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At photon energies greater than 3.5 eV, the present
results are in better agreement with experiment than
previous theoretical calculations. """However the ex-
perimental results are not reliable in this energy region,
as calibration of the apparatus is dificult due to photo-
electric e6ects from the walls of the apparatus. '4

In the above analysis, the exchange terms have been
treated exactly, and the corrections for atomic distor-
tion have arisen naturally in the formalism, rather than
through the use of semiempirical parameters. These are
the chief advantages of the polarized orbital method
over previous theoretical treatments.
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A Schrodinger perturbation expansion is developed for exchange interactions between atoms or molecules,
starting from a complete, orthonormal set of symmetrized basis functions. The unperturbed Hamiltonian
Ho and the perturbation H' are de6ned in such a way that they are separately permutation-invariant.
First- and second-order results are compared with those obtained by Kisenschitz and London for non-
orthonormal basis functions, and with those derived from a Brillouin expansion.

INTRODUCTION
' 'N applying the Schrodinger perturbation formalism
~ ~ to the evaluation of intermolecular forces at large
distances (large on the scale of atomic dimensions), it
is possible to neglect symmetrization of the basis
functions with respect to permutation of electrons and
to start from a complete, orthonormal set of product-
type unperturbed wave functions. Usually, these basis
functions are eigenfunctions of the unperturbed
Hamiltonian Ho for the system; the unperturbed system
is that of an assembly of isolated atoms (or molecules),
i.e., at infinite distances from each other.

When the interatomic distances decrease, exchange
becomes important, i.e., the basis functions must be
chosen so that they satisfy the Pauli principle. When,
however, the product-type basis vectors are sym-
metrized (we call any vector or function, whose space
part is either symmetric or antisymmetric under ex-
change of two electrons, a symmetrised vector or func-
tion), then the new vectors do not form an orthonormal
set, and they "overspan" the space of symmetrized
vectors, i.e., they become linearly dependent. As early
as 1930, Eisenschitz and London' developed an elegant
method for overcoming these dHBculties by a judicious
choice of a particular type of basis set in symmetrized
space. They derived expressions for 6rst- and second-
order perturbation energies; the 6rst-order result is of
the same form as in the case without exchange, whereas
the second-order expression contains correction terms
due to nonorthogonality of the basis vectors. A re-
formulation and an extension of the Eisenschitz-

' R. Eisenschitz and F. London, Z. Physik 60, 491 (1930).

London method has recently been undertaken by van
der Avoird. '

Since the early work of Eisenschitz and London, and
especially during the past ten years or so, a considerable
number of different types of perturbation expansion for
exchange interactions has appeared in the literature.
Generally, the authors refer at most only superficially
to the Eisenschitz-London paper, although several later
analyses can be regarded as various approximations to
the early method, or as modifications along much the
same lines. This later work. can be roughly divided in two
categories: (a) Evaluation of exchange forces based on a
Brillouin-Wigner type expansion. "To this category
belong, e.g., the analysis by Dalgarno and Lynn' and
that by Lynn, ' to which we will return later on. Con-
vergence properties of the Brillouin series are deter-
mined by the smallness of the quantity H „/(E &~~), —
where H is the total Hamiltonian of the system, and
where H (m&e) and II are matrix elements of the
total Hamiltonian with respect to a given set of basis
functions. The energy E is computed by iteration. (b)
Evaluation of exchange interactions on the basis of a
Schrodinger type of perturbation expansion. Here, the
total Hamiltonian H is split into an "unperturbed" part
Ho and a "perturbation" II'. This type of procedure
immediately poses a complication, since, because of

s A. van der Avoird, Chem. Phys. Letters (Amsterdam) 1, 24
(1967).' L. Brillouin, J. Phys. Radium 3, 373 (1932);E. Wigner, Math.
Naturw. Anz. Ungar. Akad. Wiss. 53, 427 (1935).

4 P. O. Lowdin, J. Chem. Phys. 19, 1396 (1951).' A. Dalgarno and N. Lynn, Proc. Phys. Soc. (London) A69,
821 C'1956).

6 N. Lynn, Proc. Phys. Soc. (London) A72, 201 (1958).
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electron exchange, the explicit expressions for Hp and
H' for the case of product wave functions (no exchange)
cannot be taken over for the case of symmetrized
vectors. Usually, Hp and H' are defined in such a way
that they are attached to a specific simple-product
component of the symmetrized wave functions. To this
category of methods, including the Eisenschitz-London
procedure, belong the formal analysis by Carr' of ex-
change forces in terms of an explicit "exchange Hamil-

tonian, " and the procedures proposed by Murrell,
Randic, and Williams, ' Musher and Salem, ' Murrell
and Shaw" and Salem. " Hirschfelder and Silbey"
solve the perturbation equations directly, without
using linear expansions. Finally, Amos and Musher"
have recently shown that the Eisenschitz-London
results can also be obtained by expanding the perturbed
symmetrized wave function in terms of the complete
set of atomic product-type vectors.

A critical discussion of perturbation methods with

exchange has recently been given by Herring. ' An

important problem in this context concerns the type
of basis set employed for the expansion of the perturbed
symmetrized wave functions of the system. Usually, the
members of this basis set are the symmetrized excited-
state wave functions for the individual atoms (or
molecules) which form the system considered. This total
set, as we remarked before, is highly overcomplete,
and consequently its members can not all be orthogonal
to one another. In certain approximations the basis
functions are nevertheless supposed to be orthogonal";
in others the perturbed wave function is no longer
symmetric or antisymmetric. " Since on the whole,
numerical calculations are not carried through on the
basis of the di8erent approximations, it is impossible to
judge their range of validity. It seems that among the
perturbation methods proposed for evaluating exchange
interactions, the Eisenschitz-London procedure is still

the most direct, comparable to a Brillouin-type ex-

pansion as applied by Dalgarno and Lynn. 5

Among the perturbation expansions with exchange, a
direct Schrodinger formalism in symmetrized space is
still lacking. It is the main purpose of the present paper
to show how such a development can be given, with

appropriate definitions of the unperturbed Hamiltonian
Bp and the perturbation H'. The idea behind this de-

velopment is that in symmetrized space Hp and H'

should "follow" the wave functions on which they

' W. J. Carr, Jr., Phys. Rev. 131, 1947 (1963).
J. N. Murrell, N; Radic, and D. R. Williams, Proc. Roy.

Soc. (London) A284, 566 (1965).
9 J. I. Musher and L. Salem, J. Chem. Phys. 44, 2943 (1966);

see also J. I. Musher, Rev. Mod. Phys. 39, 203 (1967).
'P J. N. Murrell and G. Shaw, J. Chem. Phys. 46, 1768 (1967).
"L.Salem, Discussions Faraday Soc. 40, 150 (1965).
"J. O. Hirschfelder and R. T. Silbey, J. Chem. Phys. 41,

2588 {1966).
'P A. T. Amos and J. I. Musher, Chem. Phys. Letters (Amster-

dam) 1, 149 (1967).
'4 C. Herring, in 3fagnetism, edited by G. Rado and H. Suhl

(Academic Press Inc., New York, 1966), Vol. IIB, pp. 1-183.

operate, i.e., that the explicit forms of these operators
depend on the particular association of electrons with
nuclei represented by the diGerent components of a
symmetrized wave function. This procedure was im-

plicitly adopted by the present author and Lombardi
in the analysis of crystal stability for rare-gas and ionic
crystals" "; it was also followed by Salem. "We may
call Hp and H' "label-free" operators in symmetrized

space. In the next section it will be shown how these
l.abel-free Hp and H' can be de6ned in a mathematically
consistent manner. We mention similar eGorts by
Corinaldesi, '~" who attempted to incorporate in the
Schrodinger equation the symmetry properties of Hp

and H' separately, leading to the interpretation of any
symmetrized wave function as a many-component
column vector (one component for each permutation).
The proposed formalism overs many complications,
but no further insight into the problem of exchange
forces between atoms or molecules.

FORMALISM

We consider the simplest system of interest, i.e.,
that of two (hydrogen) atoms u and b, each with one

electron; the two electrons are denoted by 1 and 2. If
exchange is not taken into account, then the unper-
turbed system (two isolated atoms) is described by the
basis set (Ps(1,2)}, k=0, 1, 2, , of simple product
eigenfunctions of the unperturbed Hamiltonian Hp(1 2);
here (1,2) signifies that electron 1 is located on atom a,
electron 2 on atom b. Equivalently, if we localize
electron 1 on atom b, electron 2 on atom a, then the set
of unperturbed basis functions is composed of the eigen-
functions @s(2,1) of the unperturbed Hamiltonian

Hp(2, 1). When the two atoms interact, then these
interactions are described by the operator H'(1,2) in
the first con6guration and by H'(2, 1) with the electron
labels reversed. The ground-state unperturbed wave
functions are denoted by Pp(1, 2) and by gp(2, 1),
respectively.

Next, we introduce the eGect of electron exchange, i.e.,
we pass from a simple-product basis to a basis of
symmetrized vectors. A complete, orthonormal basis
in symmetrized space can be constructed as follows.
As the 6rst basis vector Pp+, we choose Qp(1, 2)+Qp(2, 1),
except for a normalization constant. For the second
basis vector we select pt(1,2)Apt(2, 1) and orthogonalize
this vector to fp+. The third basis vector is then

ps(1,2)+Ps(2, 1), orthogonalized to both fr+ and fp+,
etc. ; this process is formally continued until the basis
of symmetrized vectors is complete. Denote this basis

by (P&+}; each basis vector can be written, except for

rs L. Jansen, Phys. Rev. 125, 1'I98 (1961); 135, A1292 (1964).
"E.Lombardi and L. Jansen, Phys. Rev. 136, A1011 (1964);

148, A275 (1965); 151, 694 (1966).
'r E. Corinaldesi, Nuovo Cimento 25, 1190 (1963); 30, 105

(1963).
's E. Corinaldesi and H. E. Lin, Nuovo Cimento 28, 654

(1963).
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a normalization constant, as

fo+=[Po(1,2)&go(2, 1)J+Q ai+Lgg(1, 2)+pi(2, 1)j, (1)

For the A, operators, we find that

P&io+0=P Z (go+,4)&io+4o+

where the coeKcients a&+ are determined by the orthog-
onalization procedure. The vectors go+ are neither
eigenfunctions of Ho(1,2), nor of Ho(2, 1).

Since the basis {P&+) is complete, any symmetrized
vector f can (uniquely) be written as

for any symmetrized vector P. Further, since Pf= &f,
we obtain

PHoPQ=Ho(2, 1)(bio+)PP+Ho(1, 2)(Pt4i )Pl/
=Hp(2, 1)Ani+P+ Ho(1,2)bio+/ =Hop,

4o+= 4o+(1,2)+go+(2, 1),
where

PA12 &+21 and +12 P +F2 (6)
4 =Z (A+,4)A+. (2)

It: with similar equalities for A2~+ on the left of the
equations. It then follows at once, from Eqs. (5) and.

In its turn, each vector go+ can, from Eq. (1), be de- (6), that
composed as

and

f~+(1,2) =do(»2)+z ~3+4 l(1,2), and similarly with H', so that we may write

PHoP= H PH'P=H',
A+(2, 1)= +PA+(1 2)'

the operator I' permutes the labels of electrons 1 and 2.
We now turn to the definition of the "label-free"

Hamiltonians Hp and H'." Since Hp and H' are to
"follow" the wave function on which they operate, we
define two linear operators, A»+ and A~~+, which
project from the symmetrized to the simple-product
vectors, as follows:

~io+4 o+=A+(1,2),
t4i+fo+ ——go+(2, 1)=+Pfo+(1,2) .

Note that the sum of the two A operators equals the
identity operator. Then the desired H0 and H' are
de6ned by

Ho ——Ho(1,2)Aio++ Hp(2, 1)h.or+,

H'= H'(1)2)hio++H'(2, 1)Agi+. (5)

It follows at once that, with the def'initions (5), Ho and
H' are no longer Hernoitian operators. To verify that
the sum of Hp and H' equals H, the total Hamiltonian,
we only have to remember that H can be written as
H=Ho(1, 2)+H'(1, 2) =Ho(2, 1)+H'(2, 1) and that the
sum of A.»+ and A»+ equals the identity operator. Then
Ho+H'= H follows directly from (5). Further, we note
that the symmetrized, but not orthogonal functions
Po(1,2)&go(2, 1) are eigenflnctions of Ho with the un-
perturbed eigenvalues E~. The symmetrized basis
vectors f&+ have one further interesting property:
Although they are not eigenfunctions of Hp, it is still
true that (P&+,Hop&)=E&, the unperturbed energy
value associated with the eigenfunction Po(1,2) &go(2, 1)
of Hp. This can easily be veriaed by writing down the
orthogonalization coefEcients u&+ explicitly and by
normalizing the go+.

'9 I am greatly indebted to Dr. C. Herring for suggesting the
following explicit expressions.

implying that Ho and H', defined by Eq. (5), are
separately permltation invariant -as is required of label-
free operators. Because of this property, any linear
combination Ho+AH' is invariant under permutation
of the electrons, enabling us to carry through the usual
Schrodinger expansion for the perturbed energy and
wave function of the system as a series of powers of a
perturbation parameter X:

H(X) =Ho+AH' P(X) =fo+Xf'+X~f"+
E(~)=Eo+&Ei+&'Eo+.

These expansions, when substituted into the Schro-
dinger equation HP=Ef, lead in the usual way to the
different-order expressions for E and P, by putting the
coeKcient of each power of X equal to zero and then
substituting ) =1. To simplify the notation, we will
henceforth omit the superscript ~ on the symmetrized
basis functions, i.e., we will simply write Po instead of

FIRST-ORDER ENERGY

The first-order energy Ej.satis6es the usual relation

Ego= H'go+ (Ho Eg)P';—
we expand f' as Po~o uj,fo, a linear combination of the
complete set {f&) of unperturbed, orthonormal, sym-
metrized functions. Multiplication of Eq. (8) by fo
on the left, and integration, yields

Ei= (4o,H'fo)+2 &o(4o,Hogs);
k/0

the first term on the right is of the same form as in
perturbation theory without exchange. The second term
is in general not zero since QI, is not an eigenfunction of
Hp, or, equivalently, since H0 is not Hermitian. To
determine the coeKcient c&, we multiply both sides of
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Eq. (8) by Po on the left and integrate. The result is Eq. (14) on the left by Pp, and integrate; the result is

(~.,HV.)+Z ..: (~.,H.~)
&p-~1

(10)
(~.,HV.)(~.,HV.)

Eo= Z + Z b*(A,Hot") (15)
&p—&I s/p

In first instance we neglect the sum in Eq. (10) and
obtain

eo=(A, Hgo)/(Eo Eo);—

this result is the same as in perturbation theory without
exchange. Higher-order corrections to aI, can be obtained
by iteration. The expression for the 6rst-order energy
E~ now becomes

If we assume that the f, are still very nearly eigenfunc-
tions of Hp, or, equivalently, that Hp is still nearly
Hermitian, then the second sum in Eq. (15) may be
neglected; the 6rst sum is of the same form as that
occurring in perturbation theory without exchange. To
investigate the correction term, we multiply Eq. (14)
by fi(l/0) on the left, substitute the expansions for
P' and f" and integrate to obtain

(4 o,Hogs) (4 o,HVo)
Ei = (A,HVo) =Z

k/p

(~,HV.)(~.,HV.)
(11) bi= 2 b.(ki, Ho4")/(Eo «)+—2

s/0, &&o (Eo—Eo)(Eo—Ei)

We can obtain an alternative expression for the correc-
tion term in Eq. (11) by using the Unsold averaging
procedure (average energy o), leading to

-' 2 Q.,H.~.)(~.,HV.) = 't,(~.,H.H-V.)

—EiQ i,H'A)/(Eo —Ei)' (16)

We now apply a similar approximation as in 6rst order,
namely, we neglect on the right of Eq. (16) the terms
with b„s/O,l. The second-order energy Eq. (15) then
becomes—EoQ o,HVo) j=p-'(0o, LHo, H']So), (12)

(A,HV o) 8 o,HV o) (A,H Vo)
Ei . (17)

&p-&~ 0(13)Ei= (f oH'Pp)+ p'(fp, l Hp, H' jap).

(A,HVo) 8 ~,HVo) (A,H pk)
where $Hp, H'7= HpH' HH—p, the —commutator of Hp Eo= Z +Z
and H'. The final result for the first-order energy then
becomes

By writing out the commutator expression in Eq. (13)
in terms of electron labels, it is easily established that

Q o, l Ho, H'$Po) = —2(fo(1,2),LHo(2, 1),H'(2, 1)jap(2, 1)),

showing that the correction is of exchange type. The
explicit evaluation of this term should, in principle, be
based on Eq. (11) rather than on Eq. (13), since, in
passing from Eq. (11) to Eq. (13), we have made use
of the fact that fp is an exact eigenfunction of Hp. This
correction term will, in principle, be small in view of the
occurrence of the matrix element of the perturbation H'
between an excited state and the ground state.

It should be noted, from Eq. (13), that Ep+Ei is no
longer equal to the expectation value of H for the un-
perturbed ground state. This implies that Ep+Ei is not
an upper bound to the energy of the system and,
therefore, that the sum of perturbation energies higher
than 6rst order is not necessarily negative definite.

Eog p (H p Ep)f"+ (H' Ei)P'. ——— —(14)

SECOND-ORDER ENERGY

The second-order perturbation energy E& satisfies the
usual equation

Z =("") 'Qo, l:Ho,H'jA)'
(Eo—«)'leap

e', e", and e"' are Unsold average energies. Explicit
evaluation of these corrections should, in principle, be
based on Eq. (17) rather than on the commutators, for
the same reason as mentioned earlier. All commutators
in first and second orders vanish if the fo were eigen-
functions of Hp, equivalently, they vanish if Hp were
Hermitian.

The commutator term involving lH H"p$ can be
written out in terms of the electron labels, with the
result that

Higher approximations can be obtained by iteration.
The first sum on the right of Eq. (17) is of the same form
as in the Schrodinger formalism without exchange. By
using the Unsold averaging procedure in the remaining
terms and summing over excited states, we obtain

(4 o,Ho@) (A,HVo) (A,HVp) = (oV')-'
k,

leap

Ep—Eg +p +k

X [(P»LH»H"]go) —(P»l Ho, H'7&o)(&H»'Po)],

whereas

We expand P" as Q, ~ob,P„sbstuit te uthe expansion (@~IH»H'jA)= 2(A(1i2)i
for f' of the previous section, multiply both sides of X /Ho(2, 1),H'o(2, 1)]go(2,1)), i.e.,
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this term is of exchange type, just as that containing
the commutator (Hp, H'j.

The correction terms in 6rst and second orders are
quite similar. We make the assumption that they can
be neglected, for not too small interatomic distances,
relative to the leading term in their respective orders W. ith
this assumption, the erst- and second-order results are
of the same form as those occurring in a perturbation
treatment without exchange, the second-order energy
reducing to

E2
kHP

(4 oHV )p(fp, HVo)

~P ~k

= p '[(4'o»'Vo) —(A,HVo)'j (18)

where we have used the property that the total Hamil-
tonian H is Hermitian. Since e(0, we obtain a eegative

definite "second-order" energy. The modified first-order

energy is simply (Pp, H'Pp), and the sum of Ep and the
modified E& is an upper bound to the energy of the
system. Note, however, that in the present formalism

the commutator in E& results from a 6rst-order equation.
It is easy to show that the sum of Ei LEq. (13)j and

the approximate expression (18) for Ep is the same as
that obtained directly from the first two terms of a
Brillouin expansion. ' ' Remembering that the basis
functions are orthonormal and that, except for Pp, they
are not eigenfunctions of Hp, the Brillouin expansion
takes the form

(~.,W.)(~.,H~.)
E=(~.,W.)+Z

' ' + . (20)
pwo E (P)„HPp)—

To establish the correspondence with the first two
orders of the Schrodinger formalism, it is permitted to
replace, on the right of Eq. (20), E—(fp, HQ&) by Ep

In this expression

H'Qo H'H'Po —H—'fo' ——H—'—(1,2)Po'(1,2) &H'(2, 1)
Xfp'(2, 1)=H"(1,2)gp(1, 2)&H"(2,1)gp(2, 1) .

It was noted earlier that Eo+Ei is no longer equal to
the expectation value of H for the ground state. This
implies that the sum of second- and higher-order energies
is not necessarily negative and, in fact, Eq. (18) is not
negative definite. The upperbound property is restored
when we transfer the first-order commutator in Eq. (13)
to the expression for E&, Eq. (18). Assuming that the
Unsold average energies may be taken as equal, the
result is, from Eq. (18) and (13),

'l(4o, H'V o) (4 o,HVo)'+—(0o LHo, H' j4 o)1

'L(~.,HHV. )-(~.,HV.) -(~.,H'H. ~.)-j
= -'L(HV', HV.)—(V.,H'~.)'j

= p ' 2 I Q.,H'4)
I
', (19)

k&p

—(fi,Hpfp). We now write H= Hp+H' and obtain

(4 o,Hofp) (4'p, H'4 o)
&o—= (4o,HVo)+ Z

E Ek&p

DISCUSSION OF RESULTS

We have shown how a Schrodinger perturbation
formalism can be developed directly in the space of
symmetrized vectors for interactions between atoms or
molecules including exchange eGects. The analysis,
formulated for the particular case of two interacting
one-electron atoms, can be readily extended to many-
electron systems by nonessential generalizations of the
formalism. The unperturbed Hamiltonian Hp and the
perturbation H' have been redefined so that they are
"label-free" operators, like the total Hamiltonian H
(i.e., they are invariant under permutation of the
electron labels). The first- and second-order expressions

obtained are related in a simple manner to those de-

rived from a Brillouin expansion and to those obtained
on the basis of the Eisenschitz-London procedure.

In practice, however, the different methods will

generally lead to different results. This is true, erst of

all, for the separate orders, since these are dedned in a
different manner in the different formalisms. Moreover,
the simple relations between these formalisms are valid

only if exact unperturbed wave functions are used, a
condition which is rarely ful61led in actual calculations.

The evaluation of second-order perturbation inter-
actions poses a particular problem, since the expression
for the energy involves all the excited-state wave
functions. The Unsold averaging procedure does not
provide a solution, since the "average energy" cannot
be calculated. Only for the interactions of longest range
(the van der Waals induced-dipole forces) is the
Unsold average energy independent of the interatomic
distances. Generally, however, it is a distance-dependent
function which can only be determined in a semi-

ernpirical manner. " This dependence on distance

The first two terms on the right are just the first-

order energy (11), whereas the last term is the approxi-
mate second-order energy (18). Alternatively, we can
in Eq. (20) make use of the Hermiticity of H and write

(~.,W.)(~.,W.)=(W.,~.)Q.,W.)
= (HVo, 4'p) (4 p,H'fo);

substitution into the second term of Eq. (20) then yields
directly the same expression as Eq. (19).

The results of Kisenschitz and London agree in

first order with Eq. (13) without the commutator ex-

pression, whereas their second-order energy expression
can be transformed into Eq. (19) under the assumption
that. Pp is an exact eigenfunction of Hp'.
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should be such that second-order exchange interactions
are relatively unimportant at small interatomic sepa-
rations, otherwise the validity of a Heitler-London type
of calculation for the binding energy of the hydrogen
molecule remains unexplained. We note that, on the
basis of the definitions Ho and B' LEq. (5)$, the Heitler-
London analysis corresponds precisely to a first-order
perturbation treatment for the energy of interaction
between two hydrogen atoms.

In certain problems the fact that the Unsold average
energies are not known plays only a minor role. In
particular, this is the case when we are essentially
interested in relative perturbation energies, e.g., in
simultaneous interactions between three atoms reich'~e
to the sum of pair interactions between the atoms, as
occurs in the problem of crystal stability for molecular
and ionic solids. ""We have carried out a quantitative
comparison between results obtained by diferent
perturbation methods, as applied to this problem of

many-atom interactions and crystal stability. These
results will be reported separately.

The analysis presented here adds nothing to a solu-
tion of the dificult problem concerning convergence
properties of perturbation series; for more details we
refer to the review article by Herring. ' The principal
assumption inherent in these perturbation procedures
is that terms of higher order constitute at most a modi-
fication of the van der Waals interactions between the
atoms or molecules.
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Transition Matrix Elements for Large Momentum or
Energy Transfer*

A. R. P. RAU AND U. FANO
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(Received 17 April 1967)

The radial matrix element M =je Rat (r)jr, (gr)R t(r)r dr, which appears in collision theory and photon
absorption (L= 1, q~), has been studied in the past for hydrogenic wave functions. Its behavior for large

q or large k is now shown to depend only on the expansion of the wave functions near the nucleus and on an
application of selection rules. For large q, the trend is M ~ q

&'+'+') and for large k and normalization per
unit energy, M gx: k ('+~+ t' &q .The asymptotic trend of Altshuler's equivalent forms of the matrix elements
cs discussed.

HE Born approximation to the theory of inelastic
collisions of charged particles with atoms involves

the generalized form factor f+t*gt exp(itf rt)%,dr,
where Ag is the momentum transfer, r; is the position
of the jth electron, 0'; and 0 z are the initial and final
wave functions of the atom, respectively, and f'tjr
covers all coordinates. The dipole integral which
determines photon absorption is the low-q limit of
this matrix element. Expansion of exp(iq r;) into
spherical waves and assumption of a determinant form
for the many-electron wave functions reduce the non-
trivial portion of the form factor to the single-electron
radial integral

M= R&t (r)jz,(qr)E»(r)rs dr, (1)
0

where the spherical Bessel function is dedned

*Work supported in part by the U. S. Atomic Energy Com-
mission under Contract No. COO-1674-1.

j&(qr) = L~I2qr j'"~z+tts(qr)

and where the final state kl' of the electron may belong
to the discrete or to the continuous spectrum, whereas
Nl is bound. (The simplifying assumption of determi-
nant wave functions is actually unnecessary. One could
replace the product EI,&E.„&by a coefficient of the
spherical wave expansion of the one-particle reduced
density matrix f4't*%, gt&t dr; and proceed along the
same lines as in this paper. j In the expansion of the
form factor, the radial integral M is multiplied by an
angular integral of the form

fYr .*(O,p)Pz(cos8)Yt (8,q) dQ.

The parity selection rule and the triangular condition
that are implied in this integral will be of importance in
determining the asymptotic behavior of M.

The integral (1) and especially its particular case
L= 1, q 0 have been calculated, analytically for


