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Orientational Order in Solid Ortho-Hydrogen. I. Cubic
Close-Packed Molecular Lattice*
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Previous theories of the orientational ordering of the molecules in solid ortho-hydrogen have been based
on the assumption that the lattice is hcp, and on a quantum-mechanical treatment that is not self-consistent.
It now seems clear that a change from a fcc lattice to a hcp lattice is associated in some way with the thermal
and NMR phenomena that indicate the occurrence of orientational reordering. This paper develops a self-
consistent theory of orientational ordering of molecules on a rigid fcc lattice, assuming orientational coupling
of the quadrupole-quadrupole form between nearest neighbors only, or throughout the lattice. It is shown
how the special properties of hydrogen and its isotopes facilitate application of the self-consistent theory
to solid hydrogen. It is found that at all temperatures, up to the transition temperature, the symmetry
axes of the molecular orientation distributions are arranged like the equilibriu, m directions in the correspond-
ing classical system. If one includes quadrupole-quadrupole couplings between all pairs of molecules, one
Ands that there would be a erst-order transition to orientational disorder at 5.07'K in hydrogen, and at
6.37'K in deuterium, if the molecular lattice were fcc throughout. These values exceed the observed tran-
sition temperatures by more than a factor of 2—a discrepancy that is not surprising if the actual transition
is one from a fcc lattice to a hcp lattice at a temperature determined by the properties of the two phases.
Molecular energy levels and thermodynamic properties are given for the fcc phase up to the transition
temperature.

X. INTRODUCTIOÃ

LAMBDA anomaly in the specific heat of solid
hydrogen occurs, at normal pressures, at tempera-

tures that fall from about 2.8'K for 95%ortho-hydrogen
to 1.4'K for 70% ortho-hydrogen. 's With decreasing
ortho-concentration the anomaly becomes less marked,
and it has not been observed below 62% Smaller peaks
have also been observed' on the high temperature side
of the X anomaly, for ortho-concentrations in the range
near 70%; comparable observations are lacking for
higher ortho-concentrations. In the case of solid deu-
terium, 4 there is a X anomaly at a temperature that falls
from 3.22' for 87% para-deuterium (J=1) to 1.82'K for
65% para-deuterium; no additional structure in the
speci6c heat curve has been reported. Associated with
the thermal anomaly in both substances there is a
nuclear magnetic resonance anomaly. ~'

There has been an accumulation of evidence that
solid hydrogen has a cubic close-packed lattice if the
ortho-hydrogen concentration is sufhcient and the tem-
perature is not too high; otherwise, it is hexagonal
close-packed. Mills, Schuch and Depatie' have shown,
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for a considerable range of conditions, that the X

anomaly is associated with the change in the molecular
lattice from cubic to hexagonal close-packed as the tem-
perature rises; there may, however, be some question
as to the nature of the association, in view of the con-
siderable hysteresis and the existence of structure other
than the ), peak in the speci6c-heat curve. Observations
of Schuch and Mills' and of Mucker et al."suggest that
there exists a similar relation between the thermal
anomaly and the change in molecular lattice in the case
of deuterium.

Of all crystals, solid hydrogen is the one in which
there is the closest approach to free molecular rotation.
At normal pressures the energy of coupling between
neighboring molecules varies by some 20 cm ' as the
orientations of the molecules vary, whereas the separa-
tion of the lowest rotational levels of free para-hydrogen
(J=0 and J= 2) is 356 cm ', and of free ortho-hydrogen
(J=1 and J=3) is 593 cm '. The perturbations due
to orientational coupling in the crystal thus produce
little mixing of molecular states with different J. The
resulting possibility of treating J as a good molecular
quantum number, for all J, seems to exist only in solid
hydrogen and its isotopes. In both solid hydrogen and
solid deuterium the separation of the rotational levels
is so much higher than kT that one can treat all mole-
cules as being in their lowest rotational states, J=O or
J= 1, depending on the nuclear species.

Originally, the specihc heat anomaly in H& was ex-
plained as arising from a hindrance by the crystalline
6eld to the rotation of the ortho-molecules12" More
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recently, several treatments'~" of the ) anomaly have
been based on the idea that the degeneracy of the J= 1
states of each ortho-molecule is partially removed by an
axiaBy symmetric crystal field that represents the inter-
action of the molecule with its nearest neighbors, and
that the ) transition is due to the onset of a coopera-
tive ordering of the ortho-molecules under the inQuence
of their quadrupole-quadrupole interactions. These
treatments have in conU~on the assumptions that the
crystal structure is hcp, that there is a unique axis of
quantization for aB molecules with J=1, parallel to
the threefold axis of symmetry of the hcp lattice, and
that each molecule is of one of two species: it has M =0,
or M =&1.Examination of the results shows that these
theories are not self-consistent; the derived orienta-
tional distributions would not produce a charge distribu-
tion that would give rise to molecular potentials with
the axial symmetry required if M, as well as J, is to be a
good quantum member. These theories can not, there-
fore, be considered to be satisfactory even as treatments
of hcp hydrogen.

The work reported in this paper is directed toward a
self-consistent treatment of the orientational order in
both hcp and fcc hydrogen and deuterium, with the aim
of explaining all features in their thermal behavior, in-
cluding (perhaps ultimately) those associated with a
change in the molecular lattice. To avoid. , at the be-
ginning, involvement in the problem of mixtures, atten-
tion is focused on pure ortho-hydrogen and para-
deuterium, in which all molecules have J=1.It is also
assumed that. lattice vibrations are negligibl- that the
molecules can be treated as distributed over a rigid
lattic" --and that the molecules are subject to orienta-
tional couplings having at least the form (if not the
origin) of electrostatic quadrupole-quadrupole couplings.
Section II and Appendix A develop the basic formalism
of the internal field as it applies to an assembly of
molecular rotators. Section III discusses the special
features of the hydrogen problem that make it relatively
easy to develop a self-consistent treatment. Finally,
these ideas are illustrated in Sec. IV by application to
cubic-close-packed hydrogen. '7 Treatment of the orienta-
tional ordering in hcp hydrogen, a much more complex
problem, is deferred to a companion paper.

II. THE INTERNAL FIELD APPROXIMATION

. We consider a system of rigid rotators, representing
hydrogen molecules, with centers of gravity 6xed at the
points of a rigid lattice. Ignoring the electrons, we de-
scribe the orientation of the molecule on site i by the
polar angles (p, , ((I,)=Q; of the internuclear axis. The

Hamiltonian for the system will be

a=p a,(a,)+-,' p p v;, (a;,a;), (2.1)

where H; is the rotational kinetic energy operator and
V;, is the potential energy of interaction of molecules i
and j, which will depend on the direction of the inter-
molecular axis, and will be zero if i =j.

In the internal 6eld approximation, one assumes that
each molecule i can occur in states described by a set of
orthonormal functions p„'(Q~), (I= 1, 2, , determined
by an effective field or effective potential energy U'(0;)
that represents its interactions with the other molecules.
Wave functions for the crystal can then be written in
product form:

%.(=II 0's (2.2)

where (iI} denotes the set of quantum numbers pI,
that specify the IJ's for the individual molecules.

(Since the molecules are distinguishable by their sites,
no symmetrization of the product is required. ) Further,
one treats the probability I'„' that molecule i is in state
p, as independent of the states of the other molecules in
the crystal; one thus assumes that 0'~„l will describe the
state of the crystal with proba. bility

P( (=IIP (2.3)

Since this approximation completely neglects the de-
tails of the orientational correlations of neighboring
rnolecules, it is comparable to the Bragg-Williams
approximation for order-disorder phenomena.

The (wave-mechanical) average energy associated
with 4 ~„l is

(2.4)

where

~.'= &4.'I &'I 0,')
is the rotational energy- of molecule p in sta.tei, and

Ie""=(Ps'' IV'~Its%.')'
(2.5;1

(2.6)

is the average interaction energy of molecules i and j
in states p and v, respectively. The internal energy of
the crystal implied by the assumptions in Eqs. (2.2)
a,nd (2.3) is

V.= Q &H)(„(P(„(
fv)

=Q w„'P„'+ sI Q Q w„."Ps P„', (2.7)-'
sjl, JV

and the entropy is

K; Tolnlra, Pl'oc. Phys. SQG. {LGIldon) A68, . 214 (1955)."G. M. Bell and W. M. Fairbairn, Mol. Phys. 4, 481 (1961);5,
605 (1962); 8, 497 (1964)."A. Danielian, Phys. Rev. 138, A282 (1965).

"A preliminary report on this work has been given by J. C.
Raich and H. M. James, Phys. Rev. Letters 16, 173 (1966).

8 = —kg P„'lnP„'.

Finally, the corresponding free energy

Ii =U —TS„ (2.9)
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To write this in more compact form, we deGne

e» =w» +Q w»p Pp (2.11)

which is the average energy of molecule i in state p, in
the average potential Geld

~'=ZQ, l~;;l~, &P,
gV

(2.12)

of the other molecules in the crystal. Then

P„'=exp( 8e»')/ P—exp( —Pe.'), (all j, p) . (2.13)

It is not evident how many sets of I'„' will satisfy
Eq. (2.10); in any case, one must choose the set that
minimizes F,. Using Eq. (2.13) to rewrite Eq. (2.8),
one Gnds

(F.)p= ——Q ln Q exp( —Pe»')

—-' Q Q w „"P'P„'. (2.14)
$P gV

which is a functional of the P»' and P„'.appearing in
those equations, can be shown to be an upper limit for
the free energy F of the system described by Eq. (2.1),
for all choices of the P's and P's. (This is the quantum
analog of a well-known classical result, "and is similar
to known results for interacting particles;" ' a proof
appropriate to the present context is given in Appendix
A). The P's and P's that minimize F,(T) give the best
value of Ii and are, in this sense, the best choices for
these quantities.

The condition that Il shall be stationary to all varia-
tions of the P's consistent with the identity ZQ»'=1
yields

exp( —P[w '+P w „'&P„&'j)

JPp a,ll i, 1i. (2.10)
g exp( —P[w„'+P w„„"P„'j)

= (8»'e»')P»'= 0, all s, 1i. (2.15)

The condition that 8»'e»'= 0 for all variations of P»' that
maintain normalization is (by the most familiar varia-
tion principle of wave inechanics) in the present
notation:

{&'+U'}4'»'= e»V»'. (2.16)

If Ii, is minimized with respect to all permitted varia-
tions of P»' and P„', Eqs. (2.12), (2.16), and (2.13) must
be satisfied for all (t',1i) for which P»'&0. This optimum
choice of the P's and f's assures the self-consistency of
the internal Geld picture: the average internal potential
energies U' will, through Eqs. (2.16) and (2.13), deter-
mine P's and P's which imply, through Eq. (2.12), that
U' is indeed the average potential energy of moleculei.
This will be true even though one does not consider a
complete set of one-molecule states P»' (that is, takes
some P„'=0), but it is to be expected (and is provable
by means indicated in Appendix A) that F will become
a better approximation to the correct P as one enlarges
the set of states considered. The accuracy of the cal-
culation is, of course, ultimately limited by the approxi-
mations characteristic of the internal field method.

The probabilities P»', and hence the U' and the P»',
depend on the temperature T under consideration. The
parametric dependence of the P's on T is important,
having the result that the states of the crystal that occur
with high probability at the chosen T are given the best
representation consistent with the simple product form;
the associated energies are correspondingly well-adapted
for the calculation of the free energy at that particular T.

In practical calculations one will usually need to ex-
press the f»' as expansions in terms of an appropriately
chosen fixed set of orthonormal functions g:

(2.17)

The condition that F, be stationary to variations of
f»', with the P„' and 7 constant, is, in an obvious
notation,

p»'Fo= 8»'V =$8»'w»'+Q (p» w„.")P,'jP»'

The Grst term on the right is a sum of contributions
from each molecule, each contribution being expressed
in terms of a sum-over-states in which the energy as-
sociated with each state is the average energy of
molecule i with the prescribed f»' in the average field of
the other molecules. The second term corrects for the
fact that this method of computing F would otherwise
include twice the average energy of the mutual inter-
action of the molecules.

' J. W. Gibbs, Elementary 5'rinciples of Statistical mechanics
(Yale University Press, New Haven, Connecticut), Chap. XI,
Theorem III.

'9 W. M. MacDonald, III, and J. M. Richardson, Phys. Rev.
96, is (1954).

"M. D. Girardeau, J. Math. Phys. 3, 131 (1962&,

P [U p' —e»'8 ply»p' ——0, all a,
P

(2.18)

where

By Eq. (2.12),

lI-p'= &4-'I U'I A'&. (2.19)

lI-p*'= 2 2 P'~-'v. p. &~n'I V;, I
PP'&, (2.2'0)

where the quantities

&. 'I ~', IOO'&=&~-'~-'I l";I~p'~p'&

Equation (2.16) then becomes a condition on the ex-
pansion coefhcients y:
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can be computed once for all. The self-consistency condi-
tion then involves only constants: the values of the I"s
and y's must yield, through Eq. (2.20), values of the
matrix elements 11 s' which in turn, through Eqs. (2.18)
and (2.13), lead one back to these values of the P's
and y s.

In general, it is unnecessary, as well as impracticable,
to start from the assumption that all functions P„' may
be different. In an ordered phase, the lattice will cer-
tainly be made up of a limited number of sublattices,
such that all molecules on the same sublattice are
translationally and orientationally equivalent. Given a
sublattice structure, it is sufIIcient to consider an in-
dependent set of functions P»' for each sublattice, and
to minimize F, or to satisfy the consistency relations by
proper choice of these P's and the associated P's. Direct
observation may indicate what sublattice structure
needs to be considered. This paper deals with a case
(fcc ortho-H2) in which direct observation is lacking,
but analogy to a comparable system (fcc N2) suggests
an appropriate sublattice structure; symmetry con-
siderations then verify the self-consistency of the
assumed P»' and reduce the problem to the finding of
self-consistent I'„'. A later paper will deal with a case
(hcp ortho-H2) in which both observation and satisfying
analogy are lacking, and one must make calculations for
various choices of the sublattices, seeking that which
permits calculation of the lowest Ii,. Since such a cal-
culation will reveal any equivalence of sublattices
originally assumed to be distinct, an excessively 6ne
division of the lattice into sublattices will do no harm,
except as it increases the labor involved.

combination of I"'s with the same J. Thus, for 1=4,

(3.1)

with c's to be determined by the condition of self-
consistency, It is in this respect that the present theory
differs from those of Bell and Fairbairn and of Danielian,
who do not consider, and indeed do not satisfy, the
conditions of self-consistency. Consideration of these
conditions here leads to a different picture of the
orientational ordering of the molecules, with a lower
free energy and higher temperature of transition to the
orientationally disordered phase.

The terms in the Hamiltonian that involve nuclear
spin are negligibly small, and it is consequently possible
to ignore nuclear spin throughout, except as it limits
ortho-states to odd J. Further, at the low temperatures
under consideration, kT is so small that one can ignore
the possible excitation of molecules to states with J=3,
5, . In consequence, for each i there will be considered
just three functions of the form given by Eq. (3.1).Use
of this limited manifold of functions will certainly be less
serious as an approximation than is use of the internal
6eld idea itself.

Since m„' is the same for all functions considered here,
the rotational energy plays no signihcant role in deter-
mining the forms of the P's and P's, and makes only an
uninteresting constant contribution to U and Ii,. It
will henceforth be omitted from consideration; in
consequence, e„', U„and F, will denote energies of
orientational coupling only, to which the rotational
energy may be added if desired. In particular,

III. CONSIDERATIONS PRELIMINARY TO THE
SELF-CONSISTENT TREATMEgf T

OF ORTHO-H2

"'=Q.'I U'l0. ').

Form of the Wave Functions

(3.2)

%e now develop some ideas needed in the treatment
of solid ortho-H2.

In a self-consistent procedure, one would like to
represent the molecular states by exact solutions of
Eq. (2.16). Since the orientational coupling of the
molecules is weak, U' constitutes a small perturbation
on the free-rotator problem. If one neglects the higher-
order terms of perturbation theory, one will neglect
intermixture of free-rotator states with different J:one
will treat J as a good quantum number, as is customary
and as will be done here. On the other hand, it is im-
portant to use the correct zero-order solutions of the
problem, and these, because of the degeneracy of the
free-rotator states with the same J, are sensitive to (in
fact, are completely determined by) the form of U'. It
is thus not possible to prescribe the form of the func-
tions P»' independently of consideration of the form of
U'; one can not say in advance that the states shall be
described by the familiar functions 7'zir(Q;), but only
that each f is, (approximately) some appropriate linear

@'3=I"lo, (3.3)

where the I"s include the phase factors (—1)'~+~'~~'"
introduced by Condon and Shortley. These functions
have the same form, but different orientations in space:
they are proportional to the x, y, and s components of a
unit vector N(Q) having the direction Q. One can write

C,(Q) = L3/41r)'~'x (Q), (a= 1,2,3), (3.4)

where (xi,x2,x3) = (x,y,s). Since H, +U' is real, one can
without loss of generality restrict attention to real
functions f»' expanded in terms of the real C with real
coeKcients y„'.

It'»'= Z V».'C'' (3.5)

In this problem, it is useful to employ the real
orthonormal basis functions

%=2 '"(—I'ii+&i-i)
%=~2 "'(&ii+&i,-i),
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Orthonormality of the P„' implies
4

vp 'v. '=~p' (3.6)

T/lax, E I. C(224; MÃ).

0 1

The y's thus have the character of direction cosines of
three mutually orthogonal directions, the X„' axes in
directions Q„' 6xed in the crystal. The components of
u(Q) along these axes are

M= —'2
0

2

(1/2) 4 /2

(3/14) I/2

(1/14) 1/4

(1/70)"'

(1/2)'"
(4/7) 4/4

(3/7) 1/4

(8/35) 1/4

(1/14) 1/2

( 3/14)"' (1/14)'"
( 3/7)'" (8/35)'"
(18/35)'" (3/7)'"
( 3/7)'" (4/7)'"
( 3/14)"' (1/2)"'

(1/70) //2

(1/14) '"
(3/14) 1/I

(1/2) //4

x„'(a)=p ~„.~x.(a) . (3 7) By the spherical-harmonic addition theorem, one can
write

Thus
'(~)= L3/44r)s/sg 4(@)= Yls(O«) (3 g) Yes(O ') = (44r/5)'" Q Ys//r*(Qi) Ys//r(Q„*) . (3.13)

or

where 0„' is the polar angle between the I„' axis and 0 f E (3 9) (3 12) (3 13) d th ththe symmetry axis. of molecule i. All this is in con-
sequence of the possibility of restricting attention to
lt's that are real surface harmonics of the first order.
Orthogonality of the synnnetry axes for given i follows l//„„'/'= (70/r)'/'1';; p C(224; MN)
from the orthogonality of the iP's, but the orientation of 45 MN

these axes in space and the associated values of the X Ys//r(& ') Y»(Q ') Yi sr+/i/*(@'i), (3 14)
e„' are determined by U'.

Intermolecular Coupling
w„„'&'= (4/25) V;,(Q„', 0,'). (3.15)

The molecular interactions to be considered in the
present paper are the electrostatic quadrupole-quadru-
pole interactions. These can be written" as

20m
V;;= (70 )'"I',; Q C(224;MN)

9 j/IN

X Ys~(&') Y»(&/) Y4,~+~*(&v) (3.9)

Here C(224; MN) is a Clebsch-Gordan coeKcient (no-
tation of Rose") given in Table I; Q,, specifies the
orientation of the ij-intermolecular axis with respect to
the fixed reference axes, and

Thus, for molecules having orientational distribu-
tions of optimal form, the average energy of quadru-
pole-quadrupole interaction diQers only by a factor
of 4/25 from what it would be if the quadrupoles had
axed orientations along the symmetry axes of -the
distributions.

It is an immediate consequence of Eq. (3.15) that the
problems of minimizing F,(T=0) in classical and
quantum-mechanical treatments of the prese/st model
are equivalent —provided only that e&'&e2' for all i,
and thus P~'=1, E2'=F3'=0. In either treatment, the
entropy inakes no contribution to F,(T=O): the prob-
lem is that of ending orientations 0; or Q~' that
minimize

I';,=6Q'/258;/', (3.10)

E;; being the distance between molecules i and j and Q
the average quadrupole moment of each molecule,
dehned by

U.i....=-,' Q V;;(a;,e,)

U/i. m. —s g wll (Q1 &Ql ) /

(3.16)

(3.17)

Q= —,'( P e~(2-s"—*s"—ys")). (3.11)

Here the sum is over-all charged particles in the mole-
cule, and the (x',y', s') coordinate system has its origin
midway between the nuclei, with the z' axis along the
internuclear axis.

Using the definitions of the P's, one can rewrite the
orientational distribution of molecule i in state k as

1
I&.'I'= I Yls(e.') I'= —Y»(o'.')+—.

+(54r) 44r

"H. P. Gush and J. Van Kranendonk, Can. J. Phys. 40, 146i
I'1962).

"M. E. Rose, Eterne/rtary Theory of A/igllar 7d'orr/errt44/// (lohn
Wiley tk Sons, Inc., New York), 1957.

and the results differ only by the factor 4/25. In con-
sequence, despite the great importance of quantum
sects in solid hydrogen, one can get a useful indication
of the sublattice structure in hydrogen at T=O from
classical considerations, or from observations on more
massive molecules. An application of this idea will be
made in the next section.

The contribution to U' of molecule j in state v can
be computed by the method used in deriving Kq.
(3.14). One finds

Sx
(/P„ I v;;If„)=—(704r)'/ll';; Q c(224; MN)

9 MN

X Yssr(+i) Yssr(+r )Y4, //i+A (Qij) ~ (3 Ig)
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The potential U', calculated by surnrning over j and v

with appropriate weights P„' LEq. (2.12)j, is g e.'=Q X.=O, (3.25)

where

U'(Q;) =Q ~,~'I 2~(Q;), (3.19)
one has

(3,26)

8x
Om)'" P g P P„41';;C(224 MN

9 j

&& V2~(Q„~') V4,~+~ (Q,;&) . (3.20)

Equation (3.19) makes it evident that U' will vanish
when it is averaged over aH Q;. Since it follows from
Eqs. (3.4)-(3,6) that

which are easily computed. Then

(3.27)

The problem of determining the functions f„' and
energies e„' is thus equivalent to the problem of reduc-
ing U' to a sum of squares.

To examine the self-consistency of a set of direction
cosines y ', one must calculate the matrix elements
1I p' LEq. (2.19)$. This is conveniently done by intro-
duction of the constants

one sees that UaP Q KM gaP
M

(3.22)
Using Eqs. (3.13), (3.12), and (3.5), one finds

(3.28)

From this it follows that one can satisfy the consistency
conditions by taking P„'=—, for all (i,p): Equations
(2.12) and (3.21) show that this makes U'=0 for all i;
Eq. (3.2) then shows that all e„' are the same; and Eq.
(2.13), finally, shows that this lea, ds to the values of P„'
originally assumed. This solution of the problem of self-
consistency, for which F,(T)= ÃkT ln3——, represents
the state of complete orientational disorder in the
crystal, which is stable only at temperatures for which
no solution with lower Ii exists.

Another useful conclusion can be drawn from the
fact, evident from Eq. (3.19), that U' is a quadratic
form in the direction cosines y~, y2, y3 of the internuclear
axis with respect to the (x&,x&,x&) directions. By an
appropriate rotation of coordinate axes one can intro=

duct: direction cosines y~', y~', y~' in terms of which U"

is a sum of squares:

(3.23)

Because of the axial symmetry of the distributions
~P„'~ ', g„'~ U'~P„') is stationary to the possible varia, —

tions of P„', which are simply reorientations of the axis
of symmetry, if and only if the axis of symmetry coin-
cides with one of the x' axes; thus, the X ' axis is
identical with the x ' axis. The corresponding station-
ary value of the molecular energy is, by Eqs. (3.8) and
(3.23),

+2%(+v )= g Z 'rva' Vvp' (la'p'
a'P'

(3.29)

LivIv Pv I 2N(+v ) (3.30)

will be the same for all molecules j on a given sublattice
l. One can write

Sx
11 s'= Z 8 p~—(70m)'" Z C(224; M1V) Q Lx&„

iV lv

X P I'v~I 4,444.~ (0;z). (3.31)
j(l)

It is advantageous to start the calculation by summing
over j(l), the molecules j on sublattice t. If the reference
axes are well chosen with respect to the sublattice
structure, the result may vanish except for a limited set
of M+X. If U' is symmetric about the chosen s axis,
only ~0'40; only %=0 will contribute to the sum. In
any case, interest centers on two summations, over sub-
lattices t and over states v characteristic of molecules on
those sublattices.

W'e now turn to a case in which self-consistency of a
set of y's can be proved with relative ease.

One can thus express ~~ and U p' in terms of the 7's,
rather than the angles Q„'. The resulting multiple sum
looks cumbersome, but can sometimes be drastically

simplified. The quantities

3
dfI(V-')' Z ~4(V~')'

4~

=+4K +5 Q Xp.
P&a

(3.24)

IV. ORTHO-Hg WITH PCC MOLECULAR LATTICE

If solid ortho-H2 has an fcc molecular lattice at very
low T, it is comparable to the low temperature o. phase
of N2, in which the molecular latt, ice is fcc and the
orientational couplings of the molecules have the char-
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Tmz.z II. Orientations of Molecules in a-N~.

Sublat tice

Coordinates with
respect to cube

corner

a/2, a/2, 0

O,a/2, a/2

a/2, 0,a/2

0,0,0

Direction cosines
y of molecules
on sublattice

3 '"(—1,1,1)

3 '"(1,—1,1)

3 '"(1,1,-1}
3 '"(1,1,1)

Direction cosines y'
of molecules
on sublattice

-v'(a), —v'(2/9)8

V'(5), —v'(2/9) 3

v'(8/9), k

0, 0, 1

Directions from molecule on
sublattice 4 to neighbors on

other sublat tices (signs coherent)

S'= s./2, S
' =Op.

8'=cos '(+V's) q/=Ms/2
e' = ir/2, q' =2s./3, 5ir/3
8'= cos '(+v'-', },q' =2ir/3&ir/2
S' = ir/2, y'= ir/3, 4ir/3
8'=cos '(av'g}, s'=4nr/3+a/2

aeter of a quadrupole-quadrupole coupling. '~'4 It is
observed" that the n-N2 molecular lattice can be
divided into four sublattices, such that all molecules on
a sublattice are orientationally and translationally
equivalent. The lattice can be considered to be made
up of cubes with edge a/2, each cube having one corner
occupied by one molecule from each sublattice. The
equilibrium orientations of the molecules, shown in
Fig. 1, tend to maximize the separations of nuclei in
adjacent molecules, each molecular axis being directed
toward unoccupied corners of two adjacent cubes. In
the equilibrium conhguration of the crystal, each
molecular axis is directed along a threefold axis of sym-
metry of the system, with direction cosines 7 given in
Table Ii. (Because of the molecular symmetry, the signs
of any set of y's can be reversed. ) The sublattices of
oriented molecules are physically equivalent, and can
be interchanged by translations and rotations of the
crystal.

Ortho-H2 and N2 diBer markedly in the importance
of quantum effects, which are so much greater in the
case of ortho-H& that a quantum-mechanical calcula-
tion can follow lines quite different from and much
simpler than those followed by Kohin in the latter case.
However, in accordance with the argument from Eq.
(3.15), one can expect the axial directions Qi& of the
orientational distributions of ortho-H2 molecules at
T=0 to be the same as the equilibrium directions of the
molecules in n-E2. The same conclusion is supported
by the classical calculations of Nagai and Nakamura"
and of Felsteiner" on the equilibrium orientation of
electrostatic quadrupoles on an fcc lattice. As an ex-
tension of this, one can test the idea that, ut all T, each

. C. Kohin, J. Chem. Phys. BB, 882 (1960), finds that R
and R '6 dispersion and overlap interactions of neighboring
molecules would produce orientational couplings of the same order
of magnitude as the electrostatic quadrupole coupling, and would
make contributions of similar form to the effective internal field.

s'0. Nagai and T. Nakamnra, Progr. Theoret. Phys. (Kyoto)
24, 432 (1960).

'5 The statements in this paragraph are based on the descrip-
tion of the n-phase structure given by R. W. G. Wycko8, Crystal
Structures Pnterscience Publishers, New York, 1963), 2nd ed. ,
Vol. 1, p. 29. and used by Kohin. It has been found by T. H.
Jordan, H. W. Smith, W. E. Streib and W. N. I.ipscomb, J; Chem.
Phys. 41, 7S6 (1964) that the ¹

molecules are displaced from the
centrosymmetric positions, parallel to their axes, with the result
that the group is changed from Pa3 to P213, but the molecular
orientations described here remain unchanged.

'~ J. Pelsteiner, Phys. Rev. Letters 15, 1025 (1965).

molecular potential U&" and each molecular charge
distribution has axial symmetry about an axis in the
direction indicated in Fig. i.This assumption establishes
an internal-6eld description of ortho-H2 that can be
tested for self-consistency, and from which one can
derive molecular energy levels and the free energy of the
crystal in this particular state of orientational order.

Figure 2 presents the same array in a way that brings
out the existence of hexagonal close packed planes of
molecules perpendicular to the L1,1,1$ direction. A
central molecule on sublattice 4 is shown, with its six
neighbors in the same plane and its three neighbors in
the hexagonal planes above and below. This 6gure also
shows another set of axes of which use will be made:
the z' axis lies in the L1,1,1j direction, perpendicular to
the hexagonal planes, while the x' axis, in the L1,—1,0j
direction, passes through a neighbor molecule on sub-
lattice 1. Polar and azimuthal angles Q'= (0',9') are
de6ned with respect to these primed axes in the usual
way. Table II gives the direction cosines p' for the
molecular axes with respect to the primed axes, and also
the angles 0;, q; for the directions from the central
molecule to each of its neighbors.

It will first be shown that the assumption concerning
the axial syrrimetries of the molecular potentials U'
is self-consistent: existence of such U's will imply the
existence in the crystal of a total charge distribution
that will, in turn, produce such U's. The assumption
that U has axial symmetry about the s' direction

FIG. i. Self-consistent orientations of H~ molecules on an fcc
lattice. The numbers show the sublattice to which each molecule
belongs. Space group Pu3.



656 M. JAMES AND J. C. RAICH

FIG. 2. Self-consistent orientations of H~ molecules -on an
fcc. lattice. Molecular centers connected by solid lines lie in the
same hexagonal plane.

requires
U'= zpF20(Q') . (4.1)

It follows from the discussion of Kq. (3.23) that one of
the P4 has the same axis of symmetry, and that the two
orthogonal functions will correspond to a twofold
degenerate level, and will have symmetry axes that are
not uniquely de6ned. Designating the nondegenerate
state as state 1, we write

fi' Fio (Q'), —— (4.2)

P2'=P '=-'(1—Pi') . (4.3)

Using Kqs. (4.3), (3.21), and (3.12), one can write the
orientational probability distribution as

3
2 P,'I~,'I =—P"+(P '-P ') ll'-(Q') I'

4~

for a m'olecu1e from the orientational distribution of its
. neighbors, we shall proceed directly to the calculation of

its matrix elements ll p' by use of Eq. (3.31). For this
purpose it is convenient to describe molecular couplings

::and the interrial 6eld in terms of the angles Q', while
expressing the f's in terms of functions C and direction
cosines y related to the cubic axes of the crystal. Equa-
tion (3.18)--remains valid in terms of the Q', and Eqs.
(3.28)—(3.31) remain valid if one understands that in the
definition of-P p~

I Eq. (3.27)) one has F'2ir= F2ir(Q').
The only property of these Q's that we shall require is
easily derived by direct integration:

I."=(I-~.p)/(20-) '.
Because of the axial symmetry of U4, with this choice of
angles= one has- ~~4=0 except for M=O, and only
M"=0 contributes to Eq, (3.31) for ll p4. Since the
molecules on sublattices 1, 2, and 3 can be carried into
each other by rotations about the threefold L1,1,1j
axis, these three sublattices will make equal contribu-
tions to U4 and to U,p4, the sum over j in Eq. (331)
can then be restricted -to molecules on sublattice 1, if a
compensating factor 3 is introduced. Let I.~~„ in Kq.
(3.31) be expressed in terms of the v's, using Eqs. (3.30)
and (3.29). Omitting' the unnecessary superscripts on
the P's, one can then write the sum over v as

2 P'v- 'v.p
'= (Pi P3)v—i- 'vip '

+Pa Q v„, 'v„p '. (4.6)

From the properties of the direction cosines, it follows
that the last sum is f„p When the .sum over n' and P'
is carried out, this term contributes'

=—+(Pi'—Pa') (I/Sir)"'72p(Q'),
4x P Q b;p g;p " 0, all 1V, ——

a' P'
(4 7)

which has the same symmetry axis as U'. Results for
the other sublattices will be identical, except for the
directions of the axes of the orientational distributions,
which will be arranged as in Fig. 1.It is easily seen that
a rotation through 120 about the z' axis leaves sub-

lattice 4 unchanged, and permutes cyclically sub-

lattices 1, 2, 3 and the corresponding orientational
distributions. It follows that the average charge distri-

bution of the whole crystal has a 3-foM axis of symmetry
in the z' direction, and that the same is true of U4.

However, a potential energy of the general form given
in Eq. (3.19) has a threefold axis of symmetry only if it
has full axial symmetry; thus U' has the symmetry
properties originally assumed. In the same way, this
can be seen to be true of U', U', and U'—which com-

pletes the demonstration of self-consistency.
To proceed farther, to derive the P's, U„and P, it is

necessary to carry out more detailed calculations that
lead to self-consistent values of the probabilities P~
and P3, which must be the same for every sublattice.
Instead of deriving the orientating potential energy U4

as one sees with the aid of Eq. (4.5). One thus finds

ll.p'= ~op.p' ——(1—5.p)xo/(20ir)'", (4.8)
with

~0=i 0'= (Pi—P3) (20ir/3) (70ir) 'I'
+2

x P G~I'4; Y~~(Q4;) . (4.9)
.V= —2 j on

sublattice 1

G~=C(224;01V) Q via'vip'Pap

5 ( ) (

are easily found by use of Table I and II:
" Go ———(2/175ir)"'
G~i ——(a1+i/%3)/(105ir) "',
G~,= (I/v3wi)/(105~)"'.

=-'C 224 OgV Y2~ Qi') (4.10)

(4.11)

Here F4; and Q4; denote I';; and Q;; where i is the
central molecule on sublattice 4. The constants
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Equations (2.18) will then determine the direction
cosines p„4.Consistency of these equations requires

10 I I

CPS 63

whence

Kp

Kp

Kp Kp

Kp

Kp =0,
—X

(4.12)
5-

0-

)i=+(207r) e'= 2xp, —xo(twice) . (4.13)

Solution of Eqs. (2.18) with the nondegenerate values
of e' yields the direction cosines yi, '——yi„' ——yi, '——1/VS,
in agreement with Eq. (4.2). This result, which follows
from synnnetry, is independent of T, even though the
matrix elements of the orienting potential. depend on the
P's and thus on T.

For numerical calculations, we take R=3.75 A,
Q= 0.110)&10 ' electron crn' (see Ref. 27). If attention
is restricted to nearest neighbor interactions, one re-
quires only a single I';;:

r=0.903X10-"erg=k)&0. 654 K, (4.14)

where k is Boltzmann's constant. The sum over mole-
cules in Eq. (4.9) is then easily evaluated; one finds

e = —(38/3)r(P, —P,) = —(38/3)r( P,——;), (4.15)

which must, by symmetry, be valid for all lattices. The
result of including interactions of more widely separated
molecules can be deduced from the calculations of
Felsteiner, "who arrived at the order here considered
while treating the classical problem of interacting
quadrupoles on a fcc lattice at T= 0. By summing over
all pairs of molecules within a radius of 300 A of each
other, he arrived at an orientational energy per molecule
equal to kT at 28.9'K—. Equation (3.15) shows that a
corresponding treatment in the quantum-mechanical
approximation would yield an orientational energy less

by a factor 4/25. This will agree with the orientational

"Fofe added eN proof This value for Q h. as been commonly
used for many years in discussions of solid hydrogen. It appears
to have been derived by combining the value of the electronic
quadrupole moment experimentally determined by N. J. Harrick
and N. F. Ramsey, Phys. Rev. 88, 228 (1952), with the nuclear
contribution to the quadrupole moment computed as though the
nuclei were fixed at their equilibrium separation. The electronic
contribution represents an average over nuclear separations, and
it is desirable to compute the nuclear contribution in the same
way. To derive better values for Q, one may use the theoretical
values for the one-electron distribution given by L. Wolniewicz,
J. Chem. Phys. 45, 515 (1966):

(3s' —r )=0.1628X10 i cm for H2,
=0.1578)&10 cmm for Dg.

Wolnievricz also gives for the nuclear separation in the case of H2

x(R') =0.2976X10 "cm'

Using the estimate of ¹ Ramsey, Phys. Rev. 87, 1077 (1952),
that this quantity is smaller in D& by the factor 0.976, one obtains

Q=0.1348X10 ' electron. cm' for H.„,
=0.1327)&10 ' electron cm~ for D~.

Use of these values vrould raise the values of F and T, quoted in
the text by 50% in the case of Hu and 45% in the'case of D&.

-IO-

I I I I:I

0 0.2 04 0.6 0.8 1.0 12 1.4
T/Tc

FIG. 3. Molecular energy levels in fcc. hydrogen. The upper
level is doubly degenerate.

energy implied by Eq. (4.15) for T=0, Pi 1, which ——is

—,'ei(T= 0) = —19I'/3, (4.16)

is one uses a somewhat larger e6ective I',

I'= &X0.130 K. (4.17)

Summation over the other molecules in the lattice
actually increases the multiplying constant, rather than
F, but it will be convenient to absorb the increase into I'.

The calculations made in this paper apply equally to
solid para-D2, except for modification of the value of F
[Eq. (3.10)j, which arises primarily from the difference
in the lattice spacing. The change should be proportional
to 1/R', or to V '~', where o is the volume per mole.
This increases I' by a factor of 1.257, .to

I"g),
——k X0.9&8'K. , (4.18)

for the case of a sun@nation over all molecules in the
lattice.

One can determine self-consistent values of the P's
and e's by solving Eq. (4.15) simultaneously with
Eq. (2.13), remembering Eq. (3.22). Alternatively, one
can 6nd the self-consistent P's by choosing them to
minimize the free energy per inolecule LEq. (2.9)j

P„„/E=-,' Q P„e„+kTQ P„lnP„. (4.19)

In terms of

this becomes

p= j —Pg, (4.20)

F .,/N = —(19/3) rL1—3p+ (9/4) p'j
+kT(p lnp+(1 —p) ln(1 —p) —p ln2). (4.21)

This problem is of the form considered by Strassler and
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FIG. 4. Internal energy V and free energy F, per
molecule, in fcc. hydrogen.

Kittel. "Their arguments lead easily to the conclusion
that at T=O one has an ordered phase with P~=1. As
T increases, P~ falls, reaching the value 3 at a tempera-
ture T, defined by

kT, = 19I'/4 ln2. (4.22)

I4 I J i T

8-

At this point, a first-order transition occurs as P~, P2,
P3 abruptly assume the common value 3 characteristic
of the orientationally disordered phase, which is stable
at all higher T.

The computed value of T, is 4.48'K for ortho-H2 if
one sums only over the interactions of next neighbors,

and 5.07 K if one uses Felsteiner's more complete sum-
mation. In the case of para-02 with the complete sum-
mation, one obtains T,=6.37'K.

The remaining results of the calculation are presented
in a form that wil1 be unchanged by modification of the
eRective I'. Figures 3, 4, a,nd 5 present, respectively,
e„/I' against T/T„U/NI' and F/EI' against T/T„
and C/EI' against T/T, .

V. CONCLUSION

It does not appear that neglect of admixture of
functions with higher J into the unperturbed functions
with J=1 is a significant source of error in this work.
For a potential of the form given by Eq. (4.1), the
Schrodinger equation for the rotational motion of the
hydrogen molecules can be solved exactly. "The prob-
lem reduces to solving an oblate spheroidal wave equa-
tion, and the level perturbations thus calculated differ,
in the case of H~, by less than one percent from the e's

computed here. The diRerence will be greater in the case
of D2, for which the separation of rotational levels is
roughly half as grea, t, but the approximation is sti11
a good one.

The transition temperatures computed by assuming
quadrupole-quadrupole coupling of all pairs of mole-
cules, with the larger value of Q quoted in Ref. 27,
are higher than the observed (extrapolated) transition
temperatures in ortho-H2 and para-D2 by more than a
factor of 2. It is characteristic of the internal field ap-
proximation that it yields too high a transition tem-
perature, and the results of this calculation are also
aGected by other approximations, such as neglect of
lattice vibrations and of other types of orientational
coupling. The discrepancy is probably primarily due,
however, to the fact that a Gxed fcc lattice is assumed
here, whereas the actual transition involves a change to
a hcp lattice. To discuss the occurrence of such a
transition it is necessary to consider the properties of
hcp solid hydrogen. This will be the subject of a com-
panion paper.

6-

One of us (H.M.J.) wishes to express appreciation for
the hospitality of the quantum theory group of the
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paper was written.
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Fto. 5. Thermal capacity per molecule in fcc. hydrogen.

'SS. Strassler and C. Kittel, Phys. Rev. 139, A758 (j.965).

APPENDIX: PROOF THAT E,& E

The proof that F&F„as defined by Eqs. (2.5) t.o
(2.9) and computed with any orthonormal functions P„'
a.nd probabilities P„', will follow the pattern used by
Girardeau. ' The formalism can be simplified because
of the distinguishability of the rotators.

To begin, we assume that the f„' form a complete
orthonormal set for each i. One can then define the
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operators A,„iby

~.vV. '= 6'4v ~

where

(Ai) F „=—= ln Tr{exp(—. PHs)}
Acting on any function of the crystal coordinates, ex-
panded in terms of the complete orthonormal set of
functions +~„~, this will act only on the factors depend-
ing on 0;, changing the quantum number p to v, w

occurs, and otherwise deleting the term. Let

Tr{Hi exp( —PHs) }
(A13)

Tr{exp(—PHs) }

~"=(O'IH'l0 ~),

here p
The traces in these equations are easily evaluated in

terms of the basis O'I„~, since all O'I„~ are eigenfunctions
(A2) of both Hs and Hi. One 6nds

Then one can write

(A3) Tr{exp(—PHe)}= Q exp( —PI Q e„'8„„,
(Ps)

—-' Q Q tv 'JP 'P 'j)
Q rr~x~+~x +s Q Q rsvp;v'v ~vx +~'x'
iVX

It follows from Peierls's inequality" that

~=&(+l.lie ' I+i.i)

(A4)
=II {Z exp(- pe. )}

Pi

Xexp( —pL —-' g p iv "P 'P„'j) . (A14)
'4p gV

Similar manipulations show that

Only the diagonal terms in H (those with v= X, v'= V)
contribute to the latter sum. These make up the operator exp( —pe„') —=1V„', (A15)

& exp( —pe„')Hg;,s—Q m„'A, „*+-,Q Q w„"A„A„„", (A6)

&~ Q exPL —P(%'iv) IHI+lvi)j=~ ( 5) Tr{g„„'exp( —PHs) } Tr{g„„,exp( —PHs) }
Tr{exp( —PHs) } Tr{exp( —PHp) }

'CV iV i'V'

where the w's are the quantities defined in Eqs. (2.5)
and (2.6). The 4'l„l form a complete set of eigen-
functions of H~;„. It follows that

Tr{A„„'A.„& exP(—PHs) '}

E
Tr{exp( —PHs) }

(A16)

~'= 2 (+l.i I exp( —pH. '~) I +l.l) (A7) One thus finds

is the exact partition function for a system with Hamil-
tonian B~;«.

We. now write +y Q Q w„„''(X ' —P„')(Ã„' P„&) . (A17)—

where

Ha ~=Ho+Hi,

H =g e 'A '——Q Q w '~P 'P '

(AS)

Remembering the dependence of the e's and E's on
the P's, one finds

Hi PQ w „"(A '—P——')—(A,.' P.'), —
gV

~~var

(A10)
V. il4

with
s —~ 4++~

QV

(A11)
+P P ur„„"(1V„'—P„') (X„' P„') . (A1S)—

iP jP QPp&

1 1
E= ——lnZ~& ——lnZ'~&5 „, (A12)

"R.E. Peierls, Phys. Rev. 54, 918 (1938).

the P's being arbitrary constants. Following a method
due to Bogoliubov (see Girardeau, footnote 13), one
can then show that, for any choice of the P's,

It is evident that Ii „will be stationary to variation of
all the P's if P„'=E„i—that is, if the P's satisfy an
equation having the form of Eq. (2.13). The lowest
stationary value of F „,say (F „)v, will then be given
by the first two terms of Eq. (A17), and will have the
form of Eq. (2.14).

The problems of optimizing F „and Ii, by varying
the constants P„i are thus the same, and the results are
formally the same. The significant difference here is
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that in discussing Ii „it has been assumed that the
It„' and %l„l form complete orthonorrnal sets, whereas
in the case of F, it is desired to permit the sets {P„'}to
be incomplete. Such an incomplete set can be con-
structed by omitting from a complete set certain func-
tions f,'. Now let F „be computed using for the P's
nonoptimal values: zero for the P's corresponding to

the omitted f's, and for the other P's solutions of Eq.
(2.10) as constructed with the incomplete set of f's.
Use of these nonoptimal values yields (F,)s, but cer-
tainly increases the value of Ii „.Finally, use of non-
optimal values of the P s in computing P, yields

F.~& (F.)s ~& (F -)s &~F.
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Dependence of the Diffusion CoefBcient on the Fermi Level:
Zinc in Gallium Arsenide
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The experimental variation of the diffusion coeiTicient D with Zn concentration C, has been determined
at, 1000, 900, 800, and 700 C from radioactive "Zn diffusion profiles by a Boltzmann-Matano analysis.
With interstitial Zn as the dominant diffusing species and its concentration controlled by the interstitial-
substitutional equilibrium in which the singly ionized interstitial donor reacts with a neutral Ga vacancy
to form a singly ionized substitutional acceptor and two holes, the effective diffusion coefficient is described
by D=D*CQYo't 1+(C./2~~)(dYo/dC, )], where Y~ is the hole activity coefficient. The term D~ equals
2D;/&ipA, 4'i', where D; is the interstitial diffusion coefficient, 1Cr the reaction equilibrium. constant, and
pA„ the As4 pressure The re.lationship between Y„and the Fermi level Er is given by Y„=(A/p)exp(Er/kT),
where 3 is a constant dependent only on temperature and P is the hole concentration. This derivation for
D has extended previous analyses to include both the built-in Geld and the nonideal behavior of holes which
occurs when the impurity level broadens into an impurity band and merges with the valence band to form
impurity-band tails at high Zn concentrations. The observed nonmonotonic dependence of t4e Zn diffusion
coefficient on its concentration is a consequence of the nonideal behavior of holes at high concentrations.
Quantitative comparison of D with the experimental concentration dependence has permitted the deter-
mination of y„and Ef as functions of the hole concentration.

I. I5'TRODUCTION
' ~ROM the study of Zn diffusion in GaAs by Cunnell

and Gooch, the noncomplementary error function1

shape of the Zn-concentration —versus-distance curves
was clearly demonstrated. The resulting diffusion

coefficients as a function of Zn concentration revealed
a concentration-dependent diffusion coeKcient (see
Ref. 2 and Sec. III B for a description of the determina-
tion of the diffusion coeKcient D from the diffusion

profile by the Boltzmann-Matano method). Longini'
contributed significantly to the understanding of the
diffusion mechanism by suggesting an interstitial-
substitutional model in which the more rapidly diffusing
interstitial donor dominates the diffusion process at
high-substitutional concentrations. Weisberg and Blanc4

'I'. A. Cunnell and C. H. Gooch, J. Phys. Chem. Solids 15,
127 (1960).

sP. G. Shewmon, DsJfgsjors sN Solids (McGraw-Hill Book
Company, Inc. , New York, 1963), p. 28.

3 R. L. Longini, Solid State Electron. 5, 127 (1962).' L. R. 97eisberg and J. Blanc, Phys. Rev. 131, 1548 (1963).

considered the interstitial-substitutional diffusion sug-
gested by I ongini for a fully ionized substitutional
acceptor and the interstitial species as either (a) neutral,
(b) a single donor, or (c) a double donor. They found
that the singly ionized interstitial donor gave the best
fit to the 1000 'C diffusion profiles of Cunnell and Gooch,
which meant that the diffusion coefficient varied as the
square of the substitutional Zn concentration.

It should be noted that in their diffusion experiments
Cunnell and Gooch used a two-zone heating system to
reduce the vapor pressure of the Zn (which also reduces
the partial pressure of arsenic vapor species), and
obtained diffusion profiles only for surface concentra-
tions between 2 and 8&(10"cm ' which is considerably
lower than the pseudobinary solubility of 3.5—4.0X1020
cm '.' ' Data over a more extensive range of concentra-
tions were provided by the diffusion studies of Kendall
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