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Tax.E V. Experimental and theoretical values for the
ratio A/A obtained by various workers.
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31
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a Values of Berman et. al. (Ref. 3).
b Values of Callaway (Ref. 2).
& Values of Bertman et al. (Ref. 4).
& Present values.
& Reference 5, 6.

CONCLUSIONS

Th thermal-conductivity curves of isotopic mixtures
of solid He4 have been analyzed at the molar volume

the value observed in the hcp phase of solid He4.

Finally, in Table V, we have summarized all the known
experimental and theoretical values of A/A~a».

20.2 cms/mole. The He'-rich mixture solids at this
molar volume have the hcp crystal structure while the
He -rich mixtures crystallize in the body-centered-cubic
structure. The Debye temperatures are similar in the
case of pure He4 and pure He', thus diminishing the
possibility of the variation of sound velocity in the
mixed so)ids.

Large values of phonon scattering by point defects
are obtained from the analysis. The enhanced scattering
is considered to be present because of the distortion of
the lattice around the isotopic impurity. The concen-
tration dependence of phonon scattering produced by
lattice distortion is found to be the theoretically ex-
pected one. These conclusions are different from the
earlier conclusions of Bertman et al. The magnitudes of
the lattice distortion scattering are also higher than the
values obtained by Herman et a/. The estimates of the
atomic misfit parameter e are the same in both phases
of solid helium.
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The electronic structure of the U center in KCl, KBr, and KI is calculated for the ground and first excited
states using a model in which the interactions with the first-nearest-neighbor ions are taken into account jn
detail and all other ions are treated as point charges. A second, more refined model, which involves the ej.ec-
tronic structure of all ions and polarization effects, is briefly described. It is used for calculations of the
electronic structure, optical absorption, and lattice relaxation of the U center in KCl.

I. INTRODUCTION

HE U center in alkali-halide crystals consists of
J- an H ion trapped at a lattice site normally

occupied by a negative halogen ion. The center has been
studied extensively experimentally, and several interest-
ing properties have been established. ' It is responsible
for a single pronounced characteristic absorption in the
ultraviolet (at approximately 5.8 eV in KC1). Other
absorption bands are probably associated with the
center, but, if so, they are dificult to observe because of

* Research sponsored by the U. S. Atomic Energy Commission
under contract with Union Carbide Corporation.

J.H. Schulman and W. Dale Compton, Color Centers in Solids
(Pergatnon Press, Inc. , New York, 1962).

masking by the intrinsic absorption of the pure crystals.
In contrast to many other defects in alkali-halide
crystals, no emission bands have been associated with
the U center. Instead, a number of photochemical
reactions take place, which suggests that in the excited
state of the center the neutral hydrogen atom is able
to disuse away from the vacancy into an interstitial
position. The result is that the U band is bleached and
the Ii band is generated. The diffusion process should be
aided by lattice relaxation if in the relaxed state the
excited electron is in a disuse orbital, as might be
expected from results on the P center. "

W. B. Fowler, Phys. Rev. 135, A] 725 (]9Q$)' R. Fs Wood and H. W. Joy, Phys. Rev. 1&6 A451 {1964)
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Recently, interest in the U center has been restim-
ulated by Shaefer's work4 on the infrared absorption
associated with it. This work coincided with an increas-
ing theoretical interest in the vibrational properties of
crystals containing defects, particularly in localized and
quasilocalized modes. The U center is an interesting
case of a localized mode lying well above the limit of the
band of longitudinal optical frequencies of the perfect
crystal. We shall go into the problem of calculating the
force-constant changes associated with a localized mode
of this type in the second paper of this series.

As far as we know, theoretical work on the electronic
structure of the U center is limited to the point-ion
calculation of Gourary. ' This work gives transition
energies about 20 jo lower than the observed values.

We have used two different models in the work
reported here, both of which involve, in part, extensions
beyond the Hartree-Fock (HF) approximation. The
first model considers the electronic structure of the
first-nearest-neighbor (1nn) ions only, and no attempt is
made to calculate any electronic polarization effects
associated with the center. In the second model, the
electronic structure of the first three shells of neighbor-
ing ions is taken into account rather accurately and
that of all of the more distant ions somewhat less so.
Polarization eGects are included in this model by the
theory of Toyozawa, ' and Haken and Schottky' (THS).
Lattice-distortion effects are included in both models
in the ground state, but relaxation of the lattice in the
excited state is calculated on1y with the second model.
The calculations with the first model are carried out for
K.Cl, KBr, and KI, whereas with the second model
scarcity of some required input data compels us to
limit the calculations to KCl. Nevertheless, we shall be
able to carry out a limited study of polarization and
"further ion" effects with these results.

The Hamiltonian, exclusive of electronic polarization
eGects, and wave functions of both models are dis-

cussed in Sec.II. Section III contains a brief discussion
of the inclusion in the second model of polarization
eGects and of lattice relaxation in both models. Some of
the details of the calculations and the results are given
in Sec. IV, and in Sec. V these results are discussed.

IL DERIVATION OF EQUATIONS

A. Hamiltonian and Wave Functions

The spin-independent Hamiltonian for the problem
of a single U center in an otherwise perfect crystal can

' G. Schaefer, Phys. Chem. Solids 12, 233 (1960).
' See, for example, P. G. Dauber and R. J. Elliott, Proc. Roy.

Soc. {London) A273, 222 (1963), and references therein; Miles P.
Klein, Phys. Rev. 131, 1500 (1963).

6 B. S. Gourary, Phys. Rev. 112, 337 (1958).
'Yutaha Toyozawa, Progr. Theoret. Phys. (Kyoto) 12, 421

(&954).
H. Haken and W. Schottky, Z. Physik. Chem. Neue Folge 16,

Simon-Gedenkhef t, 218 (1958).

+U(1 2) ~1(1)+~1(2)+mls
with

(2)

(3)

in which r; ' is the interaction of the ith electron with
the proton and r~2 ' is the mutual interaction of the
two electrons.B„is the Hamiltonian for the rest of the crystal and
the nuclear interactions which we write for completeness
even though it is not used explicitly in this paper.

B„(3 3E)=Q (—-'V' —P Z„Ir;—R„l—'

+s Z'lr~ —r~I ')+s Z'~.Z. IR.—R.
l

' (4)

in which M is the total number of electrons under
consideration, r; is the position coordinate of the jth
electron, and R„is the coordinate of the yth ion. The
primes on the summation signs indicate that the terms
in which i= j and p= v are to be excluded. The summa-
tions over p and v include the proton. The interaction
between the H ion and the rest of the crystal is given by

H;„t(1,2,3, . PI)=V(1,2)+ g t(i,3, ,M), (5)

in which U, the interaction with the nuclei of the
crystal, is given by

and the interaction of electron i (i=1, 2) with all of
the other electrons of the crystal by

j=3 t3

Of course, the entire Hamiltonian is symmetrical with
respect to an interchange of any two electrons.

The electronic wave function of a crystal containing
a single U center can be written as

e(1,2, ,M) = {M!/2!(M —2)!}»s

X&fv(1,2g, (3,4, ,M), (8)

in which lf p(1,2) is a two-electron group wave function
for the H ion embedded in the crystal and p, is an
(M —2)-electron group function for the rest of the
crystal. The spin coordinates are assumed to be in-
cluded by the notation I, 2, etc., in boldface type. The
same notation in lightface type means that the spin is
not included. If Prr and P, are considered to be sep-

be written as

Z(1,2,3, ,M') =H~(1,2)+H.,(3, . ,M)
+H;„t,(1,2,3, ,M) . (1)

JIg is the same as the Hamiltonian for an I ion in
free space and is given in atomic units by
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arately antisymmetrized, then the operator A is given
by

A = [3II!/2!(3f—2)!] 'g( —1)"P(U,c), (9)

in which P(U,c) is a permutation operator which
exchanges electrons between but not within groups U

and. c.We also assume that so-called, "strong orthogonal-
ity" holds, i.e.,

low-lying, very narrow bands, but calculations showed
it to be inadequate for the valence band functions. We
found, it necessary to introduce modified orbitals
constructed by orthogonalizing the orbi tais on the
negative ions to those on the neighboring positive ions.

Since the Wannier functions, even on different lattice
sites, are orthogonal to each other, we can ensure that
the strong orthogonality condition holds by writing,
for the spatial part of the orbitals,

Pr (1,2)P, (B, , k—1, 1,4+1, , M)dri=0, (10)

where
A.= [(~—2) t]-' 2(—1)"P( ) (15)

and that f~ and P, are separately normalized to unity.
As it stands in Eq. (8), the wave function 4' allows

for correlation within the two groups but neglects all
intergroup correlation effects except those introduced,

by antisymmetrization. For our purposes, this is

probably an acceptable approximation for the ground
state of the U center but inadequate for the excited.
state because of the polarization of the crystal when
the defect electrons are described by more extensive
functions. We shall return to this problem in the
next section.

We now approximate Pii by

Pi (1,2) = iV»[$, (1)Pb(2)+f (2)Pb(1)]0(si,sP), (11)

in which p, and fb are one-electron spatial orbitals and

Ez is a normalization factor which is readily seen to be
given by

Xr = [2(1+S.b')]-"', (12)

g,b=(p, lpb). Here e(si, sq) is the normalized

singlet spin function given by

e(s, s,)= [n(s,)P(s,) n(s, )P(s,)]/V2 (13)

This type of function, first used, for the helium atom,
allows for some radial correlation as well as giving a
fairly adequate approximation to the HF doubly

occupied orbital. In carrying out the quantum-mechan-

ical calculations associated. with H ~ and H; ~, we

approximate P, by

f,= [(M—2)!]'I'A,ai i(B)ai,z(4)
Xa, ; i(i—1)a„,(i), (14)

4"( )=&.[4.()+Z .. .,;( )],
in which

y.= (P.'/~)»' exp( —P.r),

—(1 Q b .2)—1/2

Th«orm of pb in the ground state is taken to be
exactly the same as that given by (12). The use of
free-ion atomic orbitals may mean that some of the
orthogonality properties of Wannier functions are lost,
but the modification mentioned above should sub-
stantially correct this.

B. Energy Expression

Using Eq. (8) and the orthogonality condition, Eq.
(10), we find for the expectation value of II
&+ I

&
I +&=8 ~ I &ril 4 ii&+Q. I

&-
I 0.&

+[~!/2!(~-2)!]&!t.~. I ~;.~ I ~.~.&
In writing this expression, we have used the facts that
H is syrrnnetric in the electron coordinates and. therefore
conunutes with the antisymmetrizer A and, that A itself
is a projection operator, i.e., A'= A.

Considering only the spatial part of fz, the first term
in Eq. (19) gives

9~ I
&i l4 ii&= 2&U'{(0-(1)4b(2)

I &UI4'(1)@b(2))
+ (P.(1)1t'b(2)

I
&iil u. (2)4'b(1))} (20)

Considering the first term, we get

(4.(1)4 (2) I& I4'(1)0 (2))
= (a

I
Ibil a)+ (f

I
Ibil f )+ (af'

I
af ) (»)

in which

and a„,(i) is short for a, (r, R„)tim—es a one-electron

spin f~~ction. P(c) means that the permutations
consid. ered are all within group c. The spatial parts of
the a's are considered to be Wannier functions and

a, (r,—R„)indicates that the ith electron is in the

Wannier spin orbital constructed from the jth band and
located. on the vth ion. In fact, since we do not have the

Wannier functions at our disposal, we assume that the
free-ion HF functions are fairly good approximations to
them. This is undoubtedly true for the energetically

(a I &il a) = (4. I &il 0-)=— P-*h,P.d. , etc. , (22)

and. , in general,

(abl~d)= !!"*(1)fb*(2)i,2 —'p. (1gz(2)dridrg. (23)

For the second. term,
'

find

(4' (1)A(2) I &~
I 0-(2)A(1))

={2(alhllf)5 b+(af I&a)}. (2&)
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M.
(Pv(1,2)P, (B, ,M) i

H;„,A i

2!(M—2)!
&&p (1,2)p, (3, ",M))

=Q v (1,2)P, (3, . . .
,M) i H;„,i

XQ(—1)"P(U,c)gv(1,2)P, (B, ,M)). (26)

Using Fqs. (5)—(7), we obtain a term from V, i.e.,

&Pv(1,2)P.(3,",M) I
I'(1,2) I

XZ(—1)"Py.(1,2)a.(3,",M))
P

=Q v(1,2) i
I'(1,2) if v(1,2))

So Gnally we have

(0'v
I
H v I

4'v) = 2N v'& (a I &»I a)+ (b I hi lb)

+(ab
I
ab)+2(a I &»lb)S.b+ (ab iba)) . (25)

The second term in Eq. (19) will be treated by
classical ionic crystal theory and, will be d,iscussed. later.
The third. term can be red, uced, further, still retaining
the group wave function approximation as follows:

t

where the sum runs only once over the spatial Wannier
functions, each of which is d.oubly occupied.

Inserting the approximation to P v given by Eq. (11),
we obtain, for the sum of the two terms of the form
given in (29),

2Nv' drid7b(f, '(1)+pb'(1)

+2~.bg'(1)fb(1))»3p. (3; 3). (32)

For the sum of the two terms of the form given in (30),
we find,

dridrb(f, (1)»)ibp, (1;3)P~(3)

+~b(1)& p (1 i3)4' (3)

+2S,bf, (1)rlibp, (1;3)pb(3)). (33)
We retain 3 as the integration variable for the c group
for clarity. Combining these results with those for
(+iHvi+), we get

&+ IH v+H'-»
I
+)= 2N v'{(a Ih

I
a)+ (b I

b
I
b)

+».b(aihlb)+(ablab)+(ablba)k, (34)
= —2 Q Z„fv'(1,2)

i
ri —R

I
'dridr2 (27) in which

and terms from p v, which we shall now consider in h=hi —g Z„iri—R„i '+»)i»(p, (3;3)
more d,etail. When' =1, we obtain two types of terms:

—2 'p, (1;3)P„)d, (35)
p g v(1,2)p, (B, ,M) i»)i;ilpv(1, 2)lp, (3, .,M)
j=3

—av(i, 2)4.(3,",M)).

The notation in the second term indicates that 1 and. j
have been exchanged, exactly between the U and, c
groups. Exactly similar terms occur when i=2. The
reduction to the form in (28) results solely because of

Eq. (10). On introducing the one-electron orbital
approximation given by Eq. (14), we can commute A,
through v;, since e; is symmetric in all variables affected,

by A, and through pv(1,2) because A, does not act on
1 and 2. We then get for the first term of Eq. (28)

2 8 (1,2)a. , (3) l»blkv(1, 2)a. , (3)), (29)
V, j

is an effective one-electron Hamiltonian.
Substituting f, from Eq. (16) into the first term of

Eq. (36) gives

(al&ia) =N.'((&.Ihle.)+2 Z ',,Q. lhla„;)
V)g

+P c, ,'(a„;
I
b

I a„,)). (36)
V)J

From the 6rst term, one obtains the kinetic, point-ion,
Coulomb, and, exchange energies for the trial function
p, . The second and third terms combined give the
effects of orthogonalization to the ion-core Wannier
functions. The reduction of Eq. (36) is covered rather
thoroughly in Ref. 3, although here we have treated
one of the integrals more rigorously. This is the integral

and, a similar result for e23. This result is obtained. by
noting that the operator P~(—1))'P(c) places each
electron once in each of the orthogonal Wannier spin
orbitals. Similarly, for the second term in Eq. (28), we

get

(O' Ir 'Ia. ,))= dry, (r)r—'a„,,(r—R„), (37)

which gives the energy of the overlap charge distribution
of the trial and, core functions in the field of a charge at
the d,efect site. It is a two-center integral and, can be
easily calculated exactly, although in Ref. 3 it was
approximated by

—Q Q'v(1, 2)a,) (3) i
»)» I Pv(3,2)a„,;(I)), (30)

and a correspond. ing result with r2 replacing r
We now introduce that part of the Fock-Dirac density

matrix corresponding to f, by writing

p, (1;3)=2 P a;*(ri—R„)a;(r,—R„),
(& Ir 'Ia. . )=Le.(r) ia„;(r—R,)j/Z, . (38)

(31) This is probably a good approximation when a„;1s
very compact, as we expect it to be for low-lying core
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states. For more extended core functions such as the
outer orbitals of K+, Cl, Br, etc. , the approximation
is less adequate and we have therefore calculated the
integral exactly. We obtain for the second and third
matrix elements in Eq. (36)

(@.Ihl~. ;)=(",~a~R ')', ~
—2Q lr 'l~, ~) (»)

and

(~„;lhl~.,;)=~,,;~~~R ' —2(~.,~l» 'I~.,J) (4o)

R is the nearest-neighbor distance and a~ is the
Madelung constant. The plus (minus) sign is taken if
the vth ion is positive (negative). The factor of 2 occurs
in the third term because of the proton and because the
interaction with the other electron is taken into account
in the two-electron terms, so that a second. positive
effective charge must be included in the one-body part of
the Hamiltonian of the core states. e„,, is either a free-ion
HF energy or such an energy modified slightly to take
into account the effects of overlap with other ions (and
polarization contributions when they are included).

C. Two Hartree-Fock Models

We have employed the energy expressions derived,
above with two different sets of approximations which,
together with the differences in calculational methods,
constitute essentially two distinct models. In the first
model, the sums in Eqs. (16) and (31) run over the 1nn
ions only and no polarization effects are included. All
other ions are treated as point ions. Free-ion HF
orbitals are employed for all of the core electrons, and
the two-center two-electron integrals are evaluated
very accurately by the elliptical coordinate method.
This model follows very closely the work in Ref. 3. We
expect it to give reasonably accurate results as long as
both U-center electrons have a high probability of
being within the 1nn distance. The validity of the
model is questionable when one of the electrons is in an
excited state and is almost certainly inadequate after
lattice relaxation, when the excited electron is likely
to be in a quite diffuse orbital. The computational
problems associated with the extension of the sums in

Eqs. (16) and (31) to more neighbors within the frame-
work of the first model are formidable, and the time
required on even a large computer would be prohibitive.
We have therefore developed a second model which we
shall describe briefIy here and in more detail in another

paper, to be published later.
In this second model, we extend the sum in Eq. (31)

to explicitly include the erst three shells of ions.
However, the Coulomb and exchange integrals are
calculated by 6rst deriving an effective potential
including l-dependent exchange for a single electron
moving in the Geld of the free HF ions. This has been
discussed elsewhere. ' We then evaluate the required

integrals by a method, also described brieQy in Ref. 9,
which involves expanding the trial functions p in Eq.
(36) in spherical harmonics about the ions. This
method turns out to be sufFiciently accurate for most
purposes and, much quick. er than the elliptic coordinate
method.

For ions more distant than the 3nn, the overlap
integrals appearing in Eq. (16) are evaluated by an
approximate method which turns out to be quite
accurate for slowly varying trial functions. In this
outer region, we abandon the attempt to calculate the
energy of interaction with the ions exactly and instead
approximate it by XHp, the bottom of the conduction
band in the HF approximation, i.e., minus the electron
afFinity in that approximation. In this way the sum
in (31) is extended well beyond 3nn, albeit not very
rigorously. We shall estimate XHF in a manner to be
given later. Thus, we now approximate h of the previous
section by

hue= h from Eq. (35), p(R,
hHF= —(1/2m, *)V'+Xnp —r ', r)R,

in which m,* is the effective mass, and the impurity
potential for r &R, is approximated by r '. The quantity
R is a suitably chosen radius, here taken between the
3nn and 4nn. An integral part of the second model is
the inclusion of polarization effects, which we shall
consider in the following section.

III. INCLUSION OF POLARIZATION AMB
LATTICE-RELAXATION EFFECTS

Since the "size" of the H—ion will not be exactly the
same as that of the negative ion it replaces, we expect
some lattice distortion or relaxation to occur in the
ground state. In the excited state, where the probability
that the electron will be outside of the 1nn distance may
be appreciable, lattice distortion effects may be even
more pronounced. Also, under these circumstances it is
expected that electronic and ionic polarization effects
will become more important. In fact, it appears that in
many instances in ionic crystals polarization and
relaxation effects act cooperatively to increase enor-
mously the effective radius of the wave function of the
excited electron. Here we shall Q.rst d,iscuss the polariza-
tion effects.

A. Polarization EBects

If one or both of the electrons of the U center have a
significant probability of being outside of the lattice
volume of the ion the defect replaces, as we expect to
occur in the excited state, polarization of the lattice
will occur. In principle, this effect can be taken into
account through configuration interaction by writing
the wave function as

'U. Opik and R. F. Wood, in Proceedings of the Skyland
Conference on the Properties of Vacancies and Interstitials (to be
published).

+(1,2, ,M) =P C;@;(1,2, ,M), (42)
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in which 4; is of the form of Eq. (8) but with either or
both of Pp; and f.,; representing excited configurations
of the two groups. An equivalent but more convenient,
direct, and elegant method is to use second-quantiza-
tion and Green's-functions techniques of modern many-
body theory to suggest an effective one-electron
Hamiltonian which includes polarization effects.

For a system with a Hamiltonian such as Eq. (1),
which contains only one- and two-body interactions,
all physical quantities of interest to us are determined
exactly by one- and two-particle Green's functions G
and G&. These are defined by

which can be Fourier-inverted with respect to time
to give

(e+hi —M (e))G= 1. (50)

Also, we can write Gs=—(e+h&) ' and obtain the Dyson
equation

(e+h&(r&))G(r&, ri e) — drsM(ri, rs, e)G(rs, ri', e)

= S(r,—r,'), (49)

or more simply in operator form

G(1;1)= —i(017'Q(1H t(1 )) 10) (43) G= Go+ GsMG, (51)

Gs(1,2; 1',2') =i '(Ql T(g(1)P(2)P(2')~P&(l')) l0). (44)

Pt(1) and f(l) are creation and annihilation operators
(Heisenberg representation), respectively, for a particle
at the space-time point riti (spin is neglected here and

boldface numbers indicate instead. that time is included)
and lQ) is the exact ground-state wave function in the
occupation number representation. T is Wicks's
chronological operator. The first-order density matrix

p(r; r'), of which p, (1;3) of the previous section is a
special case, is related to G for equal times by

(53)

and introduce it into Eq. (49) to obtain

Z A(ri)A*(ri') = &(ri- ri') (54)

which is itself sometimes used as the starting point for
defining M(e). Let us assume that a complete set of
orthonormalized eigenfunctions of hi —M (s) exists, i.e.,

(4—M (e))fa = ssA. (52)

We can then expand G in terms of them,

p(r; r') =G(rt; r't). (45)
This is just the closure relationship which we expect to
hold for a complete set of basis functions. Although we
have not established that Eq. (52) will in general
generate a complete set of linearly independent one-
electron functions of physical significance, we know
that in the Hartree and HF approximations such sets
are obtained and that the one-electron energies have
some relevance (Koopmans's theorem). The Hartree
result is obtained by approximating G2 by

Furthermore, G and G2 are related by the equation"

(ia/gati —hi(ri))G(1; 1')

+i drse(ri rs)G2(1—,2; 1',2+)
l „„

= 8(1—1'), (46)

in which w(r& —rs) contains all two-body interaction
terms and h~ contains all single-particle operators. The
total energy of the crystal can be written in terms of G
and G2, but here we wish to determine an effective
single-particle Hamiltonian, for which we need have

only G. We note that G2 can be formally eliminated from

the problem by defining the self-energy operator M
through the relationship

Gs(1,2; 1',2') =G(1; 1')G(2; 2') (55)

and the HF approximation by

Gs(1,2; 1',2') =G(1; 1')G(2; 2')
—G(1; 2')G(2; 1'), (56)

drsM (1,2)G (2,1')

dr&v(rs —ri)Gs(1,2; 1',2+)
l &,=„.

with corresponding approximations for the M operator.
The energy dependence of the self-energy operator is

already apparent in the HF approximation where
nonlocal potentials are introduced by the exchange

(47) effect. Here we shall approximate M by

M =MHp+M, .i, (57)
This transforms Eq. (46) to

(i8/Bt —hi(ri))G (l,l') — drsM (1,2)G(2,1')

=8(l—1'), (4g)

'o A full discussion of the derivation of this equation and of the
significance of the plus sign superscript on the 2 in G2 is given in
L. P. Kadano6 and G. Baym, Qeantlm Statistical j/Iechaeics
(W. A. Benjamin, Inc., New York, 1962).

where 3f~,~ is a polarization contribution whose energy
dependence we simply ignore.

Kohn" has shown that the effect of the M„,~ operator
beyond the HF approximation is to screen the impurity
potential at large distances with the high-frequency
dielectric constant, that is, 1/r ~ 1/~„r.More recently,

~ W. Kohn, Phys. Rev. 110, 857 (1N8).
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Morita et c/. ' have d,erived, the same result and, given
several forms for the total Hamiltonian of the crystal
plus defect which in principle are valid for small values
of r as well. Practical difhculties associated with the
solution of the problem are still formidable.

The most complete treatment of polarization effects
in defect and exciton problems leading to a practical
result from the computational sid, e is that given by
Toyozawa and by Haken and, Schottky. The latter
authors started. from the quantum-field theoretic
Hamiltonian

pt(r)hi(r)f(r)dr

1
+

2
pt(r)Pt(r')1r —r'1 'P(r')f(r)dr dr' (58)

and, expanded the one-particle creation and annihilation
operators in a set of appropriately chosen functions.
This set was selected so that the electronic polarization
of the lattice produced by an electron or a hole is
described in terms of tightly bound electron-hole states
or excitons. Following closely the formalism developed.
for polaron theory, they arrived. at a two-particle
Schrodinger equation of the form

tion of the polarization clouds of the electron and. hole
at intermediate values of r and, their mutual cancellation
at small r's. Furthermore, the form is easily extended, to
include the effects of ionic polarization, for which one
obtains

~'(y) = (1—~=')( —(p.+p~)/2+r '—(2y) '

X Lexp( —p,r)+exp( —pir) j}+(K K g ')
X (—(v,+s~)/2+r '—(2r) ')exp( —v,r)

+exp (—vgr)] }, (64)

where s, = (2m, *a&Lo)"', g„is the static dielectric
constant, and, coLo is the longitudinal optical phonon
frequency.

For a lattice defect such as the U center or Ii center,
m~* can be assumed, to be infinite, thus eliminating the
kinetic-energy term in Eq. (59). Note, however, that
polarization effects due to the hole remain. Fowler'
has used the THS theory in a semicontinuum calculation
of the F center and. has shown that the effective interac-
tion can give a rad, ius of the relaxed excited state which
apparently accounts nicely for the long lifetime
measured. by Swank and Brown. "

We incorporate polarization effects into our second,
model simply by adding U'(r) defined above to the
HF Hamiltonian defined in Eq. (41). Corresponding to
Eq. (57), we make the very loose association

E 2m.*
' '+U(y) 14'( . i)

2m, *
=Ef(r„rs), (59) ~IF 'vlsLp(3, 3)—2 'p(1,3))Pisdys, r(R, (65)

Since it is to be expected, that polarization effects
vanish when r —+ 0, the above form suggests we choose
the constant in Eq. (60) as

const= —-,'(1—1/s„)(p.+pa) . (63)

This form is just the classical result for the polarization
energy of two point charges well separated, in a dielectric
medium in which the polarization is "turned on" at a
radius of p

' from the point charge.
The assumptions under which Eq. (59) was derived

make it doubtful that the form of V,ii—=r '+U(r) is
valid for small r. Nevertheless, it is the only simple form
developed, thus far which takes into account the interac-

"A. Morita, M. Azuma, and H, Nava, J. Phys, Soc. Japan
17, 1570 (1962).

U() =(1— ) -'(1—lLe p(-p')
+exp( —pir) j}+const, (60)

in which p, and, p~ are constants proportional to the
square root of the band gap and r is the electron-hole
separation. We note that

—1/y+ U (y) —+ —1/e„r+const at large r, (61)
—1/y+U(r) ~ —1/r+-', (1—1/~ )(p.+p~)

+const at small r. (62)

cV,.i——U'(1), all r .

B. Lattice Relaxation

(66)

We turn now to the term E„=—Q, 1H„1$,) in Eq. (19)
of the previous section. It gives the remaining energy
of the crystal with which we shall be concerned, and
includes the self-energies and. interaction energies of all
of the other ions in the crystal. We shall calculate these
energies entirely from classical ionic crystal theory.
We write

E.,=E„(R')+DE„(R), (67)

where E„(R) is the energy at the equilibrium positions
of the ions in the perfect crystal (denoted collectively
by R') and &E.,(R) is the change in E„asa function of
the cubic relaxation. A Born-Mayer-Verwey form is
used, for the repulsive potential P„„betweenions p, and
i at a distance R„„apart.DE.,(R) can be divided into
a Coulomb part AE„„jand, a repulsive part 5Q p.
The details of the calculation of these quantities are
given in a recent paper" LEq. (28) of which is for
AE„,rather than E„,as shownj, and will not be
repeated here.

"R.K. Swank and F. C. Brown, Phys. Rev. 130, 34 (1963}."R.F. Wood, Phys. Rev, 151, 629 (1966).
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Finally, we have corresponding to the terms in Eq. (1)

Et.t(R) =EU(P„Ps,R)+E;~~(P.,Ps,R)+E.,(R), (68)

where the notation is intend, ed, to show that Ep and
E;,t, depend explicitly on the variation parameters p,
and ps as well as the nearest-neighbor distance, whereas
E„depend,s only on the variable 1nn distance.

TABLE I. Input data for the calculations. The meaning of the
quantities is given in the text. Units are indicated in the KCl
column.

Ro
R+
R
P

KCl

3.14 A
1.554 A
1.678 A
0.324 A '

Crystal
KBr

3.30
1.554
1.814
0.333

3.53
1.554
2.013
0.346

"M. P. Tosi and F. G. Fumi, J. Phys. Chem. Solids 25, 45
(1964)."P.S. Bagus, Phys. Rev. 139, A619 (1965).

Iv. DETAILS AND RESULTS OF THE
CALCULATIONS

The input data for the calculations associated with
the classical ionic crystal part of the energy AE„are
gathered, together in Table I. The quantity Eo is the
interionic distance; R+ and R are the effective radii
defined by Furni and, Tosi" and, used, in d,eterrnining
the constants 8 and, t." appearing in the expressions for
AE p in Ref. 14. p is the compressibility, which also
is need, ed for the calculations.

The HF free-ion orbitals and. energies were taken
from work by Sagus. " We have used. his so-called,
minimal-basis set. In most of the calculations with the
first mod, el, the K+ 1s orbitals were includ, ed, as well as
the 2s, 2p, and 3s, 3p, even though they have very small
eRects on the energies. In the second, mod, el, the 1s
orbital is neglected, altogether. Although we shall not
go into the d,etails here, we perhaps should, mention
that as a result of the construction of l-dependent
exchange potentials we actually work with core orbitals
somewhat mod, ified, from the free-ion HF orbitals.

The calculations of Ep and, E; t, with the first model
were done for the ground, state for several different
positions of the 1nn ions and, combined with E„to
obtain new equilibrium positions of the ions. The
minima of the curves were so Qat that, consid, ering other
sources of error, the values of the d,isplacements
obtained, were round, ed, off to the nearest half of a
percent. We assume the Franck-Condon principle to
hold. and take the same values for the excited, state
when calculating the optical transition energies. The
first row in Table II shows the results of these calcula-
tions. The other figures in the table have the following
meaning: p, and ps are the values of the variation
parameters in Eq. (17) and its analog for which the

TABLE II. Some results for various quantities obtained from the
calculations. "1st" and "2nd" after KCl refer to the models
discussed in text. (1+8,)RO is the new equilibrium distance of the
1nn ions. The other quantities are defined in the text. Units are
given in the first column.

KC1 (1st)
Crystal

KCl (2nd) KBr KI

gr

Pa
Py
~e
PN'

p
I

~~a
~~exp

—0.020—1.0712 a.u.
1.0213
0.5106—0.8666 a,u.
1.0213
0.2801
5.57 eV
5.79 eV

—0.020—1.1428
1.0213
0.5106—0.9242
1.0213

see text
5.95
5.79

—0.025—1.0647
1.0250
0.4920—0.8632
1.0250
0.3160
5.48
5.44

—0.030—1.0490
1.0284
0.4649—0.8576
1.0284
0.3410
5.21
5.08

energy Etr+E;„,is a minimum. The unprimed quanti-
ties are for the ground, state and, the primed. quantities
for the excited state; DEth is the theoretical transition
energy and, DE,„pis the corresponding experimental
value. For the first model, the radial part of ps in the
excited state is given by a single function r exp( —p&r).
A few test cases on KC1 showed that the optimum values
of p, differed so little in the ground- and excited-state
calculations that it was unnecessary to vary it in the
latter. Of course, the second term in Eq. (12) and the
third term in Eq. (34) vanish in the excited state
because of symmetry.

It was not possible for us to carry out exactly
comparable calculations with the first and second.
models because of difficulties with the terms (abiab)
and (abiba) in Eq. (34). When lt, of Eq. (16) and Ps
are substituted into these integrals, terms up to the
fourth ord, er in c„,; appear just as they do to the second
order in Eq. (36). We treated these terms by making
what we believe to be reasonably accurate approxima-
tions in the first mod, el where only inn ions are included.
In the second, mod, el, no attempt was mad, e to treat
them. We did find, however, that the effects of the
normalization factors E, and Ss and the effects due to
these orthogonalization terms tend. ed. to compensate
one another. Therefore, in the second, mod, el we calculate
(ab

~

ba) and (ab iab) using only P, of Eq. (17) and Pb
In all other respects (except, of course, for the numerical
methods already mentioned in the last part of Sec. II),
the calculations can be made essentially equivalent.

The constants appearing in Eqs. (59)—(64) were
chosen as follows. The effective mass which is supposed,
to include polarization effects was taken as 0.6. We took
f(„=2.13 and I(:,~

——4.68. p, and, py, were taken equal, so
that it is assumed, in effect, that a static hole or
vacancy and the moving electron are equally effective
in polarizing the crystal. Instead, of relating p, and. pI,
to the square root of the band gap, the results of Mott
and, Littleton' on the polarization around, a vacancy
were used to determine them via Eq. (63).v, and vs were

"N. F. Mott and M. J. I,ittleton, Trans. Faraday Soc. 34,
485 (1938).
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TABLE III. Intermediate results for S,&,~ and the polarization
energy for p&, the more extended of the two functions in Eq. (11).

iVIodel

S.(.p (b,b)
1nn ions all ions E~) (b,b}

1st
2nd

0.0775
0.0773

Ground

0.0775
0.1112

0.0000—0.0248 a.u.

1st
2nd

0.1015
0.0950

Excited

0.1015
0.4409

0.0000—0.0505 a.u.

assumed equal and their value was determined as
indicated after Eq. (64) with cuLo=3.96&& 10" rad/sec.
Ke found p, =pI, ——0.1969 and v, =vI, ——0.0339. XHp in
Eq. (41) was given a value of +0.82 eV, which is the
difference between -,'(1—~„')p,and the experimental
electron amenity

—X,„~(0.6 eV). This assumes that X,„~
does not include ionic polarization effects, but this
assumption may not be entirely correct.

In order to give an indication of the importance of
the electronic structure of ions more distant than the
inn and. of polarization effects, we show in Table III a
comparison of some of the intermediate quantities
entering into the calculations with the two models.
The quantity S,&,p is the sum of the squares of the
overlap integrals of the more diffuse trial function pb
with the orbitals on the neighboring ions. It corresponds
to the second term in Eq. (18).S,~,~ gives an indication
of the spatial extent of the wave function and of the
importance of overlap effects. E„.~(b, b) is the expecta-
tion value of U'(r) from Eq. (64) with respect to pb.
Unfortunately, E~,& does not give the entire eGect of
polarization because the core energies entering into
Eqs. (39) and (40) are also modiffe by U(r) in a manner
which is not easily separated out in our calculations.
Here again, however, normalization effects tend to
cancel the overlap effects and E~,i alone should give at
least a fairly good, idea of the importance of polarization
effects in this model. For the excited state with the
second model, S,~,~ and E„,i are given for the first
trial function only in Eq. (69) below.

In the excited-state calculations with the second
model, we chose the radial part of the p function to be

TmLE IV. Results of the relaxation ca)culation. EI and E2 are
the lowest energy levels of p-like symmetry and E„dgives the
bottom of the conduction band. All of these quantities are in eV
and contain the contribution from DE„in Eq. (67). The 8's are
the coeScients in Eq. (69}for EI. The first row shows the results
when only electronic polarization is allowed. All other rows include
the eGects of ionic motion as well. 6 is the percentage change in the
new 1nn distance.

+2 +cond B1 Bg B3 B4

-2 -2.310 —1.864
-2 -2.342 -1.966

0 —2.615 —2.362
+2 —2.851 -2.673
+4 —3.025 —2.881
+6 —3.112 -2.974
+8 —3.072 —2.929

-1.612
-1.848
—2.254
-2.579
—2.807
—2.922
—2.897

0.7312
0.7021
0.4914
0.2906
0.1359
0.0444

-0.0023

0.2071
0.1944
0.2501
0.1762
0.0496

-0.0507
—0.1121

0.1136
0.1534
0.3179
0.5355
0.6744
0.6963
0.6678

0.0046
0.0083
0.0365
0.1196
0.2699
0.4223
0.5318

functions with exponents selected so as to duplicate
closely the outer portions of the e= 2 and e=3 effective-
mass hydrogenic functions. We used p& ——0.3, p&

——0.26,
Pb=0.14, and P4=0.9. With the number of terms in
Eq. (69) and with the choice of parameters, we expect
also to obtain a fairly good approximation to the second
excited state of the p-like symmetry. We included an

f term in some of the trial calculations, but this con-
tributed very little, so we subsequently dropped it. The
ionic polarization terms in Eq. (64) (those containing
v, and vb) were neglected when calculating the excited
levels reached by an optical transition. As the lattice
relaxes, though, the ionic motion can begin to follow
the electron, and we therefore included these terms in
U(r) for all values of the relaxation parameter other
than the one corresponding to ground-state equilibrium.

Table IV shows the energies of the 6rst two excited
states of I'4 symmetry and the bottom of the conduc-
tion band as a function of the relaxation parameter 6.
The coefficients of the functions in Eq. (69) for the
6rst excited state are also shown. The energies include
the contribution from lattice relaxation, i.e., AE„of
Eq. (67). It should be kept in mind that, from the
formulation of the second model, the energy of the
bottom of the conduction band includes the contribution
from the polarization associated with the hole as well

as that from the electron. It is given by X,„,plus the
constant part of Eq. (60) if ionic polarization is not
included and by X, , plus the constant part of Eq. (64)
if ionic polarization is included.

4'b E ~c4ba~' (69)

Here $b& and pb2 were chosen to be 2p and 3p Slater
orbitals, respectively

r exp( —Pbqr) and r exp( —Pb2r) j.
P, and Pb~ were set at the values determined for the
ffrst model and Pb2 was chosen to be somewhat more
compact than the outer part of an effective-mass m= 2
hydrogenic function. Two more Slater p orbitals were
added to pb, and these were again chosen to be 2p and 3p

V. DISCUSSION

The results presented in Table II show that both
models give fairly good values of the transition energies.
They are significantly better than the point-ion results
of Gourary, who obtained transition energies about
20% lower than the experimental values. Nevertheless,
since the two models are rather different, it can be seen
once again that the ability of a model to predict a single
transition energy is not a very satisfactory criterion for
the validity of the model.

In the ground state, the values of 5,1,~ shown in
Table III for the 1nn ions are virtually the same in the
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two models. Inclusion of the electronic structure on all
of the other ions in the second model changes the result
somewhat, primarily because of the 2nn, but S,i„
is still small in value, thus indicating a rather compact
function. The situation is different in the excited state,
where for the first model S,i,~ is still small but for the
second model it has become large. In the latter case
about 25% of S,~„comesfrom the inn ions, 50'% from
the 2nn ions, and 25% from all other ions. As we shall
see below, even in the excited state the wave functions
in the two models are fairly similar in their degree of
localization. We therefore conclude that the neglect of
the structure of ions further out than the 1nn, as is
done in the first model, would be an approximation of
dubious validity unless there were effects which
compensated for the overlap contributions to the
energy.

The results obtained with the second model indicate
that polarization effects are significant even in the
ground state. Although not shown in Table III, even
the most compact 1s function has a few tenths of an eV
of polarization energy associated with it, whereas one
tends to think that polarization effects should be
negligible for such a function. Also, the value of
—0.0248 a.u. for the polarization energy of the more
diffuse function pb in the ground state seems rather
large. We therefore suspect that the THS theory
overestimates somewhat the polarization energy for
compact functions. It would not be particularly
surprising if it did, since the theory is not expected to be
valid at small electron-hole separation. On the other
hand, in the ground state of a perfect crystal, where
polarization effects presumably vanish because the
electron and hole have recombined, there are still
correlation effects between electrons on different ions
as well as between those on the same ion. Perhaps the
THS theory can be considered as taking some of this
correlation energy into account as well.

As one might surmise from the foregoing discussion
together with the fact that the first and second models
both give fairly good results for the transition energies
in KCl, there is a tendency for electronic structure and
polarization effects to cancel each other. This tendency
is particularly pronounced for wave functions of inter-
mediate degrees of diffuseness.

Table IV shows the effects of lattice relaxation, and
we can see quite clearly the pronounced spreading of
the wave function as the lattice relaxes. This is indicated
by the increasing values of the coeScients of the
diffuse functions pqg and gq4. As was to be expected, the

situation here is quite similar to that in the Ii center.
In fact, the core of the H ion in the excited state,
consisting of a proton and a tightly bound electron
(neutral hydrogen), has very little ef'feet on the energy
and wave function of the excited electron after relaxation
and in turn is very little affected by the excited electron.
This may allow the neutral core to diffuse readily into the
lattice or perhaps to form a molecular complex with a
negative ion and thus help explain the absence of an
easily identifiable luminescence in contrast to the
P-center results. In general, the excited states of the U
center are so similar to those of the Ii center that it
seems likely E and I. bands are associated with the
former as well as with the latter. "

It is interesting to compare our results for the excited
state with the second model with those obtained from
effective-mass theory, where the energy levels are given
relative to the bottom of the conduction band by

e„=e„~g—m~13.605/me'~' (70)
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in which m is the principal quantum number and ~ is
the dielectric constant. With ~=~„wefind ~2

———2.468
eV and &3= —2.218 eV, whereas the corresponding
quantities calculated here are &2= —2.716 eV and ~3

= —2.270 eV. Thus the m=3 level appears to be
energetically close to the effective-mass state and this
is borne out by the very large value of 84 which we
obtained for this state. 84 is the coeflicient of a 3p term
which, as stated earlier, was chosen to duplicate
closely the outer portion of an effective-mass function
for ~=~„.The energy of the v=2 level, on the other
hand, differs markedly from the effective-mass result
and its wave function is considerably more compact, as
indicated by the large value of 8& and the small value
of 83. In fact, the data in Table IV show that for this
state it does not matter greatly whether or not the
ionic part of U'(r) is omitted. The effect on the second
excited state whose orbital is already quite effective-
mass-like is more pronounced, as might be expected
from the form of U'(r). The large value of B~ also
indicates that the first excited state wave function is
not a great deal more diffuse in the second model than
it is in the first.


