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Variational wave functions are computed for the ground state and a number of excited states of carbon x

and zr by the method of superposition of configurations. To accelerate convergence, the virtual orbitals are
obtained from a pseudonatural orbital transformation on a single electron pair, out of all those possible
within a given quantum shell. Expansions of up to 50 configurations are generated and used to study the
effects of correlation on the oscillator strengths. The method appears to be fairly successful in correcting for
most of the correlation error in both the energy and "correlation-sensitive" oscillator strengths. Term
values are substantially improved over the Hartree-Pock values; and generally, although not always,
fvalues appear to be obtainable with an accuracy of about 25%

IJTTTRODUCTIO5'

'HE calculation of atomic transition probabilities
has traditionally been based on a single-configura-

tion, independent-particle model. In this approxima-
tion, the calculation reduces to the evaluation of a
one-electron transition integral, corresponding to the
transition of an electron from one single-particle state
(orbital) to another. A variety of approximations have
been used to obtain the orbitals, notable among them
being the self-consistent 6eld, Thomas-Fermi, and
Coulomb approximations. ' The model has generally
proved quite successful, particularly for Rydberg
transitions, as might be expected.

It has also been long realized that configuration inter-
action can have a drastic effect on such calculations, " "

and provision has always been made for a very limited
amount of configuration mixing, as may be indicated
by the structure of the spectrum. There have also been
numerous investigations of the effects of "asymptotically
degenerate con6gurations, " i.e., the mixing of those

configurations which would approach degeneracy in
the large-Z limit of an isoelectronic series. ' "Here, too,
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only a very small number of configurations are nor-
mally considered.

However, the effect on the transition moment of the
correlation error, which is inherent in the independent-
particle model, has not been investigated too extensively.
Although there are many ways to construct a better
approximation to the exact wave function, probably the
most generally useful one is the superposition of con-
figurations (SOC) expansion. Here, the lead term is the
traditional independent-particle wave function, and the
succeeding terms appear to represent excitations of one
or more electrons into excited orbitals. Since, however,
these virtual conhgurations are used to represent the
details of electron correlation, they will tend to empha-
size those regions of space where the charge density is
greatest and thus will usually bear little resemblance
to "real" excited state configurations. While the kinds
of configuration mixing mentioned in the preceding
paragraph should be important, they must be con-
sidered to be only the first few terms in a SOC expansion.

In this paper, the method of superposition of con-
figurations has been used to compute the correlation
corrections to both the energies and oscillator strengths
of neutral and singly ionized carbon. Such extensive
SOC calculations have already yielded accurate fvalues
for neutral helium" and, by incorporating part of the
correlation into a polarization potential, also for neutral
magnesium. ~ In a sense, the present calculations repre-
sent an extension of this work to a more correlation-
sensitive situation.

A particularly interesting feature of these calcula-
tions is the use made of the pseudonatural orbital
technique of Edmiston and Krauss" to generate a
rapidly converging and variationally optimum set of
virtual orbitals. This results in compressing most of the
correlation effects into a relatively small number of

configurations,

although, ultimately, the SOC pro-
cedure remains slowly converging with respect to the
Anal small bits and pieces of the correlation. One point
to be kept in mind is the relative ease with which one

12 L. C. Green, N. C. Johnson, and K. K. Kolchin, Astrophys. J.
144, 369 (1966)."C.Edmiston and M. Krauss, J. Chem. Phys. 45, 1833 (1966).
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can compute the bulk of the correlation eGects since
most of the computational labor simply involves getting
the Hartree-Fock starting point. While this shouM be
of considerable importance for molecules, it should be
added that the difhculties arising from using very large
basis sets will remain and couM pose additional com-
putational problems.

In the next section, to pinpoint the correlation-
sensitive transitions, we will review briefly the current
situation for some first row atoms. This will be followed

by a description of the superposition of configurations
method, with a fairly detailed account of the pseudo-
natural orbital technique and the way it has been
applied here. Finally, the results will be presented and
discussed for carbon I and Ir.

CORRELATION-SEN'SITIVE TRANSITIONS

A number of equivalent quantities can be used to
characterize an atomic transition probability. ' For
theoretical purposes, the most convenient are probably
the multiplet strength

5'' = l(C"Irl c')I', (1)

and the oscillator strength

fg, shEiig; '—S—;;.
Here, i and j refer to the initial and 6nal terms of the
transition, respectively, AE is the energy difference in
atomic units, " and g; is the statistical weight of the
initial term. One can also use the formally equivalent
dipole velocity form" "

s' =(az,i) 'I(c"Ivlci&l',

which must agree with the dipole length form (1) for
the exact wave function, but need not do so if approxi-
mate wave functions are used. It is also supposed that
the squared transition moments in (1) and (3) are
summed over all degeneracies in the initial and final
states.

In all these formulas, C; and 4; refer to the full many-
electron eigenfunctions for the atom. In the independent-
particle model, with the wave functions for both states
assumed to be antisymmetrized products of one-electron
functions (orbitals), the multiplet strength assumes the
particularly simple form

Sg——So', (4)

where 0 is the transition integral

dr P;(r)rP;(r) .

'4Atomic units are used throughout this paper; the unit of
length is the Bohr radius, a0=0.52927k, , and energy is measured
in units of 2E, the appropriate reduced-mass rybderg.
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1957), pp. 251-253.

P; and P; are the orbital radial functions for the jumping
electron, and S is a numerical factor depending on the
number of equivalent electrons, angular momenta, etc.
Equation (4) depends on the simplifying assumption
that only one orbital changes in the transition. If core-
relaxation eAects are taken into account, 5 is somewhat
complicated by the introduction of overlap integrals
and exchange terms, although, in general, (4) will still
represent the dominant feature.

Since electron correlation refers to the detailed effects
on the wave function of the interelectronic interactions,
the independent-particle model should represent a rather
severe approximation for those transitions involving a
number of equivalent, or "shell-equivalent, " electrons.
The prime suspect, for first-row atoms, are transitions
of the type

2s22p"-2s2p"+t

where the 2s and 2p electrons mutually interpenetrate
each other quite strongly. In view of the fairly sub-
stantial core penetration of 3s electrons, the transitions,

2p"-2p" t3s,

might also be sensitive to correlation corrections.
This correlation sensitivity is illustrated by Table I,

where calculations for a selection of transitions are
compared with measurements. The emission experi-
ments were carried out either with a wall-stabilized
arc' " or a shock tube" and they should have un-
certainties in the 30% range. The lifetime experiments,
for the most part, were done by the phase-shift method, "
although there is some very recent data obtained with
the foil excitation technique using accelerators. "In both
cases, the accuracy should be around 10-15%.For ni-
trogen and oxygen, the Hartree-Fock fvalues have been
calculated using the Hartree-Fock' 0' and the observed
wavelengths. Thus, these numbers differ slightly from
those of Kelly, who used the theoretical energy interval
in Eq. (2). The Z-expansion calculations are ftrst-order
approximations to the Hartree-Fock combined, where
possible, with the configuration mixing

s22pn+, 2pn+2

It thus represents the erst obvious step in a multi-
con6guration expansion and should include some por-
tion of the correlation correction.

Several observations can be made on the material in
this table. Firstly, these kinds of transitions tend to lie
well into the ultraviolet, thus increasing the dM.culties
of experimental work. Indeed, all the measurements are
of quite recent vintage. While the 2p-3s transitions
tend to fare somewhat better, the comparisons are
generally far from satisfactory; the errors range from

rr G. Boldt, Z. Naturforsch. 18a. 11pg (1963)."F. Labuhn, Z. Naturforsch. 20a, 998 (1965).
'~ J. R. Roberts and K. L. Eckerle, Phys. Rev. 153, 87 (1967).'0 G. M. Lawrence and B.D. Savage, Phys. Rev. 141, 67 (1966)."L.Heroux, Phys. Rev. 153, 156 (1967).
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TmI,E I. A comparison of calculated and measured oscillator strengths for some first-row atoms and ions.

Atom Transition

2s'2p 'P —2s2p' 2D

Wavelength

(X)

2089

Calculated
Hartree-Pock' Z-exp. b

0.253

Measured
Emission' Lifetime~

0.048

CI

C II

OI

2s22ps 'P —2s2p' 'D
—2$2p3 3P
—2s'2p3s 'P

2s'2p 'P —2s2p' 'D
2$2p~ 'P —2p' ~D

2$~2p3 4S—2s2p4 4P

2p3 ~D—2p23$ ~D

—2p'3s 'P
2p»P —2p&3$ &P

2p3 4S 2p23$ 4P

2$~2p3 'P —2s2p' 'D
—2$2p3 3P
—2s2p' 3S
—2s'2p3s 'P

2p4 'P —2p'3s 'S

1561
1329
1657

1335
2512

1134
1243
1492
1742
1200

1085
916
645
672

1302

0.286
0.202
0.075

0.274
0.228

0.491
0.062
0.048
0.049
0.099

0.240
0.172
0.323
0.089

0.030

0.232
0.256

0.204
0.230

0.515

0.192
0.213
0.244

0.091
0.039
0.17

0.136

0.137
0.110
0.111
0.093
0.350

0.076

0.13

0.114

0.080
0.095
0.078
0.064
0.259

0.109
0.131
0.189
0.067

0.035

For nitrogen and oxygen, see Kelly (Ref. 2). The boron and carbon results have been obtained here.
b See Cohen and Dalgarno (Ref. 10).
e The emission data for C i are from Boldt (Ref. 17), and for N r from Labuhn (Ref. 18).Those for C rr are from Roberts and Ecgerle (Ref. 19).Except for N ri, all the lifetime data are taken from Lawrence and Savage (Ref. 20). N rr includes results obtained by Heroux (Ref 21)

50% to a factor of 5.A few generalizations are suggested,
namely, that the 2s-2p transitions seem to be too large,
while the 2p-3s are too small, although there are a few
exceptions to these rules. Furthermore, the very limited
coniguration mixing of the Z-expansion calculations
does not seem to be doing too much good; sometimes
the results are improved, sometimes they are not.

Figure 1 probably indicates the real source of the dif-
hculty. Here, the Hartree-Fock 2s and 2p orbitals and
the length and velocity transition integrands LEq. (5)j
are plotted for the 2s'2p'-2s2p' transition in carbon-
the transition integrands being plotted in arbitrary
units. It is clear that the tails of the wave functions are
irrelevant for determining the transition moment, whose
integrand is largest where the electronic charge density
is largest. It is thus to be expected that calculations of
oscillator strengths for these transitions are apt to be
plagued by all the ills arising from correlation errors.

SUPERPOSITION OF CONFIGURATIONS
AND PSEUDONATURAL ORBITALS

The procedure adopted here for incorporating correla-
tion corrections into the wave function has been the
method of superposition of configurations (SOC), where
a variational trial function is written as a linear com-
bination of known many-electron functions

extremum

&=(+I~I+)/(+i +)
The Hamiltonian used here is the usual nonrelativistic,
spin-independent Hamiltonian

I.O-

.8- 2P FUNCTION ———
2S FUNCTION --———-

TRANSITION INTEGRAND-

/' VELOC IYY

P .2 -/'

pP

4
-4—

-6-

where Z is the nuclear charge. The variational principle
leads to the usual matrix eigenvalue equation for the
energy and the coeflicients a;. The eigenvalues are
always upper bounds to the energy of the corresponding
excited (or ground) state, " and, with a physically
appropriate trial function (6), the computed wave func-

%=+ a;C;. (6) I.O 2.0 4.0 5.0 6,0

' J. K L. MacDonald, Phys. Rev. 43, 8&0 (&933).

FIG. 1. Hartree-Fock radial functions compared with length
The conigurations C; are themselves antisymmetrized and velocity trans'tio»ntegrands for a 2$'2p' —2$2p' trans't

in carbon.
products of orbitals, and the coeKcients a; are deter-
mined by the requirement that the energy integral be an
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q;= P c;„x„
y

(1O)

where the c;„are variationally determined to give, in
eRect, a "best fit" to the Hartree-Fock orbitals. In
particular, the basis functions used were the Slater-type
orbitals (STO's)

—(2f') "+i&s[(2') tj 'tsr"+'e &'Ft~(y y—) . (11)

The f's are additional variational parameters which
usually turn out to have values which sprinkle the basis
functions radially throughout those regions of space
where the Hartree-Fock orbitals are significantly large.
For the ground state of carbon, for instance, the s basis
(for both 1s and 2s) consists of five functions, two of
which span the E-shell loop, two the L-shell loop, and
one the intermediate region.

To return to the SOC expansion (6), the particular
form that it now takes is

tion is an approximation to the eigenf unction of that
state.

It is furthermore supposed that the traditional
Hartree-Fock approximation will be a suitable starting
point for the calculations, i.e., the erst, and usually
dominant, term of (6) is taken as the Hartree-Fock func-
tion of the state under investigation. For a closed-shell
system, the Hartree-Fock wave function is the varia-
tionally best single determinant of orbitals

4= detp&cr(1) &pit(t(2) tcscr(3) . &p„P (2n), (9)

where n and P are the &-,' component spin functions. In
the more general open-shell case, (9) becomes a linear
combination of determinants such that the spin and
orbital angular momenta add up to produce a pure state
in LS coupling; the orbitals are populated strictly in
accordance with the aufbau principle. The particular
version of the Hartree-Fock scheme which is used here
is the expansion method developed by Roothaan and
co-workers. 3 In this form of the theory, the orbitals are
expanded in a (truncated) set of analytical basis
fun ctions

tions are treated. '4 Furthermore, since the spectroscopy
is the main interest here, only excitations of the "optical"
electrons are considered, i.e., for carbon the E shell is
left alone as a Hartree-Fock 1s' pair.

The crux of the problem then is how to optimize the
choice of the virtual orbitals p;. The procedure adopted
here is the pseudonatural orbital (PSNO) transforma-
tion of Edmiston and Krauss, ' which is a simple ex-
tension of the natural orbital theory of Iowdin, ' as
applied to a two-electron system. " Since this scheme
not only appears to work quite well but is also ex-
ceedingly easy to use, we will give a fairly detailed
account of it here.

The procedure can be outlined briefly as follows. To
begin with, an ordinary SOC calculation is done, cor-
relating only one of the electron pairs in (12)~ The
virtual orbitals are constructed by arbitrarily Schmidt
orthogonalizing the analytical Hartree-Fock basis func-
tions (11), with perhaps some additional STO's whose
f's have been optimized for this calculation. A natural
orbital transformation is then carried out to generate a
new set of virtual orbitals, which also concentrates
most of the correlation information of (12) into just a
few terms. This set of orbit als is then taken as the
virtual orbitals for other substitutions of physically
similar pairs of electrons.

As the two-electron prototype, let us consider a
doubly occupied singlet, such as the 1s' 'S ground state
of helium. A SOC calculation which utilizes a/l possible
combinations of orbitals from some given orthonormal
set [q,7 then gives a wave function of the form

+(1,2) =Z C vc.(1)qc.(2)

+2 ( mtX2 ' '[pn(1)tet(2)+p~(2)yt(1)). (13)
n&l

The erst-order density matrix is given by

dI +(1',2)+(1,2) =g g.(1')p, (1)p„„(14)

+=asC', +g 'Ca'. '+P g a„„"C'„„'+"', (12)
R$L fAs J

where C p is the Hartree-Fock function, and the notation
C „'means to replace the eth-occupied (space) orbital of
C'p by some virtual orbital p;, taking the necessary linear
combination of determinants to give a pure LS state.
Similarly, C „'& are the double substitution terms. In
principle, the sums should run over all the occupied
orbitals and a complete set of virtual orbitals, and the
expansion should extend on through triple substitutions,
etc. In practice, of course, the sums are truncated to a
relatively few terms, and usually only single and double
substitutions are included, i.e., only the pair correla-

~g C. C. J. Roothaan and P. S. 3agus, 3IIethods As Computu-
ttonal Physics (Academic Press Inc. , New York, 1963), Vol. 2,
pp. 47—94,

+(1 2) =E a ttt'-(1)lt'-(2), (13')

tt«'1) =Z a-V-(1')0-(1) .

O. Sinanoglu, J. Chem. Phys. $Q, 706 (f962)'s P. O. Lowdin, Phys. Rev. 97, 15P9 (195$)."P. O. «wdin and H. Shull, Phys. Rev. 101, ]73p (l956).

wher e the y matrix is

'7= CCt. (15)
C is simply the symmetric matrix of the SOC coe%cients
in (13).The unitary matrix which diagonalizes C also
diagonalizes y and can be used to transf orm the orbital
set [q,] to a new orthonorrnal set [ttt';j, such that both
the first-order density matrix and the wave function
are quadratic forms
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The orbitals LP„g are called the natural orbifals, and
they represent the most rapidly converging set which
can be constructed from the original orbital set. The
squared coefficients u ' are the occupatiors Numbers, and
they serve to order the orbitals in order of importance
in (13'). It should be noted that, in one sense, nothing
new has been achieved, since the wave function (13') is
identical with the original one (13). What has been
accomplished is to compress the information in the
original expansion into its most compact possible form.
Also, while there are some technical modifications, there
is no inherent difficulty in extending the theory to ex-
cited states, " such as triplets or mixed orbital sym-
metries, e.g., (1s2p).

The Edmiston-Krauss adaptation for more than two
electrons will now be illustrated for the ground state
of carbon, 2s'2p' 'P, one of the cases actually calculated
in this paper. Here, an orthonormal set of virtual orbitals
is constructed by successively Schmidt orthogonalizing
the Hartree-Fock basis functions X; LEq. (11)j to
themselves and the occupied Hartree-Pock orbitals
(1s,2s,2p), with the addition of some d and f functions;

[y;]=1s,2s,3s',4s', ,2p,3p', 4p', ,3d' . (16)

This set is then used in a full (6-electron) SOC calcula-
tion on the carbon atom, but concentrating on just one
pair of electrons, namely, the 2s2p 'P pair, i.e., the wave
function analogous to (13) is

4= (2s2p)'P(2s2p+2s3p'+3s'2p+3s'3p'+ 2p3d'

+3p'3d'+ )'P. (17)

All possible combinations of the virtual orbitals were
used, and, wherever the basis was augmented, the f's
of the additional functions were varied to minimize the
total energy. At this point the coefficients from (1/)
are treated exactly as though they came from a genuine
two-electron SOC calculation, and the coefFicient matrix
is diagonalized to determine a pseudonatural orbital

(PSNO) transformation

L1s,2s,3s',4s', 2p,3p', 4p', . 3d') —+

L1s,2s,3s, . 2p, 3p, 3d].

In a sense, what one is doing is determining the natural
orbitals for the 2s2p'P pair in the Hartree-Fock field of
the rest of the atom. Upon repeating the calculation
with the PSNO's, it was found that, to within 0.01 eV,
8 or 9 configurations yielded the same energy as the
original 41 configurations of (17); i.e., there is a similar
compression of information as in the true two-electron
case.

The next step is to observe that, since the 2s and 2p
are so strongly interpenetrating, these PSNO's should
also be very nearly the appropriate virtual orbitals for
any other pair excitations of the outer four electrons,
e.g., excitations from 2s', 2p', etc. Using these PSNO's
then, other groups of configurations are added onto the
wave function in a routine search for the energetically
important terms, until all single and double substitution
possibilities have been exhausted. It should be noted
here that the Hartree-I'os. functions are retained for
the 2s and 2p orbitals, with the PSNO's orthogonalized
to them. The basic philosophy is that this pseudo-
natural orbital transformation is simply a technique for
mechanically determining an approximately optimum
set of virtual orbitals for representing the correlations
of the outer four electrons. The ordering of the PSNO's,
3s, 4s, etc., follows the occupation numbers of the
transformation and hence should represent their order
of importance.

Detailed results for the ground state of carbon are
shown in Table II, where energies are given for two
distinct sequences of wave functions. The erst sequence
is obtained by adding onto the Hartree-Pock successive
groups of configurations which are presumed to repre-
sent different pair correlations, e.g., 2p' correlation, etc.
5E is the correlation energy picked up by adding the
corresponding group, and AE, is the running sum

TABLE II. Superposition of configurations energies (in au) for the ground state of carbon, 2s'2p' 'P.

No. of Terms

1

6
18
25
29
34
35
36
37

1
2

21
39
40

Con6gurations

2s'2p'
2s'(2 p'+3p'+4p'+3d'+4d'+4 f')

6-conf. +(3 +4 ss+3Pss'+3d +4d s)2P +s2Ps(4S+sD+ sP)(3P2+4P)
18 conf +(2s2p)'P(3s3p-+4s4. p+3p3d+4p3d+3p4d+3d4f+4d5 f)'P
25-conf. + (2s2p)'P(3s3p+3p3d+4p3d+3p4d)'P
29 conf +(2s2p)sP(3s3p+-4s4p. +3p3d+4p3d+3p4d)sP
34-conf. +(2s3s)'S(2P') 'P
35-conf. + (2s3d}3D(2P')3P
36-conf. +(2s3d)'D(2P') 'D
37-conf. +3Ps(~P+ ~D) (2P~) 3P+ (2P~) D4f

2s'2p'
(e=2}2s'2p'+2p4
(1=3)
(n= 4)
(1=5)

37.68861
37.69808
37.72495
37.74142
37.74361
37.74637
37.74795
37.76127
37.77833
37.77888
37.68861
37.70582
37.77053
37.77851
37.77888

~ ~ ~

0.0095
0.0269
0.0165
0.0022
0.0028
0.0016
0.0133
0.0171
0.0006

~ ~ ~

0.0172
0.0647
0.0080
0.0004

~~sum

~ ~ ~

0.0095
0.0363
0.0528
0.0550
0.0578
0.0593
0.0727
0.0897
0.0903

~ ~ ~

0.0172
0.0819
0.0899
0.0903
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Tmx.E IIl. Superposition of configurations energies {in au) for the 2s'2p' 'S state of carbon.

No. of Terms

1
11
18
27
32
35
37

2

16
32
37

Con6gurations

2$2p2
2s'(2p'+3p'+2p4p+4p'+ 5p'+3d'+4d'+Sd'+4f +5f'+js')

11 con-& +(3s'+4s'+2P'+3P'+3d') 2P'+2P'(3P+4P)
18-conf.+ (2s2p) 'P (3s3p+3s4p+4s4p+3p3d+3p4d+4p3d+4p5d+3d4f+4d4 f)'P
27-conf. +(2s2p) 'P (3s3p+4s4p+3p3d+3p4d+4p3d) 'P
32-conf. +(2s3d+2s4d+3s4d)iD(2Ps) iD
35-conf. + (3P') 'P (2P') 'P+ (3P') 'D(2P') 'D

2s'2p~

(n =2)2s'2p'+2p4
(I=3)
(I=4)
(I=5)

37.54961
37.59038
37.65325
37.67276
37.67708
37.67805
37.67930
37.54961
37.60813
37.66390
37.67789
37.67930

~ ~ ~

0.0408
0.0629
0.0195
0.0043
0.0010
0.0013

~ ~ ~

0.0585
0.0558
0.0140
0.0014

~&sum

~ ~ ~

0.0408
0.1036
0.1232
0.1275
0.1284
0.1297

~ ~ ~

0.0585
0.1143
0.)283
0.1297

I I I l.8 —
3d s'2p' 'P

2s 2p ~D —----35

".8
.8-

—.8 I I I I I I I I I I I I

I 2 5 4 5 6 7 8 9 IO I I I2

FIG. 2. Radial functions of Hartree-Fock (2P) and pseudo-
natural (3P, 3d, and 4d) orbitals for the 2p' 'E and 2s2p' 'D terms
of neutral carbon.

"H. P. Kelly, Phys. Rev. 144, 39 (1966).

As might be expected, the parallel spin 2p' pair has a
small correlation energy (~0.25 eV), and, in agreement
with Kelly's~~ results for oxygen, the 2s' correlation
energy is rather large (—0.7 eV). The 36 and 37 con-
6guration results are particularly interesting, since the
added con6gurations do not Gt too readily into any'

particular correlation breakdown but are still quite
important. These configurations represent the excita-
tion of a single 2s electron to make a 2s3d 'D pair, with
all the angular momenta subsequently recoupled to give
a 'P state for all four-electrons. They apparently cor-
respond to a spin-polarization type of correlation eGect.
These two configurations account for about 0.8 eU of
the total four-electron correlation energy of 2.4 eU, and
such triplet coupled terms have turned out to be impor-
tant in other states and systems. For instance, in the
2p' 'D state, the single configuration (2s3d sD)(2p' 'p)
contributes 0.85 eU to the correlation energy. To test

the additivity of pair-correlation energies, calculations
were also done with each group of con6gurations alone
being added to the Hartree-Fock, i.e., without any of the
other pair correlations. While the sum of these correla-
tion-energy increments did not add up exactly to the
directly computed four-electron correlation energy, the
difference was no greater than 0.2 eU.

The second set of calculations in Table II utilizes the
same 40 configurations listed in the erst part of the
table. Here, however, a sequence of wave functions is
constructed by successively adding onto the Hartree-
Fock all those configurations containing the e= 2
orbitals (2s and 2p), then all those with the n=3,
orbitals (3s, 3p, and 3d), etc., with the quantum num-
bers defined by the ordering of the pseudonatural orbital
occupation numbers. Thus, this represents a sequence of
progressively longer expansions and, hopefully, better
approximations to the exact wave function, and they are
the functions that will be used in computing the spec-
troscopic properties.

To illustrate some of the similarities and dissimilarities
in correlation behavior in going from state to state, the
corresponding results for the 2p' '5 state are given in
Table III. Both the 2p' and 2s' correlation energies are
much larger here, the former, no doubt, because of the
parallel spin, double occupancy of the 2p orbitals. The
large 2s' correlation apparently reQects a much stronger
mixing of the 2p' configuration. The total double-
excitation intershell sects appear to be about the same,
0.022 a.u. for the 'P' and 0.024 a.u. for the 'S. However,
the 2s~3d apparent single excitations are quite un-
important for the 'S state.

Several tests were made to check out the procedure
of using PSNO's from one pair to represent the other
pair correlations. The ground-state calculations were
repeated using p, d, and f functions derived from the
2pm pair and s functions from the 2s2 pair. With these
orbitals, a 38-configuration calculation gave a computed
correlation energy for the ground state of 0.0889 a.u.,
0.04 eU higher than the result reported in Table II. It
should be added here that this calculation utilized an
analytical STO basis consisting of five s and four p func-
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tions (the Hartree-Fock basis) plus three d and two f
functions, whereas the Table II results were obtained
by augmenting the s and p bases by one function each.
Another check is shown iri Fig. 2, where some of the
principal PSNO's from the 2p''P ground state are
compared with the corresponding orbitals for the
2s2p''D excited state. In the latter case the orbitals
were derived from a SOC calculation on the 2p' 'D pair,
i.e., in this case, the original SOC calculation correspond-
ing to (17) was of the form

P 0

-4—

I I I I I I I I I I I I I I I I I I I I I I I I

FROM 2S~2p~

FROM 2S22p

4= (2s2p) sP(2ps+2p3p+3ps+ .3ds+3d4d

+ .2s3d+3s3d+ ) 'D. (18)

-8-
I I I I I I I I I I I I I I I I I I I I I I I I

2 4 6 8 IO I2 I4 I6 I8 20 22 24
f'~

TERM VALUES AND OSCILLATOR
STRENGTHS FOR CARBOH I

The term values for a number of low-lying states com-
puted in this way are shown in Table IV and compared
with the spectroscopic data."The different columns in
this table correspond exactly to the second sequence of
wave functions shown in Tables II and III.Each of the
excited states is treated variationally and completely
independently of all the others; i.e., parameters are
varied, configurations selected, etc. to depress each
total energy as much as seems feasible. The computed

TAnLE IV. Relative term energies (in au) for neutral carbon.

Term H-I" n=2 n=3 n=4 n=5 Observed~

2s22P2 3P
1D
'S

2s'2P3s 'P
1P

2s2P' 'D
3P

0.0
0.0573
0.1390
0.2662
0.2720
0.2943
0.3509

0.0
0.0579
0.0977
0.2436
0.2487
0.287k
0.3687

0.0
0.0539
0.1066
0.2773
0.2840
0.2993
0.3640

0.0
0.0480
0.1006
0.2771
0.2829
0.2944
0.3527

0.0
0.0478
0.0996
0.2764
0.2821
0.2936
0.3513

0.0
0.0463
0.0985
0.2750
0.2823
0.29j.9
0.3428

& See Ref. 28.

"C. E. Moore, Atomic Ersergy Levels, Natl. Bur. Std. (U. S.)
Circ. No. 467 (U. S. Government Printing OKce, Washington,
D. C., 1949), Vol. j..

The similarity of the PSNO's is quite striking, especially
when one recalls that they were derived not only from
different pairs, but also from different electronic states
of the atom. As is to be expected, all the orbitals tend
to be concentrated in those regions of space with the
greatest charge density. Thus, the "pseudoqu@ntum
numbers, " 3p, 3d, etc., have little, if anything, to do
with the corresponding quantum numbers of real ex-
cited states. This is illustrated in Fig. 3, where the
Hartree-Fock 3d function for the 2p3d (center of
gravity) excited state is compared with the 3d PSNO for
the ground state. The variationally optimum 3d func-
tion for a SOC expansion of the ground state is radically
different from the "true" excited state orbital; in fact
its radial dependence is very nearly the same as that of
the 2p function.

FIG. 3. Radial functions for the ground state and a 2p3d excited
state of neutral carbon.

term scheme in Table IV is an after the fact representa-
tion of the way these total energies are settling into
place relative to each other as progressively longer ex-
pansion lengths are used in the trial functions. It seems
clear that, in general, there is reasonably good agree-
ment (~300 cm ') between the calculated and meas-
ured term values, especially considering the fact that
these are completely ab initio total energy calculations.
The sole exception is the 2s2p' 'P term, which is off by
about 1900 cm '. This is not the lowest state of its
symmetry, the 2p3s 'P being lower, so that here one has
to work with the second eigenvalue in. the secular equa-
tion. It appears to be necessary to include a number of
configurations which represent the 2p3s "inner loop" of
the 2s2p' as well as the pair correlations proper, and this
has simply not been carried far enough here. The SOC
expansion lengths ranged from 37 configurations for the
2p' 'S to 50 for both terms of 2s2p'.

A few comments about the 2p' term spacings may be
pertinent at this point. Adding only the 2pe conlgura-
tion brings the 'S term into position relative to the
ground state, although it does not improve the 'D
(see the n= 2 column of Table IV). However, omitting
2pe and including only the 2p' correlation con6gura-
tions (the second line of Tables II and III) yields 0.0494
and 0,1077 au for the 'D and 'S terms, respectively,
which is also reasonably satisfactory. Thus the anal
computed term values appear to represent a rather
subtle interplay of a number of correlation effects.

The oscillator strengths, in both the length and
velocity forms, are shown in Table V, with exactly the
same format as the term values, i.e., as a sequence of
presumably better approximations. %hile the degree of
convergence is not completely satisfactory, the average
of the length and velocity values for the last column
(e= 5) is usually within about 25% of the correct value.
The sole exception is the transition involving the
2s2p' 'P, whose computed term value was so far out of
line. Since the lifetime experiment measures a total
transition probability for the decay from 2p3s 'P, it only
provides an upper limit for the transition to 2p' 'D, the



A. W. WE ISS

TwsLz V. Absorption oscillator strengths for neutral carbon.

Transition

2s~2p' 'P —2s2p' 'D

2s~2p2 3P—2s2p3 3P

2s22p2 'P —2s22p3s 'P

s'2p' 'D —2s 2p3s 'P

2s&2p»g —2s22p3s 'P

X(x)

1561

1329

1657

1931

2478

Type

Len.
Vel.
Len.
Vel.
Len.
Vel.
Len.
Vel.
Len.
Vel.

0.286
0.332
0.202
0.171
0.075
0.094
0.079
0.084
0.097
0.098

0.204
0.432
0.260
0.120
0.075
0.094
0.080
0.085
0.097
0.092

0.131
0.175
0.131
0.161
0.105
0.123
0.092
0.106
0.091
0.101

Computed
@=2 %=3

0.122
0.149
0.121
0.136
0.108
0.124
0.092
0.109
0.081
0.095

0.102
0.117
0.097
0.105
0.108
0.123
0.092
0.108
0.081
0.090

0.091

0.039
0.076

0.17 0.13

&0.101

Observed
Arc Lifetimeb

& See Ref. 17. b See Ref. 20.

other decay mode being to 2p' 'S. If the final calculated

f values are used to determine the 2p3s 'P lifetime, one
obtains 3.30 and 2.82 nsec for length and velocity, re-
spectively, while the measured lifetime is 2.9&0.3 nsec.

A number of shorter expansions were also calculated
utilizing only the few most important configurations, as
indicated by the energy improvement and the size of
the coefficients. The kind of result one obtains for the
oscillator strength is illustrated in Table VI for the
2s'2p' 'P-2s2p' 'D transition. While it is clear that one
can find a two-con6guration approximation for both
states which gives a good f value, the addition of a few
terms, just as important energetically, has the dis-
appointing eBect of making matters worse. By the time
all the v= 3 con6gurations have been added (Table V),
the f values have changed substantially for the worse.
Although it would be eminently desirable to identify
just a few configurations important for the oscillator
strength, it does not yet seem clear, from these results,
how to go about it.

TERM VALUES AND OSCILLATOR
STRENGTHS FOR CARBON Ir

Superposition of con6guration wave functions, of
about the same accuracy and utilizing the PSNO trans-
formation technique, were also computed for the ground
state and a number of excited states of singly ionized

carbon. While there have recently been lifetime" and
shock-tube" measurements of some C rr f values, there
are a number of transitions for which very accurate
experimental data are lacking. C Il also has the interest-
ing feature that some of the transitions are quasi-
forbidden in an independent-particle model but can
become allowed by con6guration mixing. These are
multiplets of the 2s'3p-2s2p transition array.

A detailed breakdown of the calculations for the
2s'2p'P ground state is given in Table VII, exactly
analogous to the neutral case. It should be noted here
that for C+ the analytical basis sets were not refined
quite as much as for the neutral atom. For instance, for
the ground state, the basis was only augmented by the
addition of new symmetries (d and f functions), i.e., the
basis consisted of 6ve s, four p, three d, and one f
function. The PSNO's for the ground state were derived
from the 2s2p 'P pair. Here, the 2s3d, spin-polarization
type of term appears as the two configurations

(2p3d 'P) 2s and (2p3d 'P)2s.

These two configurations account for about 0.6 eV of the
computed correlation energy of 2.17 eV. The ionization
energy computed from C and C+ ground states is 11.06
eV, while the experimental value is 11.26 eV. The
di6'erence of 0.2 eV can easily arise from the E-I.
intershell correlation, as well as the accumulated slow

TABS,z VI. Some "small wave function" calculations of the 2s'2p' 'P —2s2p3 'D oscillator strengt

2s2p' "'D —+ 2s2p' 2s2p3+2s 2p3d 2s2p'+2s22p3d+3d2p~ 3-conf.+2s2p 3P3p»D+2s3p&p2p2 3P

2s'2

2s'2p'+2p'

2s'2p'+2p4
s3d'D(2p"P'+'D)

Observed: (Arel 0.091
(Lifetime) 0.076

V.

V.

V.

0.286
0.332
0.204
0.432
0.177

0.525

0.154
0.039
0.097
0.079
0.087

0.114

0.155
0.041
0.104
0.097
0.092

0.133

0.172
0.078
0.118
0.151
0.105

0.195
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TAnLE VII. Superposition of con6gurations energies (in au) for C n, 2ss2p 'P.

No. of Terms

7
15
25

35
1
2

18
35

Con6gurations

2s22p

(2s'+3s'+2P'+3P'+3ds+4d'+If')2s
7-conf. +2P'('S+'P+'D) (3P+4P)+3P'('P+'D)2P

15-conf.+(3s2p+ 3s3p+3s4p+4s4p+ 2p3d+3p3d+4p3d+3p4d+3d4 f+4d4 f) 'P2s
25-conf. +(3s2 p+ 3s 3p+3 s4p+ 4s4 p+2 p3d+ 3p3 d+4p3 d+3 p4d+ jd4f)'P2s
34-conf. +2p'4f

2s22p

(a =2)2s'2p+2p'
(a =3)
(m =4)

37.29222
37.33705
37.33954
37.36561
37.37215
37.37241
37.29222
37.33270
37.36730
37.37241

~ ~ ~

0.0448
0.0025
0.0261
0.0065
0.0003

~ ~ ~

0.0405
0.0346
0.0051

~~sum

~ ~ ~

0.0448
0.0473
0.0734
0.0799
0.0801

~ ~ 4

0.0405
0.0751
0.0801

convergence errors of the SOC approximation. The E-L
intershell correlation energy for beryllium has been cal-
culated to be approximately 0.14 eV."

The computed term values are given in Table VIII,
in exactly the same form as for neutral carbon. Here too,
for each state individually, a sequence of wave func-
tions is computed which, variationally at least, repre-
sents a progressively better approximation. The over-
all results tend to be somewhat more coarse than for
Cr, with errors generally in the 500—1000 cm ' range.
This, no doubt, is due to the less re6ned basis sets, as
well as E-L intershell effects, aggravated by the higher
stage of ionization. Some recent separated pair cal-
culations on the Be sequence indicate that the intershell
correlation energy increases with increasing charge. "
Also, Hartree-Pock calculations on the lithium iso-
electronic sequence" give errors in the term values,
which increase with Z. On the whole, the term scheme
has been brought into pretty good shape, as is indicated
by Fig. 4. which displays the information of Table VIII
on an energy-level diagram.

The calculated oscillator strengths are collected to-
gether in Table IX and compared with the available
experimental data. The 2S states exhibit a very strong

2s2Ps sS-2ss3P sI'

and, indeed, the calculated f value agrees quite satis-
factorily with the experimental one. This effect actually
does not show up in Table IX until the v=4 column,
because of a fortuitous labelin, g of the PSNO's such that
the 4s PSNO is the one that looks like the spectroscopic
3s. The other quasiforbidden transitions, 2s2ps-2s'3p
and 2s'3d-2Ps, remain essentially forbidden even with

7-

.6—

2p' '0

283d D

2s 3p P

2p S

2p3 20
2s 3d 0
2pi 4S

2s 3pP

mixing of the two configurations

2s2p'+ 2s'3s.

This gives two dominant components to the transition
moment, and the mixing occurs in such a way that they
very nearly cancel each other for the 2ss2P-2ss3s transi-
tion, which is thus both weak and numerically un-
reliable. This mixing also makes allowed the quasi-
forbidden transition

Tan r,E VIII. Relative term energies (in au) for C rr.
.5—

2s 3s S
2s2p P

2s 3s S
2s2p P

Term

2s'2p 'I'
2s2p2 4P

2D

2S

QP

2s'3s
2s~3P ~E

2p' 4S

2s'3d 'D
2p3 2D

H-F

0.0
0.1313
0.3285
0.4270
0.5115
0.5233
0.5994
0.5953
0.6553
0.6969

0.0
0.1717
0.3690
0.4675
0.5520
0.5360
0.5740
0.6358
0.6392
0.7374

0.0
0.1901
0.3487
0.4611
0.5146
0.5358
0.5973
0.6449
0.6696
0.6912

@=4

0.0
0.1941
0.3447
0.4454
0.5102
0.5381
0.6003
0.6477
0.6692
0.6895

m=5 Observed'

0.0 0.0
0.1959

0.3443 0.3412
0.4446 0.4395

0.5040
0.5346 0.5308

0.6001
0.6469

0.6691 0.6630
0.6889 0.6854

.3—

2s2p S

2g2p2 gD

2s2$ P

2s2p S

2s2$ 0

2$2p P

a See Ref. 28. P 2s22p RP

SOC EXP.

2s 2p P

s9 H. P. Kelly, Phys. Rev. 131, 684 (1963)."K. Miller (private communication).
"A. W. Weiss, Astrophys. J. 138, 1262 (1963).

FIG. 4. The energy levels (in au) for carbon zr as given by
Hartree-Fock (H-F) and superposition of conigurations (SQC)
calculations, and compared with the observed (Expt).
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ALE IX. Absorption oscillator strengths for C zr. The transi-
tions marked with an asterisk (*)are subject to large uncertainties,
as discussed in the text.

Computed Observed
Transition X(A) Type H-F +=2 m =3 75=4 72 =5

2s22p 'P —2s2p»D 1335

—2s2p»S 1037

—2s2p»P 904

-2s23s 2S 858

-2s23d 2D 687

+2s2p»D —2s&3p 2P 1760

-2p»D 1324

2s2p22S —2s23p 2P 2837

+2s2p»P —2s'3p 2P 4741

—2pg 2D 2512

2s23s 2S —2s23p 2P 6575

2s23p 2P —2s&3d &D 7244

+2s23d '4D —2p»D 20342

2s2p2 4P —2p& 4S 1010

l. 0.274 0.186
v. 0.2S6 0.325
1. 0.072 0.117
v. 0.042 0,020
1. 0.726 0.489
v. 0.302 0.377
1. 0.043 0.013
v. 0.050 0.005
1. 0.276 0.356
v. 0.245 0.284
1. 0.0 0.0
v. 0.0 0.0
1. 0.245 ~ ~ ~

v. 0.232 ~ ~ ~

1. 0.0 0.001
v. 0.001 0.012
I. G.O 0.0
v. 0.001 0.0
1. 0.228
v. 0.627
l. 0.901 0.439
v. 1.031 0.270
1. 0.645 0.604
v. 0.531 0.422
l. 0.0 0.0
v. 0.0 0.058
J. 0.207 ~ ~ ~

v. 0.121 ~ ~ ~

0.122 0.121
0.116 0.124
G.094 0.119
0.111 0.129
0.502 0.510
0.512 0.518
0.002 0.003
0.003 0.004
0.351 0.330
0.328 0.307
0,007 0.009
0.019 0.016
0.145 0.138
0.140 0.135
0.002 0.127
0.054 0.129
0.0 0.0
0.0 0.0
0.104 0.101
0.085 0.091
0.631 0.640
0.619 0.668
0.577 0.569
0.425 0.562
0.0 0.0
0.005 0.002
0.175 0.175
0.193 0.191

0.121 0.114a
0.124
0.119
0.130

0.008
0.010
0.330
0.307
0.009
0.016
0.138
0.136
0.127 0.133b
0.137

0.101 0.136b
0.092
0.702
0.758
0.568
0.562
0.0
0.002

& See Ref. 20.
b See Ref. 19.

DISCUSSION

In summary, it appears that an independent-particle
model is likely to be inadequate for treating those transi-
tions which intimately involve a number of equivalent,
or "shell-equivalent, " electrons, the correlation-sensi-
tive transitions. The correlation corrections have been
included here by using variational, superposition of
con6gurations wave functions, taking the Hartree-Fock
approximation as the starting point. The main feature
of the calculations, which makes intermediate range
accuracy so readily attainable on present day com-
puters, has been the use of a pseudonatural orbital trans-
formation on some representative electron. 'pair to

the extended wave functions used here, and they
probably are, in fact, quite weak. While there is often
a substantial change in the f value in going from the
Hartree-Fock to the most elaborate calculation, it is
gratifying to note that this is not the case, or at least
not very drastic, for the classic Rydberg transitions
(2p-3d, 3s-3p,3p-3d). On the whole, it does not seem too
unreasonable to suggest that the mean of the final
length and velocity values is probably accurate to
within about 25%. This appears to be consistent with
the available experimental data as well as with what-
ever trends may be evident in the calculations.

generate an ordered set of nearly optimum virtual
orbitals. This technique is closely related to the multi-

configuration, or extended Hartree-Fock procedure, " '
which sets up a mathematical formalism for determin-

ing all the orbitals seU-consistently in the 6eld generated

by a many-configuration trial function. The core is thus
allowed to relax in the Geld of the correlating electrons,
which is not the case here. Carried to comparable
lengths, however, the two schemes should be very
nearly identical. The present scheme also appears to be
very similar to a recently developed procedure based
on solving the symmetry adapted Bethe-Goldstone
equations. "

As for the results, it appears that this SOC-PSNO
procedure rapidly recovers a large portion of the cor-
relation energy, although it will still be subject to
difhculties of slow convergence when very high ac-
curacy (10 cm ' or better) is wanted. It is relatively

easy, however, to include a large enough portion of the
correlation corrections to yield useful and signihcant
results. Ionization and excitation energies appear to be
computable with an accuracy comparable to the
Hartree-Fock for alkali-like atoms (0.1—0.2 eV), which

is good enough for many purposes. It seems that
oscillator strengths are also obtainable at this level of
accuracy, namely, approximately 25%, although some

care may be needed in assessing the reliability of an
individual f value. Needless to say, a 25% accuracy for

f values is generally quite satisfactory, "being of the
same order of accuracy of most present day experimental
techniques. When combined with the procedure of
always using a systematically generated sequence of
functions, instead of an isolated wave function calcula-

tion, this technique should prove to be a valuable com-

plement to the present experimental work on atomic

f values.
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