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Electron Shielding in n-InSb*t

S P LIJ W F LOVEy AND S C MILLER

Department of Physks and Astrophysics, University of Colorado, Boglder, Colorado

(Received 1 May 1967l

The effect on bound electrons in donor levels by conduction-band electrons in n-InSb is investigated
using a self-consistent calculation. Results of the calculations show that no bound state exists for impurity
concentrations greater than 6)&10' cm . This shielding appears to be the predominant effect leading to the
lack of impurity-binding energy.

I. INTRODUCTION

'T is well known that the binding energy relative to
~ - the bottom of the conduction band for electrons on
substitutional impurities in semiconductors decreases as

impurity concentration increases. Eventually this
energy goes to zero at some concentration. One possible
explanation for this effect is that increasing concen-
tration causes a broadening of the impurity levels' due
to bound-electron wave function overlap. For sufhcient
impurity concentration this could be an important
factor. However, it is dificult to explain the lack of
ionization energy in e-indium antimonide' at impurity
concentrations of 10'4 cm ' by this mechanism, since
the wavefunction overlap for bound electrons would be
very small. Another possible explanation based on
change of dielectric constant with impurity concen-
tration' shou1. d also not be important at a concentration
of 10' cm '. An alternate explanation for this effect
discussed here was originally suggested by Pincherle, 4

who did rough order of magnitude calculations for
silicon. The argunent is that if most of the impurity
electrons are in the conduction band, there may be
appreciable wave function overlap between these
conduction band electrons and any bound electrons.
This leads to a shieMing of impurity centers and a
decrease of the ionization energy.

For e-InSb it has been found experimentally that the
effective mass is isotropic at the minimum of the con-
duction band' with an effective mass' m* in terms of
electron mass m, of m*=0.013m, up to an impurity
concentration of 2.6X10"cm ". The usual model of a
substitutional impurity in a semiconductor is that of a
hydrogen atom with the effective rather than electronic
mass and coulomb potential reduced by a factor of the
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reciprocal of the static dielectric constant ~. This
dielectric constant for InSb is' z= 15.7. If there were no
other impurities giving shielding electrons, this model
would lead to a ground-state energy of the impurity.
relative to the bottom of the conduction band of
—6.7X10 4 eV in n-InSb. The corresponding Bohr
radius is 0.64X10 ' cm. For the calculations below, this
model is used but with the addition of charges due to
the other impurities. It will be assumed that the other
impurities are ionized so that the number of electrons in
the conduction band is essentially the same as the
number of impurities. In his calculations for silicon,
Pincherle4 assumed local thermodynamic equilibrium
of conduction electrons near the impurity. However, for
InSb because of the low expected ionization energies,
to observe them one must have the temperature on the
order of liquid-helium temperatures of lower. Thus the
mean free path of electrons is large. Therefore, except
for the effect of ionized impurities, no scattering will

be assumed, and the statistical distribution function
will be that for the crystal as a whole.

In considering the effect of ionized impurities on
electrons, one may simply assume a positive-charge
background far from the impurity on which the binding
of an electron is being investigated. In the neighborhood
of this impurity, however, the discreteness of the im-

purity centers must be taken into account. If the recipro-
cal of the impurity concentration is 1/N= 4rrro'/3, then
for a random impurity distribution one could assume
that for any one impurity, there is a spherical region
of radius comparable to ro centered on the impurity in
which on the average there are no other impurities.
The effect of nearby impurities on the electrons is then
approximated by the following model. Outside of a
sphere of radius Bro centered at the unionized impurity,
there is a positive background of charge to give over-all
neutrality. Here 8 is of the order-of-magnitude of one.
Inside the sphere, there is only a single point impurity
charge

~
e i at the sphere's center. On the surface of the

sphere is a surface charge density such that the surface
charge plus the central impurity positive charge ~e~

divided by 47r(Bro)'/3 is equal to the uniform back-
ground-charge density. This surface charge may be
thought of as approximating the effects of nearest-

7 T. S. Moss, S. D. Smith, and T. D. F. Hawkins, Proc. Phys.
Soc. (London) 870, 778 (1957).

728



162 ELECTRON SHIELDING IN e —InSb 729

neighbor ionized impurities. This model does not take
into account the anisotropy introduced by the fact
that the nearest impurity is discrete and is not dis-
tributed over a spherical surface. Also, because actual
distance to the nearest impurity is variable, described
by a distribution function, there will be a distribution
of impurity binding energies for a given temperature
and impurity density. However, it was found that the
binding energies are fairly insensitive to the exact choice
of 8 even for 8&1, and it is believed that this model
gives good order of magnitude binding energies.

with
ip(r) =a(1+br)e "

e= L~(c'+3bc+3b')/c'g &

(2)

for normalization. The parameters b and c were varied
to minimize the expectation value of II. In all the re-
sults, b was found to be quite small compared to c so
that a simple exponential appears to be a good approxi-
mation to the ground-state wave function. The parame-
ter c is comparable to 10' cm ', going to zero as the
impurity density becomes large. Because V(r) is not a
simple function, this minimization was done numerically
on a computer using a relaxation method. The potential
V' due to the bound electron is then found from Gauss's
law to be

e "dr
JP(r") f

'dr"V'(r) =
tc ~r 0

/2

= —(e/a)e "(1/r+Ni+Nqr+Nar2)+e/gr (3)

II. CALCULA7IONS

In this section, the methods of calculation of the
impurity ionization energy will be discussed. The
problem consists of two main parts: (a) the calculation
of the bound electron wave function with its corre-
sponding charge density, and (b) the calculation of the
conduction-band electron wave functions with their
associated charge density. These calculations are
repeated until the results are mutual1y consistent to
within a few percent.

The bound electron is assumed to move in the
Coulomb potential e/xr of the—positive impurity
center combined with the potential V(r) due to the
conduction-band electron distribution and the positive-
charge background of the other impurities. Here e is
the negative electronic charge and ~ is thedielectric
constant. This potential is simply inserted in the
Schrodinger equation for the bound electron. Corre-
lation and exchange energies are neglected. The method
of finding V(r) will be discussed later. The Hamiltonian
for the bound electron is then

H = (P'/2m*) —(e'/~r)+ V(r) . (1)

A variational approach was used to 6nd the wave func-
tion of the bound electron. The normalized trial wave
function used for the ground state was of the form

with

Ni = -',~aP(2c'+ She+ 9b')/c4,

N2 m—a—'(2bc+3b')/c',
N3= n u'b'/c'.

To solve this equation, the method of partial waves is
used. Here the behavior near r=0 is of interest rather
than the asymptotic behavior used in scattering cross-
section problems. Because of the low temperatures used
in the calculations (&3'K), the average wavelength of
the conduction-band electrons is about 10 times the
size of the bound-electron Bohr radius and thus when
the binding energy is of the order-of-magnitude of the
unshielded binding energy, only the modification of the
S-wave part of a plane wave solution need be considered.
If there were no potential, for a volume Q there would
be a plane wave solution, 0 't'e'~' with an S-wave
part Q '~'(sinkr)/kr. Let P~s(r) be an S-wave solution
of Eq. (4). Then a modified plane wave solution in the
S-wave approximation is

Q' '(e'"' ——Lsinkrj/kr—)+qhqs(r).

The function p~s was found by numerical integration
of Fq. (4) out to an r large compared with all the various
characteristic lengths involved. This was then matched
at that r to a solution of the form Q '~'t sin(kr+q))/kr
to find the normalization. The total charge density of
the conduction-band electrons is given by

p= (eQ/47r') ~yj, ~'fj,dk, (6)

where f~ is the Fermi-Dirac distribution function de-
pending on the impurity density E. In the angular
integration, the S-wave parts of

~ Q ~

' do not mix with
the other parts. This leads to an effective ~p~~' of
Q '+( ~P~s~' —Q-'L(sinkr)/kryo'}. Outside a sphere of
radius Bra, the positive background contributes an
additional charge density —eX. Inside the sphere no
positive background is assumed, Also the sg.rface

To 6nd the wave functions and charge density of the
conduction-band electrons, it is assumed that each of
the electrons sees the potential —e/~r due to the im-

purity, the potential V'(r) due to the bound electron,
and the potential V(r) due to the other conduction-band
electrons and the positive background of the ionized
impurities. The contribution of any one conduction
electron to V(r) is negligible because of the large number
of such electrons and, thus, this contribution need not
be subtracted from V(r) in the Schrodinger equation for
a conduction-band e1ectron. If the energy of a con-
duction-band electron is taken to be A'k'/2m*, its
Schrodinger equation is then

(7'+k'+ (2m~/A') L(e'/e) —eV(r) —t:V'(r) $}
Xy.(r) =0. (4)
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FIG. 1. Energy for an impurity electron in the ground state
versus concentrations of conduction-band electrons for several low
temperatures.

charge on the sphere discussed in the Introduction con-
tributes to the potential. Numerical integration over
k together with numerical spatial integration using
Gauss's law for the spherically syrnlnetric charge dis-
tribution as in Kq. (3) for V', give the potential V(r) due
to these various charge distributions. As mentioned
above, these calculations were repeated until there was
mutual consistency between the various wave functions
and potentials. The potential V(r) is somewhat Gaussian
in shape with a characteristic width of about 2)&10 ' cm
which is very insensitive to 8, concentration, and tem-
perature. Well depth does depend on these quantities.

8 J. McDougall and K. C. Stoner, Phil. Trans. Roy. Soc.
London, A237, 67 (1938).

III. RESULTS OjF COMPUTATION

The two independent variables of the problem are
E, the concentration of conduction-band electrons and
T, the temperature. For each set of g, T, the Fermi
energy was found from published values. Calculations
for several sets of E, T, have been carried out and the
results are summarized in Fig. 1. The curves are for

8=1.75, where Bro is the radius of the sphere outside
of which there is uniform positive-charge background.
Two points for T= 1'K and 8=1.25, 1.5 are shown to
illustrate that the curves are not very sensitive to the
exact choice of B.

It is seen from Fig. 1 that the ionization energy de-
creases with increasing electron density as one would
expect. It is also seen that the ionization energy goes to
zero rather sharply at a critical density ¹ However, the
points where the ionization energy goes to zero at the
various temperatures should be considered to be only
rough approximations to the correct values because as
the electrons become unbound, the approximations used,
such as the S-wave approximation, no longer hold. As a
result of the calculations, it appears that in n-InSb,
electron shielding could be the principal mechanism
that explains the absence of ionization energy for the
usual impurity densities.

The mechanism discussed here is similar to that for
the Mott transition. ' If the impurities were distributed
uniformly, one mould expect that application of an
increasing Tnagnetic field would lead to a sudden tran-
sition giving a decrease in conductivity at a critical
Geld. This is because the magnetic field. tends to give a
larger ionization energy for impurities. For a 6eld large
enough to cause binding of some electrons on impurities,
the decreased density of conduction-band electrons
would increase the binding still further so that this
cumulative effect would cause almost all the electrons
to become bound on impurities at low temperatures. The
fact that there is a statistical, nonuniform distribution
of impurities with possible clustering at various im-
perfections leads to a less sharp transition so that the
electrons should become bound to the impurities over a
small range of magnetic 6elds. Some evidence for this
has been seen by Wilson, Love, and Miller. " This
shielding effect in strong magnetic fields is at present
being computed for quantitative comparison with
experiment.

'N. F. Mott, Trans. Faraday Soc. 34, 500 (j.938)."J.H. Wilson, W. F. Love, and S. C. Miller, Phys. Rev. (to be
published).


