-"«)
/happ(«)

ep. («)X- tanh —tanh, (43)
2 2 2

In the isotropic case (7=1) the ratio R(n, 1) is

R(n 1)=L(1—0)'"+Q'/'jP=2, n='g(rr/~=15/)

~=1(m.»m, ) . (49)

In the extreme anisotropic limit and with very large
valence-band mass (m »m p) we have

where p, and pp are givenby (34) and (35) with A =8=0.
As the integrand drops off rather rapidly for large

~«~, we set h(«)=d (0) on the right-hand side. Then
setting p=0, 6 drops out completely, and we are left
with an integral relation for T,. Introducing polar
coordinates this can be written as

pe'/K "dq
dQ

27r2 p It' 1—n(1 —7) cos'0

pg2
—

pqp
X tanh +tanh (1—(1—7) cos'0), (44)

4m, 4m'

KT,=CF'(n, 7)E//(1), (45)

where the constant C is

dS -2
C=2 — —tanhx'

—X 0 X

=I —
I L(1—2 P/')P(l)jP=072 (46)

(2

the integration being done by residue techniques. The
function F (u,7) is the result of the 0 integration and is
given explicitly by

x/2 sinOd6

p 1—n(1—7) cos'0

X ( (1 n)U'+e'/P—(1 (1—7) co—s'0)'/'}

1+Lo (I—7)g
&/p

—,
' ln

n(1 —7) 1—Ln (1—7)g'/P

+-C/2

arctan
(1—n)'/P

(1—7i 1/2-
—arctan (1—n)'/'~ &7i

where we have used (38) and (39) and denote the
inclination angle against the s axis by 0. The inte-
grations in (44) decouple when we transform the radial
variable q to include the whole argument of the tanh
function in both cases. Thus the remaining calculation
is elementary and gives

R(1,0) =n'/16=0. 62. (50)

Quite generally we have concluded from the detailed
form of (47) and the numerical calculation" of f(h)
that the ratio R(a,7) has no large spread in the interval
0&a, y& I, and is numerically of the order 1.

(c) In the semimetallic case we consider the band
energies

p.= (1/2m. ) (pr' —p'),
$,= (1/2', )(p P+p P+7p P 7/PpfP)—(51)

the constants A and 8 chosen in such a way as to
provide electrical neutrality. The number of holes or
conduction electrons is

/
=px'/3~'.

The critical limit G„of the excitonic phase once again
is determined by the linearized gap equation (33)
at T=O:

~(p) = — d'q I'"(p—«)~(«)
(2x)'

8(p )0(—c )+0(c )0(—Ep)
X

I p(«)-"(«) I

(53)

I'"(«)=
e'/K'

py(/r/. +m p), (54)
lj +tP

4m e'/K

due to both electrons and holes.
The solution of the integral equation (53) will in

general have a strong angular dependence reQecting
the anisotropy of the energies (51). For this reason
we could not solve (53) for arbitrary 7 between 0 and 1.
However, a solution is possible in the nearly isotropic
case, 1—y&&1.

We introduce polar coordinates in (53), and we
integrate erst the radial part. As this integral would

where the 0 functions L0(x) = 1 for x)0 and 0 for x(0$
take care of the restricted integration, as discussed in
Sec. III. As there are free carriers in the semimetallic
region we use the screened Coulomb interaction
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where we have used (54) and set M=m, +mb, 0,
denotes the space angles. It is clear that we can solve
(55) with a gap function independent of angles.
Setting lpl equal to pf, 6 drops out completely, and
we have finally

P K

lnL1+4pp/b'7.
ln(1 —y) ' M pg'

(56)

Using (40), (54), and lG«l =pP/2p, we can write
Kq. (56) in terms of the critical overlap lG„l and the
binding energy E&.

vr ( E "' 4m@(lG„l)'t2
ln 1+

ln(1 —y)
—' (lG„l M ( E~ l

(57)

Numerically, we have for 1—p= —,0, and equal band
masses, m, =m~.

lG., l
=1.14m . (58)

diverge logarithinically at the Fermi surface in the
isotropic case (y=1), we expect a large contribution
from the denominator in (53) when 1—y((1. Doing
the lpl integration by parts, we first integrate the
denominator

l eh —b
l

', thus separating a logarithmic
term, ln(1 —p) '. We may then pass to the limit p —+ 1
in the rest of the integral and neglect all contributions
which are finite coinpared to ln(1 —y) ' in this limit.
This procedure leads to

V. SUMMARY

In the preceding sections we have discussed the
modifications in the description of the excitonic in-
sulating phase in the more realistic case of anisotropic
energy bands. We have seen that in the case of a positive
band gap the results of earlier calculations' " are
essentially unaltered apart from some quantitative
corrections. In the semimetallic region (band overlap),
however, we have found a novel situation. For large
enough anisotropy, the normal semimetallic state is
stable against formation of excitonic pairs. Thus there
exists a critical overlap beyond which the condensation
will not occur. The possible existence of the excitonic
phase is therefore limited to the finite region shown in
the phase diagram (Fig. 3). The significant diRerence
from the isotropic case' is the sharp cutoB on the
semimetallic side.

In order to observe the phase experimentally one has
therefore to consider materials which under normal
conditions have a small band gap. Furthermore the
exciton binding energy E& which determines the transi-
tion temperature T, should be large in order to have a
significant value of T,. Thus one has to look for ma-
terials with small dielectric constants and large eRective
masses. Jerome, Rice, and Kohn' have discussed the
question of experimental realizability in detail. As
possible candidates they suggest divalent metals and
Group-V semimetals among which strontium and
ytterbium seem to be the most promising though no
clear experimental evidence for the occurrence of the
phase has yet been reported.
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