
PHYSICAL REVIEW VOLUME 162, NUM BER 3 15 OCTOBER 1967

Electronic Structure of the U Center. II. Force-Constant
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The force constants and local-mode frequencies of the U center in KCl, KBr, and KI have been obtained
from a detailed quantum-mechanical calculation. The model which has been used corresponds to the "static-
well" approximation. It takes into account both the electronic structure of the erst-nearest-neighbor ions and
the polarization of the H ion during the local-mode oscillations. The agreement of the calculated local-mode
frequencies with the experimental values is greatly enhanced when the polarization of the H ion is included.

I. INTRODUCTION

'N the first paper' (I) of this series, a report was given
~ - of calculations on the electronic structure, optical
absorption, and, lattice relaxation of the U center. In
this paper, we present the results of calculations on the
force-constant changes and, localized. vibrational mod, e
associated, with the H—ion using the first mod, el d,e-
scribed, in I. In this model, the electronic structure on
the H ion and, its first nearest neighbors (1nn) is taken
into account quantum mechanically, but all other ions
are treated, as point charges. One very important feature
is that polarization sects associated, with the d,eforma-
tion of the H ion can be introduced into the
calculations.

Shaefer's' experimental work on the infrared. absorp-
tion of the U center in KCl revealed, a sharp peak lying
well above the upper band, ed, ge of the longitudinal
optical mod, es. This localized, mode is accompanied, by
much weaker sid, e bands which evid, ently arise from the
anharmonic interaction of localized, and, band, mod, es.
Shaefer's work was carried out at a time when theo-
retical interest in the e6ect of an impurity atom on the
vibrational structure of a crystal was rapid, ly increasing.
Lifshitz's' early papers on localized, perturbations using
Green's-function techniques were becoming better
known, as was the work of Lax' and, of Montroll and
co-workers. ' Among the recent work connected, more
directly with the U center, we mention that of Jaswal
and. Montgomery, Lengler and. Ludwig, Klein, and,

Fieschi et al.' The early work usually assumed, that the
substitution of an H ion for a negative ion of the
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perfect lattice could, be represented, by a simple mass
change. This assumption ensures a very well localized
perturbation for which the theoretical analysis simplifies
considerably. It was subsequently realized, that a force-
constant change was also needed, to explain the experi-
mental frequency. More recently, the question has
arisen about the extent to which the H ion is polarized
when d,isplaced. from equilibrium. We believe the results
reported here largely answer this question.

As far as we know, the work reported here is the first
attempt to calculate the force-constant changes and,

polarization effects from a truly quantum-mechanical
calculation. The U center appears to be uniquely suited.
for this type of calculation for several reasons. First,
the local-mod, e frequency is so much higher than the
band, frequencies that a "static-well" approximation in
which the neighboring ions are held. 6xed at or near
their equilibrium positions during the calculation is
expected to be quite a good one. This is discussed, in
Sec. II. Second, , the H ion has only two electrons to
account for quantum mechanically. Third, the U center
occurs in the most ionic of all crystals and, its nearest
neighbors are positive ions. This means that it is prob-
ably adequate to use free-ion HF orbitals even in the
crystal and to neglect the polarization of the positive
ions. Fourth, since even in a perfect alkali-halide crystal
repulsive forces between second-nearest neighbors are
not great, we can expect the force-constant changes
between negative ions to be relatively unimportant in
determining the local-mode frequency.

The electronic wave function associated with the H
ion in the ground state of the system is surely quite
compact, and, therefore we expect the first mod, el d,e-
scribed in I to give fairly good, results. Thus, in carrying
out the calculations, we hold, the 1nn positive ions in
their new equilibrium positions as found, in I and, dis-
place the H ion in a L100$ direction in small steps. At
each displaced, position, the electronic energy is re-
calculated assuming that the 1nn alkali free-ion orbitals
are undistorted, and that all other ions are point ions.
Polarization of the H—ion is allowed, by admixing in
the wave function a component of p-like symmetry in
a variational calculation. This is all d,escribed, in Sec.
III, and, in Sec. IV the results of the calculations are
given and. discussed.
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FORCE —CONSTANT CHANGES AND LOCALMODES

II. LOCALIZED PERTURBATION S

We review here very briefly the theory of lattice
dynamics and localized perturbations for the case in
which a true localized mod, e occurs.

The equation of motion for the jth Cartesian com-
ponent of the d,isplacement from equilibrium of the nth
ion in the vth unit cell of a perfect crystal is given by

the defect. We have then

(A' —XI+a)v=0,
which can be written, for a true local mode, as

v= —Gav,
where

G—= (A' —XI)—'

(10)

(12)

M.N,'.(v) = —g A;., 2//(v, /2) up//(/2), (1)

22/,.=M."2/,.v
A',./v/2= (M.M//) '"A,.2P

in terms of which Eq. (1) becomes, in ma. trix form,

d'w/dP = —A'w. (3)

Expressing the transformation to normal coordinates
d by

w= bd, (4)

and, considering the resulting time d,epend, ence with
X—=pp2, Eq. (3) becomes

xId= b'A'bd,

where T means the transpose. The matrix elements of b
are given by

(QM )
—1/2&4. sq&—sq Rv (6)

in which a*; 'q is a component of the polarization vector
and exp( —i21. R„) accounts for the translational pe-
riodicity of the system. The normal coordinate going
with the s, q normal mod, e is

d, (q) =P b,q,.„qv; (v)

—Q—1/2 P & sq~sq R,M 1/22v (v) (7)
QAV

Equation (3) after the elimination of the time de-
pendence but before diagonalization is given by

(A' —X)v=0. (8)

Let us assume that a single d,efect of mass Mo' has been
introduced, into the lattice at a site which we label with
a zero and, that its inQuence is given by the perturba-
tion matrix

~= ~A'+.xI,

where p= (Mp Mp )/Mp is the relative mass change of

where the A 's are the force constants; they depend only
on the relative positions of the vth and, pth unit cells.
More specifically,

A -/vt/(V, ,/2) = L~'—lv'/» -(V)»2a(/2) jo

where V is the potential energy of the system and the
d,erivatives are evaluated, at the equilibrium positions.

It is convenient to introduce mass-reduced quantities
by writing

is the Green's-function matrix for the perfect crystal.
It is nonsingular for a local mode which is not d,egenerate
with any band modes. Its matrix elements in terms of
those of b are given by

sq&T&~sq

G(jnv kP/2) =P e'q &R"—"».
sq

(13)

In many cases, the inQuence of the defect on the
crystal will be quite local and therefore the dimension
of A will be much smaller than that of A', thus simplify-
ing enormously the solution of Eq. (11).The theory of
localized, perturbations has been thoroughly covered, in
the recent literature. It is now well known that a simple
mass d,efect can introduce both true localized, mod, es
(light mass) lying outside the band and quasilocalized
or resonant mod. es (heavier mass) lying within the band.
It is often possible to obtain useful information without
consid, ering force-constant changes, but in most cases
this approach should, be considered. only as a 6rst
rough approximation.

Intuitively, one feels that when the local-mode fre-
quency lies well outside the band, as in the case of the
U center, a static-well approximation in which only the
d,efect ion is allowed, to move should, be a good starting
approximation. Tha, t is, during the period of an in-band
normal-mod. e oscillation of the crystal the local oscilla-
tor carries out several complete period, s, and, therefore
during any one of them sees the neighboring ions as
though they were fixed. Since X for the local mode is
outside of the band, G can be expanded in powers of
X,q/X or, equivalently, A'/X. Keeping terms of order
(X, /Xq)' leads to a quadratic for 'A which can be ex-
panded in terms of approximately Mp'/Mp to give

g= (A 2 2(0,0)+AA 2 2(0,0))/Mp

+ 2' A', //(0, /2)/M (pA . (0,0)+~A, , (0 o)).

(14)

The prime on the summation is meant to exclud, e the
diagonal element which has been incorporated into the
first term. The erst term gives just the static-well
approximation, whereas the sum gives the erst correc-
tions, of order 1/M„, to it. Since M„~40 in KCl, we
expect the static-well approximation to be quite
ad,equate.

Virtually the same result as that contained, in Eq.
(14) can be derived by applying Eq. (8) directly to the
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imperfect crystal. We imagine the vector v to have
components vd in a subspace associated primarily with
the defect and component v, associated with the rest
of the crystal. This induces a partitioning of Eq. (8)
into two equations

(Adg' XI)vd—+Ag, 'v, =0, (15a)

A, "v +(A„'—XI)v,=0, (15b)

from which v, can be eliminated, to give

(Agd' —XI—As, 'G„A,~'r) vg —0, —(15c)

with G„=—(Ad,
'—Xl) '. In the static-well approxima-

tion, we have just Ad&' —XI=0, whereas the correction
terms of Eq. (14) can be obtained by again expanding
G„ in terms of 2„'/X and, 3IIo'/Mo and keeping appro-
priate terms.

Our problem, then, is to calculate the force constant

A, i,,i(010)+~A~'i, zi(0~0):Lri &/&uir (0)jo—:kl (16)

where V is the potential energy of the system with the
d,efect present.

III. ELECTRONIC STRUCTURE AND
FORCE CONSTANTS

According to Born, ' in the highest approximation in
which the total wave function of the crystal can be
written as the single product of a nuclear part x(R) and
an electronic part P(r, R), the equation for the former
is given by

(T +U(R))x(R) =Ex(R). (17)

Here r and R represent all of the electronic and nuclear
coordinates, respectively. We shall assume the crystal
to be in its electronic ground state. TN is the kinetic
energy of the nuclei and U(R) is given by

U(R)=E.i(R)+Q(r, R) ~Tiv~&(r, R)). (18)

For the system we are considering in this paper, the
second term on the right is expected to represent only
a slight extension beyond the adiabatic approximation,
and so we shall ignore it. Thus, the potential energy V
of the preceding section is here given by E,&. The first
term is the eigenvalue of the electronic Hamiltonian
obtained from

H, i(r, R)P(r, R)=E,i(R)P(r, R). (19)

It can be taken to include the nuclear repulsion energy
for the values of the nuclear coord, inate R. The notation
here is meant to emphasize that the electronic-eigen-
value problem must be solved for each set of values of
the nuclear coordinates. In this, the adiabatic approxi-
mation, the electrons are able to adjust completely to
each change in the positions of the nuclei. In the har-
monic approximation, on the other hand, the effective

» M. Born and K. Huang, Dynamica/ Theory of Crystal Lattices
(Clsrendon Press, Oxford, England, 1954l, p. 406.

nuclear potential is obtained as an expansion through
quadratic terms of the electronic energy about the
equilibrium position of the nuclei.

To calculate the effective nuclear potential, then, we
need to know the solution of Eq. (19) as a function of R.
In the static-well approximation for the U center, R
refers only to the displacement of the H—ion from its
equilibrium position. Since the motion of the H ion
in a cubic well will be threefold degenerate, we need
consid, er displacements along only one direction, which
we choose to be the (100j. In I, approximate solutions
to Eq. (19) for the ground and first excited states were
obtained by a variational method, with the H ion fixed.
at a perfect crystal site. In order to determine the new
equilibrium positions of the neighboring ions, the
variation calculation was carried out for values of R
representing the positions of the six inn ions in a
"breathing-mode" type of displacement and a minimum
was obtained. With the 1nn ions fixed in their new
positions, we must now carry out the same type of
calculation for displacements of the I ion in the L100j
direction.

For convenience, we repeat here the principal equa-
tions from I. The Hamiltonian H(—=H, i) is given by

H=Hu+H. ,+H; t, , (20)

in which ri is the distance of the ith electron from the
proton and, rj2 ' is the interaction of the two electrons
(in a.u.).

H; t,=P{—QZ„[r,—R„~ '+P)r, r,
~

'}, (22)—
j=3

O.=&.[e.+Z c„;~., (r—R.)j, (24)

with c„,;=—(a„,, ~y.), y.= (p.s/~)"' exp( —p.r), and

X,= (1—P„,,c„')—'i' These same free-ion orbitals
occur in the Coulomb and. exchange parts of H;„t,.
Corresponding to Eq. (20), we obtain from Eq. (19)

Z.,=Z (p.,p„R)+Z;.,(p.,p„R)+z.,(R). (25)

where Z„ is the nuclear charge, R„ is the position of the
vth ion, and r, is the position vector of the jth electron.

H„ is the Hamiltonian of the rest of the crystal, in-

cluding nuclear interactions, but it is not used explicitly
in our calculations and will. not be given here. That
part of the wave function of the crystal plus defect
which refers to the U center is given by

4 (I,~)=& L4.(1)P (2)+lf.(2)lt (1))0(~ P ). (23)

Here 0 is a normalized. singlet spin function and, ÃU is a
spatial normalization factor. lt, and ps are normalized
one-electron functions suitably orthogonalized to the
free-ion HF orbitals on the inn ions. For example,
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We assume E„(R) to be independent of the small dis-

placements of the H ion and therefore in the static-
well approximation it is a constant and, can be neglected, .
In I, Fz+E;, was given by

&U+&'-~=»~'((alhla)+(~lhl~)+» b(alhl~)

+ (ab
~
ab)+ (ab

~
ba) ), (26)

( Ihl&)—= 4"*(1)W (1)d

(ab~ cd) = f,*—(1)fb*(2)r~2 '$.(1)P~(2)dr~dr2, (27b)

(a. Ihla, )=".+aM& ' —2(a, I«'Ia. ).
The last terms on the right side of both of these expres-
sions present some problems. The origin of the factor
of 2 in front of them is difficult to see unless one goes
into considerable detail, but the conclusion is that one
integral should be associated with the proton and one
with the eRective charge of a negative-ion vacancy.
The latter does not move when the H- ion is displaced,
while the former does. Thus, there are really two dis-
tinct integrals occurring in both Eqs. (29) and (30),
and we have tak.en this into account in the calculations.

S.b= f.*Pbdr, (27c)

&~=C2(1+~.b')3 "', (27d)

+ r~b '(p„.„(3,3)—2 'p, „(1,3)P~b)drb) . (27e)

h= —2VP —rg
—'—Q{Z„)rg—R„~ '

and corresponding terms for (b~h~b) and (a~h)b). The
first term yields the kinetic, point-ion, Coulomb, and
exchange energy for the trial function g, . The second
and third terms arise from the orthogonalization of the
trial functions to the ion core orbitals.

Neglecting polarization of the H ion for the present,
we proceed with the calculation by evaluating the
terms in Eq. (26) for each different ion in the sum over
b. From synunetry the contributions from the (0,1,0),
(0, —1, 0), (0,0,1), and (0,0, —1) ions are identical,
whereas the contributions from the (1,0,0) and (—1, 0,0)
ions diRer from each other and, from those of the other
four ions. It is interesting to note that the normaliza-
tion factor Xp prevents the forces between the H—ion
and any given 1nn ion from being strictly two-body and
central.

In I, it was found, that

(4.l h I a.;)= ("~.+a~& ')(0. l 0 ..~) 2(&. I
«'I a.,~) (»)—

Here p, „ is that part of the Pock-Dirac d.ensity matrix
for the vth ion and, E'~3 acting to the right interchanges
the roles of 1 and 3 in Eq. (26). 1 is the integration
variable for fU and 3 that for the rest of the crystal. It
is to be understood that since the electronic structure
on just the 1nn ions is considered, the sum over v in
Eq. (27e) reduces to the point-ion approximation for all
other neighbors.

Introducing P, from Eq. (24) into (a(h~a), we get

(alhla)=&'{(&.Ihl4.)+2K c. (&.Ihla. ~)
&bJ

+P c„,,'(a„,;shia„,;)) (28)

pb' 1Vb're ~b" co——sy (33)

and P,' has the same form as P,. y is the angle between
the principal symmetry axis of the p function and the
vector r.

Substituting into the Hamiltonian, we have

(&~+~'-~)"~=&"~'((& I
&'I 0')

+2nQ I
&'l0")+n'O'I &'l 0')), (34)

with
O'= By+H;,b. —

In general, there are five variational parameters in-
volved in Eq. (34). These are the two nonlinear param-
eters (p, and pb) in p, the two (p

' and pb') in f' and
the coefFicient q. In practice, it turns out that there is
little point in either varying P, and Pb from their values
when polarization is not included or in putting p &p,.
Thus, we have only two parameters to deal with, i.e.,
Pb' and q. To cut down still further on the large amount
of computer time involved in the calculation, we deter-
mined the value of pb which approximately minimized
the energy in KC1 for an H—displacement of 4% of the
new 1nn distance. This value was then used for both 2
and 6% displacements, so that g was the only remaining
variation parameter. For KBr and KI the value of pb'

A. Inclusion of H Polarization

As the H—ion is displaced from its equilibrium posi-
tion, we expect some deformation or polarization of its
electronic-charge cloud. . In a shell-model calculation,
this would, be interpreted in terms of the displacement
(without deformation) of the electronic charge relative
to the proton. We can do somewhat better than this by
a straightforward but tedious calculation which allows
the admixture of a function of p-like symmetry into the
wave function as the H ion is displaced.

We now write

Pp.g(1,2) =X„){Pp(1,2)+gf~'(1,2)}) (31)

with fz(1,2) given by Eq. (23) and

4U'=&~'I:4.'(1)A'(2)+4.'(2)A'(1)y(~4») (32)

Here
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-0.2

TA&LE I.Various quantities obtained from the KCl calculation.
The symbols are defined in the text. The experimental value of k
is 14.43 )&10' dyn/cm.

-o.4

-0.6
4J

4J

-o.s
I-
Z
tjJ

O -1.0
Q

-1.2
Q

—1.4
LLJ

CI
O —16—

I-0.7

.()
KBr

(~)

KCI

No polarization Polarization
Ev+Ei t kX10 ' Ev+Ei t kX10 '

S (a.u. ) dyn cm ' (a.u.) dyn cm ' 100'/S

0 —1.071241 —1.071241
2 —1.071139 23.54 —1.071181 13.77 0.01195 0.5975
4 —1.070832 23.54 —1.071003 13.69 0.02396 0.5991
6 —1.070316 23.66 —1.070707 13.65 0.03611 0.6018

C. Second-Nearest-Neighbor Interactions

We attempted to estimate the effects of interaction
with the 2nn ions by using a Born-Mayer potential of
the form

VnM = 4„„exp(r„r„r)/p—, —
-2.0

IN -6 —4 -2 0 2

c 1nn DISPLACEMENT

4 6 OUT with
A„„=b(1+Z„/e„+Z„/r4) . (41)

FIG. 1. The nuclear potential-energy curve for the six nearest-
neighbor ions in the F1.+ mode. 5, is given as a percent of the
nearest-neighbor distance in the perfect crystal.

was simply estimated, by a scaling procedure from the
KC1 value.

ts=&mF ) (36)

in which F is a mechanical force per unit charge. In
terms of the force constant k (Eq. 16) and the per-
centage displacement 8 of the II ion, we take

F=k(SR.) (3/)

and. evaluate the dipole-moment operator using the
wave function of Eq. (31).R, is the new position of the
1nn ions after the cubic (I'i+) relaxation. Thus, we get

ts=e(4' ilri+rsl4' i)
=X,i'2i)(P~(1, 2)

~
ri+ rs

~
fp'(1, 2)), (38)

since the diagonal terms vanish from symmetry.
Therefore,

cs =2&(k5R,)
—'X,.P(P&(1,2)

~
r&+rs~gp'(1, 2)). (39)

In using this equation, we shall always assume that
the mechanical force k(5R,) operates on unit charge
and that e in Eq. (38) is unity. Also, in evaluating the
integral in Eq. (39), we shall ignore contributions from
the overlap terms in the wave functions. "„We d,o not
expect this to introduce an error of more than 10%%u~.

B. Polarizability

The electrical polarizability n is defined by

ts=nE,

where p is the dipole moment induced by the electric
field R. In analogy with this equation, we define a
mechanical polarizability by

Here, Z„, e„, and. r„are, respectively, the ionic charge,
the number of outer electrons, and the radius of ion p.
The parameters b and p are taken from Tosi and, Fumi"
and, are assumed, to have the same values for the inter-
action between the H—ion and, a negative halogen ion
as they have for the interaction between two similar
halogen ions. Polarization of the H—ion is taken into
account by reducing the 2nn interaction in the same
ratio that the 1nn interaction was reduced by polariza-
tion effects.

IV. RESULTS AND DISCUSSION

All of the input data used in the calculations are
given in Table I of paper I.

In Fig. 1, we show the potential-energy curves for
the motion of the six 1nn ions in a I'~+ mode with the
H—ion fixed at its equilibrium position. The displace-
ment 8, is given in terms of the percentage of the 1nn
distance. The calculation of these curves is discussed, in
I. The values of 5, at equilibrium are shown together
with arrows marking the minima of the curves. The
equilibrium values of 6, used in the local-mode calcula-
tions were somewhat larger than these, namely, —2 for
KCl, —2.5 for KBr, and, —3 for KI. The larger values
were obtained, from an earlier calculation using only 3s
and 3p Slater orbitals to represent the outer electrons
of the K+ ion and. neglecting the inner electrons com-
pletely. Because of this discrepancy and because the
classical ionic-crystal part of the calculations must be
somewhat limited, in accuracy, 'we tested, the effect in
KCl . (before polarization of the H ion) of small
changes in the 1nn positions. In fact, although 1 and
2% inward displacements gave', considerably different
total energies, the energy difference between any two
points on the "no-polarization" curve in Fig. 2, d,is-

"M. P. Tosi and F. G. Fumi, J. Phys. Chem. Solids 25, 45
(1964) '.
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TABLE I?. Results for the local-mode frequency in various ap-
proximations discussed in the text and for the mechanical polariza-
bility calculated by Eq. (39). All frequencies are given in units
of 10"rad/sec.

0,

-0,004 ———
No POLARIZATION

expt Ct)rip COp
'

G)r j 2nn &~ (jn A3)
-0.008

KCl 9.29
KBr 8.27
KI 7.31

11.87 9.05 14.8
10.27 7.99
8.37 6.65 12.7

9.37 6.95
8.44 8.00
7.37 10.04

cussed in the next paragraph, was hardly affected, . The
curves in Fig. 1 were calculated. with constant values
of the variation parameters P, and Ps appropriate for
values of 8, near the equilibrium position. The valid, ity
of this approximation was checked by varying P, and
Ps at 8,=6 until a new minimum in Eg+E;„t, was ob-
tained. The encircled, points on the graph show how
little difference this makes.

In Fig. 2, the potential-energy curves for the dis-
placement of the H ion in a L100j direction in KC1 are
given in various approximations. In this case, 5 is given
as a percent of the mm 1nn distance. The point-ion
calculation (the results are shifted to coincide with the
other curves at 5=0) neglects the electronic structure
of all the ions and is obviously quite inad, equate. How-
ever, it is already seen from this figure that the calcula-
tion which neglects polarization of the H—ion will give
a frequency consid, erably higher than the experimental
value. The dashed, curve is obtained. by using the
"experimental" force constant in Eq. (42) below.

Some of the data plotted. in Fig. 2 are also given in
columns 2 and, 4 of Table I along with the resulting
force constants k, calculated, from the equation

AE.i= —,'kI (1—8./100)Rs(A5))'. (42)

Here Eo is the 1nn distance in the perfect crystal and,

(1—8,/100)Rs is the 1nn distance when the V center is
present. QE.i was taken as the value of E.i at 5=0
minus its value at the other 6's listed. in the first column.
The purpose of showing several calculated. values of
each k is to d.emonstrate the consistency of the results.
In the last two columns are shown the values of the
p-function mixing parameter tl, and the ratio 100ti/8,
which, like the force constants, is very nearly constant.

In Table II we show various values of the local-mode
frequency and, the polarizability for the three crystals.
~„p is the frequency without polarization, cop is that
with polarization, and, co, „~ is the experimental value.
The values given by Fieschi et u/. in Ref. 9 for a pure
mass d.efect in a rigid-ion-model calculation are shown
in column 5, and, those from our calculations with 2nn
effects includ, ed, in column 6.

The results in the tables and curves more or less
speak for themselves and. we shall not spend, a great
d.eal of time in d,iscussing them. It is obvious that
polarization of the H ion is an important effect. Not
quite so obvious, but a point which was revealed, by
some of the early calculations and, which is clear

g -O.O12
IJJ
Z'
LLJ

—0.016
I—

—0.020

'~ -O.O24

—0.028 =— N

—0.032
0 3 4 5

8, H DISPLACEMENT

FIG. 2. Potential-energy curves for the displacement of the H
ion in KCl in various approximations. The curves are adjusted to
have the same values at zero displacement. Here 5 is given as a
percent of the nearest-neighbor distance in the crystal distorted
by the presence of the U center.

physically, is the following. Stated rather loosely, the
larger the force constants calculated'without polariza-
tion, the greater will~be the polarization effects. Thus,
if we are to believe that our calculations give a correct
picture of the size of the polarization effect, we must
first be certain that the calculation without polarization
is valid, . We are reasonably confid, ent of this for those
reasons alread. y stated in the Introduction. One might
legitimately ask, however, if our neglect of certain cor-
relation effects is justified, . The form of the U-center
wave function allows for considerable radial correlation
of the two H electrons with each other but the elec-
trons on the 1nn ions have been treated, strictly in the
HF approximation and, all interion correlations have
been neglected. The energy associated with these effects
is not necessarily small, but since we d.eal only with
energy changes, we would, not expect their inclusion
(even if we could do it) to affect the results greatly.

Another point which shows up somewhat in the
figures for rr and even more clearly in some of the
other parameters not shown here is that the H ion
cannot be assigned, a d,efinite rad, ius or polarizability
valid for all crystals. The corresponding point for the
perfect crystal has been emphasized. recently in calcula-
tions of Tosi and, Fumi" and, of RuBa"

We assume that the results obtained for the 2nn
interactions have no more than qualitative significance.
They do suggest that such effects are more important
in KI than in KCl, which would. seem to be quite cor-
rect intuitively.

We want to mention briefiy a few points in connec-
tion with some of the problems encountered, in carrying
out these calculations. These problems were caused
chiefly by the complexity of the prograrnrning and the

~ A. R. Ruffa, Phys. Rev. 130, 1412 (1963).
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need to cut down on computer time. For both of these
reasons, we 6rst did the calculations by approximating
the 3s and 3p K+ ion orbitais by single Slater functions
with parameters chosen according to the usual prescrip-
tion. This calculation gave not unreasonable results,
but the approximation was too gross to be very satis-
factory. Had we continued using it, the extent of the
H polarization would most likely have been mislead-
ingly small. The calculations were useful, though, in
that they provided good starting values for the param-
eters I(l. and Ps in the trial functions of the more exact
calculations with HF ion orbitals. In connection with
H polarization eRects, we d,id, a limited. number of

calculations to ascertain if it would be a good approxi-
mation to neglect the electronic structure on the four
1nn ions at right angles to the displacement of the H
ion. We soon found out that these ions are quite im-

portant, especially to the polarization eRect.
We hope to extend these calculations soon to the

sodium halides and thus obtain further insight into the
valid, ity of some of the approximations.
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A new insulating phase in semiconductors and semimetals has been discussed recently in the literature.
This paper extends the analysis of this excitonic phase to the more general case of an anisotropic band struc-
ture of the underlying two-band model. The thermodynamic properties of the excitonic phase are worked
out. Whereas the anisotropy does not lead to qualitativly new features in the case of a positive band gap
(semiconductor region), important changes occur in the case of a negative band gap (semimetallic region).
The latter situation is discussed in detail. Finally, the phase diagram of the excitonic phase is calculated for a
particular anisotropic band model.

I. DTTRODUCTIO5'

ECENTLV a new kind of insulating phase has
been discussed in the literature. The idea is based

on observations by Mott' and Knox' that in semimetals
and semiconductors with small energy gaps the elec-
trons and holes will under certain conditions form
bound pairs of the exciton type. The properties of the
new phase which has been called the "excitonic in-
sulator"' have been investigated theoretically in several
papers. '—' While most of these papers deal with the
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' N. F. Mott, Phil. Mag. 6, 287 (1961).
~ R. S. Knox, in Theory of Jixcztons, Solid-State Physics (Aca-

demic Press Inc. , New York, 1963), Suppl. 5, p. 100.' D. Jerome, T. M. Rice, and W. Kohn, Phys. Rev. 158, 248
(1967).' J. Des Cloizeaux, J. Phys. Chem. Solids 26, 259 (1965).' L. V. Keldysh and Yu. V. Kopaev, Fiz. Tverd. Tela 6, 2791
(1964) (English transl. :Soviet Phys. —Solid State 6, 2219 (1965)g.' A. N. Kozlov and I.. A. Maksimov, Zh. Eksperim. i Teor. Fiz.
48, 1184 (1965); 49, 1284 (1965) (English transls. : Soviet Phys. —
JETP 21, 790 (1965); 22, 889 (1966)g.' Yu. V. Kopaev, Fiz. Tverd. Tela 8, 223 (1966) )English
transl. : Soviet Phys. —Solid State 8, 175 (1966)g. In fact Kopaev
shows from an analysis of the electron-hole vertex part that the
instability of the normal state does not occur, if the anisotropy
is large enough. However, his "gap equation" is in error as may
be compared with our corresponding Eq. (32).

simple case of an isotropic band structure, Kopaev' has
pointed out the importance of anisotropy in the
description of the new phase.

In this article we investigate in detail the excitonic
phase in the more realistic case of anisotropic energy
bands. In Sec. II we derive the thermodynamic proper-
ties of the new phase quite generally. The inhuence of
the anisotropy is discussed in detail in Secs. III and IV.
For a positive band gap we 6nd essentially the same
results as in the isotropic case' ' ' apart from quanti-
tative corrections. In the semimetallic region (band
overlap), however, the description differs quali-
tatively from the corresponding isotropic case. The
electron system condenses only partly in electron-hole
pairs, whereas parts of the system remain in the normal
state. It follows especially that the normal semimetallic
state is stable against pair formation, if the anisotropy
is large enough as has been shown 6rst by Kopaev. ~

We consider the familiar two-band picture of valence
and conduction electrons and assume that Coulomb
interactions of electrons within one band have been
taken into account in the calculation of the energy
bands. The dynamics of the system are then governed

E. V. Baklanov and A. V. Chaplik, Fiz. Tverd. Tela 7, 2768
(1965) )English transl. : Soviet Phys. —Solid State 7, 2240
(1966)g.


