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should be such that second-order exchange interactions
are relatively unimportant at small interatomic sepa-
rations, otherwise the validity of a Heitler-London type
of calculation for the binding energy of the hydrogen
molecule remains unexplained. We note that, on the
basis of the definitions Ho and B' LEq. (5)$, the Heitler-
London analysis corresponds precisely to a first-order
perturbation treatment for the energy of interaction
between two hydrogen atoms.

In certain problems the fact that the Unsold average
energies are not known plays only a minor role. In
particular, this is the case when we are essentially
interested in relative perturbation energies, e.g., in
simultaneous interactions between three atoms reich'~e
to the sum of pair interactions between the atoms, as
occurs in the problem of crystal stability for molecular
and ionic solids. ""We have carried out a quantitative
comparison between results obtained by diferent
perturbation methods, as applied to this problem of

many-atom interactions and crystal stability. These
results will be reported separately.

The analysis presented here adds nothing to a solu-
tion of the dificult problem concerning convergence
properties of perturbation series; for more details we
refer to the review article by Herring. ' The principal
assumption inherent in these perturbation procedures
is that terms of higher order constitute at most a modi-
fication of the van der Waals interactions between the
atoms or molecules.
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The radial matrix element M =je Rat (r)jr, (gr)R t(r)r dr, which appears in collision theory and photon
absorption (L= 1, q~), has been studied in the past for hydrogenic wave functions. Its behavior for large

q or large k is now shown to depend only on the expansion of the wave functions near the nucleus and on an
application of selection rules. For large q, the trend is M ~ q

&'+'+') and for large k and normalization per
unit energy, M gx: k ('+~+ t' &q .The asymptotic trend of Altshuler's equivalent forms of the matrix elements
cs discussed.

HE Born approximation to the theory of inelastic
collisions of charged particles with atoms involves

the generalized form factor f+t*gt exp(itf rt)%,dr,
where Ag is the momentum transfer, r; is the position
of the jth electron, 0'; and 0 z are the initial and final
wave functions of the atom, respectively, and f'tjr
covers all coordinates. The dipole integral which
determines photon absorption is the low-q limit of
this matrix element. Expansion of exp(iq r;) into
spherical waves and assumption of a determinant form
for the many-electron wave functions reduce the non-
trivial portion of the form factor to the single-electron
radial integral

M= R&t (r)jz,(qr)E»(r)rs dr, (1)
0

where the spherical Bessel function is dedned

*Work supported in part by the U. S. Atomic Energy Com-
mission under Contract No. COO-1674-1.

j&(qr) = L~I2qr j'"~z+tts(qr)

and where the final state kl' of the electron may belong
to the discrete or to the continuous spectrum, whereas
Nl is bound. (The simplifying assumption of determi-
nant wave functions is actually unnecessary. One could
replace the product EI,&E.„& by a coefficient of the
spherical wave expansion of the one-particle reduced
density matrix f4't*%, gt&t dr; and proceed along the
same lines as in this paper. j In the expansion of the
form factor, the radial integral M is multiplied by an
angular integral of the form

fYr .*(O,p)Pz(cos8)Yt (8,q) dQ.

The parity selection rule and the triangular condition
that are implied in this integral will be of importance in
determining the asymptotic behavior of M.

The integral (1) and especially its particular case
L= 1, q 0 have been calculated, analytically for
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Rot= bpr'+btrt+'+

Rat = for'+ftr'+'+ . .
(4)

(5)

The coefficients bp and fp are determined by normali-
zation conditions whose application requires, in
principle, a complete integration of the radial equations.
However, they are related directly or by dispersion
relations4 to parameters like hyperfine separations,
isotope shifts, and scattering phase shifts, from which
they might be estimated. The ratios of the successive
coefficients bt/bp, bs/bp, , ft/fp, ~ depend instead
on integration near the nucleus, i.e., on the energies
E ~ and E~~ and on the coeKcients A, 8, C- . Substi-
tution of (4) and (5) into (1) and the application of a
standard formula' yields

M =Q, C, r'+'+'+'j z, (qr)dr
0

(g&)2l+v+1+sq (t+v+s+a)—

X I'L-', (/+1'+I.+3+s)j/I'L-', (I.—/ —1'—s)$, (6)

'N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Clarendon Press, Oxford, England, 1965), 3rd ed. ,
Chap. 16, Sec. 8.

2 H. A. Bethe, in Handblch der I'hysik, edited by H. Geiger and
K. Scheel (Julius Springer, Berlin, 1933), Vol. 24/1, Secs. 47
and 52.' E.N. Lassettre, J. Chem. Phys. 43, 4479 (1965).' M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley R Sons, Inc. , New York, 1964), Chap. 6.' G. N. Watson, A Treatise on the Theory of Bessel Fnnctions
(Cambridge University Press, Cambridge, England, 1944), 2nd ed.

hydrogenic wave functions R.' ' This paper investigates
the behavior of M for large values of q or of the 6nal-
state wave number k under broader circumstances.
This behavior has been often implied in literature, but
apparently was never stated or derived.

For large values of q (or k) one of the factors in the
integrand of (1) oscillates very rapidly. Therefore, the
main contribution to (1) arises from small values of r,
of order q

' (or k '). The integral can then be evaluated
by expanding the slowly varying factors of the integrand
into powers of r, which yields an expansion of (1) into
powers of q

' (or b '). The coefficients of this expansion
are determined by nontrivial normalization conditions
and by solving the Schrodinger equation for the radial
functions R by expansion into powers of r. This solution
is simple because the atomic potential is Coulombic, or
near-Coulombic, near the nucleus;

V (r) =A/r+8+Cr+ (3)

LAny term ~r ' in this expansion could be combined
with the centrifugal term, introducing an eGective
quantum number t in the radial equation. ) The calcu-
lation of (1) by expanding the radial functions into
powers of r is equivalent to I.assettre's' procedure of
successive integration by parts of the integral (1) for
S states of the He atom and is discussed in the Appendix.

For application to large q, we set

where
Cp~ bofo, Ct= (btfo+boft), ' ' '

~ (7)

The convergence of the expansion of M in (6) is
ensured by the exponential behavior of the bound-state
wave function R„~ for large r. The convergence of the
infinite integrals in (6) is discussed in the Appendix.

An essential feature of the expansion (6) is th«all
terms with even s vanish in any practical application.
The argument of the 1" function in their denominators
is a nonpositive integer because the angular integral,
which always multiplies (1), vanishes unless I.—1—l'

is even (parity-selection rule) and unless L f l—' &—0
(triangular condition). By the same token, each term
with odd s is nonzero. Therefore, the asymptotic
behavior of M is determined by the s=1 term of (6);

This result is known for the special case 3=0, t'=L
from the study of the H atom. '

In practice, final states with different l' are available
for each value of k in the continuum. Transitions to the
states with lowest /', namely, t'= ~1-—l~ will pre-
dominate for large q. In the presence of con6guration
interaction, contributions to M from pairs Rq~R„~
with different values of /+l' are superposed. It may
then happen that the contribution with the lowest
value of l+I,' predominates for large q only, whereas
other contributions are more important for moderate q.

An apparent contradiction with this result emerges
by comparison with Altshuler's' alternative expressions
of the generalized form-factor integral, which are
derived from one another by means of the Schrodinger
equations for 0'; and 0'f. These forms are analogous to
the dipole, dipole velocity, and dipole-acceleration
matrix elements utilized in the theory of radiative
transitions. It was kindly pointed out to us by Dr.
R. L. Platzman and Dr. M. Inokuti that Altshuler's
"velocity" formula (5) appears to behave asymptotic-
ally as q

&t+'+'&, in contrast with (8) of this paper. We
attribute this discrepancy to the following circumstance:
Derivation of the correct high-q behavior requires, of
course, the use of slgciently accurate wave functions.
The derivation of (8) hinges on the selection rules for
the integrals over the angular dependence of the single-
electron wave functions, which dependence is exact
in any central-6eld approximation. Thereby, the s=0
term of (6) vanishes exactly and any error in the radial
solutions R(r) can affect only the salle of the coefficient
(Ct) of the following nonzero term s=1.The Altshuler
transformation intermixes the radial and angular
dependences of the wave functions through the intro-
duction of the operator q grad. The quantity corre-
sponding to our radial M is then iq/26E times the
integral that appears in Eq. (3) of the Altshuler paper.
In the asymptotic behavior, the leading term of this
integral has the dependence q

"+'+'& and consequently

' S. Altshuler, Phys. Rev. 87, 992 (1952); &9, 1093 (1953).
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ZVr =Op «+z+»» 7- (13)

but the coefficient of the erst nonvanishing term will

already depend on corrective terms to (10). The
special case of the dipole transition (L=1), namely,
~=O(k ' 't'), is well known in the hydrogenic ap-
proximation. ' lt has also been derived' for photo-
absorption in helium utilizing the circumstance that a
Born approximation equivalent to (10) can be applied
to the ejected electron in the high-energy limit.

'L. D. Landau and E. M. Lifschitz, Quantum Mechanics:
Eortrelatsvt'stic Theory (Pergamon Press, Ltd. , London, 1958),
Chap. 5, Sec. 33.

s P. K. Kabir and E. K. Salpeter, Phys. Rev. 108, 1256 (1957).

the leading term in the matrix element behaves like

q
&'+'+ ~. Examination of the leading term shows it

to have a coefficient that involves C& and which actually
vanishes, but ottly if Ci/Cs has the correct value,
provided that suSciently accurate wave functions
are used.

Finally, consider the case where k is large and larger
than q. The Schrodinger equation that governs Est (r)
reduces to the Bessel equation for ji.(kr) provided that

k))2sttA/k') k'))2rttB/ks (9)

where A, 8, are the coeKcients of (3). Therefore,
we can enter in (1)

Z&t (r)-N&j r (kr) (10)

to lowest order in k '. If E. is to be normalized per unit
energy range, we set'

Ns = $2mk/srks 7'ts.

The product R„t(r)jr, (qr) in the integrand of (1) can
now be expanded into powers of r, the lowest term being

R~t(r) jr, (qr) = Lbvq~/(2L+1)!!jr'+ +.. . (12)

Once again, as in (6), the leading term of the expansion
of (1) would be of order k "+z+'"' taking (11) into
account, but its coefBcient vanishes. Therefore, we have

APPE5DIX

The integral in (6) is of the type

rsJ, (qr)dr=2sq ~'I'P(a+b+1) 7/I'Ps(tt —b+1)7,

which is given in Eq. (1), Sec. 13.24 of Ref. 5 under the
conditions Re(tt+b)) —1 and Re(b)(-,'. These condi-
tions are not fulfilled in our application. However, the
convergence of (1) rests on the exponential decay of
R„t(r). Therefore it is appropriate to factor out of this
decay a factor exp( —er), where e is a small positive
number, before carrying out the expansion (4). The
integrals are then of the type

e err t+v—+2+syr (qr) dr

whose value is proportional to F(-', D+i'+L+3+sj,
rs)L —t—i' —1—sj, L+ss, q'/Lq'+esj) according to Eq.
(3), Sec. 13.2 of Ref. 5, for e)0. In the limit s~0, this
hypergeometric function reduces to a product of j. func-
tions and thereby leads to the result on the right-hand
side of (6).

Alternatively, one can integrate (1) by parts' in
succession, utilizing the factor exp(&iqr) of the
representation

Jz, (qr)=exp(iqr)g a, (qr) ' '+c.c.

LRef. 5, Eq. (1) of Sec. 3.47. This procedure yields
directly a series in powers of q '. The integrated terms
vanish at r= ~ because of the factor E„~, but vanish
at r=0 only if they contain a positive power of r.
Thereby the integration introduces the successive
derivatives of the product Est (r)R.„t(r) at r=0 (that
is, the coefficients C,) directly into the final result
without any advance reference to the expansions (4)
and (5).


