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those obtained from magnetoacoustic measurements.
No other sheet of the magnesium Fermi surface,
however, satisfies the inversion criteria and for these
one must rely on area calculations based on some simple
Fermi surface models. One generally assumes that the
model is valid if the calculated cross-sectional area
branches agree reasonably well with experimental data.
The problem with most model calculations, however, is
that this process is by no means unique. The best
model calculations for simple metals, i.e., those with
tightly bound inert-gas-like cores, seems to be those
based on the pseudopotential model Hamiltonian.

The DHVA data reported here contain nearly com-
plete information on all sheets of the Fermi surface

except the small 6rst-band cap. If we describe the area
branches in terms of solid angles of k vectors at the
Fermi surface, this data covers over 9P% of the total
Fermi surface. In the following paper, we will use this
data together with that presented in I to obtain Fermi
surface models using the pseudopotential approximation
for the band structure. For this reason we have made no
attempt in this paper to obtain quantitative agreement
with any simple model. We note, however, that qualita-
tively the data are in excellent agreement with the
predictions of the single-OPW modeP and had we
made the comparison, we would have found that
the two-OPW model' also gave reasonable quantitative
agreement.
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Extensive de Haas-van Alphen cross-sectional areas and magnetoacoustic calipers for the magnesium
Fermi surface were used to generate local- and nonlocal-pseudopotential model Hamiltonians. Both models
yielded a good representation of the Fermi surface. Small but significant deviations from experimental data
could not be eliminated using the local model, but these were eliminated with the nonlocal model. The
values of the local-pseudopotential Fourier coeKcients obtained were U1 pip = +0.014 Ry, Uopp2 = +0.026 Ry,
U1p11 = +0.036 Ry and U1p» ——+0.058 Ry. The variational parameters for the nonlocal pseudopotential
were the Fourier coeiiicients of the self-consistent ion-core potential V(r). The values obtained for these were
~lolp —0.440 Ry, &0002 —0.412 Ry, ~1oI1= —0.386 Ry, and Vio12 = —0.299 Ry.

INTRODUCTION

HIS paper is the third in a series devoted to the
experimental and theoretical determination of

the band structure of magnesium. The first paper' in
this series, which will henceforth be referred to as I,
dealt with extensive magnetoacoustic investigations;
the second paper, ' henceforth to be referred to as II,
described the results of extensive de Haas —van Alphen
investigations. In general, the data contained in I and
II have been found to be in qlalitatiee agreement with
the single-OPW model' and Falicov's first principles
OPW calculations (OPW =orthogonalized plane wave). e
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The agreement with Falicov's model is in fact within
his estimated error of about 5% of the Fermi energy
Ep, the principal part of this error results from uncer-
tainties in the electron correlation and exchange ener-
gies. The available experimental data is sensitive to
variations of about p.1% in Er,. current first-principles
calculations can not approach this accuracy. Thus, in
order to take full advantage of these data (which are
limited to the energy contour Et) in gaining insight
into the magnesium band structure, one must use a
semiempirical model Hamiltonian such as those based
on pseudopotential theory. "

This approa, ch has the dual advantage of acting as
an interpolation procedure whereby limited experi-
mental information can be used to generate the entire
Fermi surface, and of generating E(k) bands for
Z(k) AEp.

5W. A. Harrison, I'seudopotentials in the Theory of Metals
(W. A. Benjamin, Inc., 1966), and enclosed references.' J. M. Ziman, Advan. Phys. 15, 89 (1964).
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where V(r) is the self-consistent periodic potential of
the ion cores and, the

I a) and E are core states and core
eigenvalues, respectively. In this representation the
pseudo-wave-function tsar(r) became a linear combina-
tion of plane waves, i.e.,

qua(r)=g Aolk+G), (2)

where G label the reciprocal lattice vectors. The pseudo-
potential U(r, k) resulted from the cancellation of the
large attractive V(r) by the repulsive core terms and
hence was much more smoothly varying than V(r).
The band-structure problem thus became one of treating
plane-wave states in a fairly smoothly varying but
nonlocal potential. The pseudopotential U(r, k) was
often approximated by a local potential to give

U(r, k)= U(r)=Q UoSoe' '. (3)

In this paper we present results based on calculations

THEORY

The pseudopotential model was originally derived
from the one-electron crystalline wave equation by
expanding the eigenfunctions in orthogonalized plane
waves (OPW's) and transposing the orthogonalization
terms to the left side of the equation. This yielded the
equation Lin atomic units, (a.u.)g

3Cya(r) = (—'P+ U(r, k) ) q a(r) =Says(r), (1a)

U(r, k) = V(r)+Z(~.-~.) I-)( I, (»)

using both this local approximation and a simple non-
local formulation of the pseudopotential.

A typical matrix element in the local approximation is

(kl3'le~)=u's. „,,+U.. .,s, ... (4)

where U~,. ~,. is the appropriate Fourier coeKcient in
Eq. (3) and Ss,. a,.

r is the structure factor. The variable
parameters for this model are the Ug's where G= k;—k, .
Since the magnesium Fermi surface intersects three
Bri0ouin zone planes for which the structure factor is
nonvanishing, only three of the local Fourier expansion
coefficients will be of 6rst-order importance. These are
the U~prp, Uppp2, and Ujpry coeKcients listed in order of
increasing IGI. Estimates of these coefiicients were
given in I.7 Of the remaining coefficients, we found
U~pr2 was the only one which had a significant e6ect on
the Fermi surface. Initially, all four of these coe%cients
were determined independently; they were found to
6t the functional form

Ug=~(l GI —Go) expI:—&(I GI —Gs)g (5)

The Gnal local pseudopotential calculations were made
using this general expression for all U6.

The nonlocal pseudopotential model which we have
used is defined by Eq. (1b).The In) and 8 are approxi-
mated by their corresponding atomic eigenfunctions
and eigenvalues. ' In principle, the atomic E should

r So=cos(2irG e/2), where e is defined in I. Note that the
structure factor used in I was a factor of 2 too large so that the
estimates given there for the local pseudopotential coefIIcients are
a factor of 2 too small.

SF. Herman and S. Skillman, Atomic Structure CalculatiorIs
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, f963).
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change; by a small amount ( —0.25 Ry), the core
shift' in the crystalline state. However, our calculations
appeared to be insensitive to these small shifts. A typical
nonlocal matrix element in this calculation is

(0002) plane

(k;tX~k„)=k'8(,„(,,+t V(, , („+(E(,—Et,){k,~1s}

X {1s
~

k }+(Ea—&sr) {ki
~
2s}{2s

~ hajj

+(E(,—Es(){k(l2p}{2ptk,jXcosO']Sq,. x, , (6)

where V~,. ~,. is the coefBcient of the Fourier transform
of the self-consistent ion-core potential, {k~n}(s is the
radial portion of the Fourier transform of

~
n) times the

factor [(2l+1)/4rrf'~' as shown in Fig. 1, and O~ is the
angle between k; and k;. The only adjustable parameter
in Eq. (6) is Vx,. x,

Because this matrix element is nonlocal, it will vary
with the vector k;, even though the difference k;—k, = G
remains unchanged or even if k, follows a constant
energy contour. As an example of the variations which
occur in this matrix element with changes in k;, consider
the situation shown in Fig. 2(a). We will follow the
changes in the matrix element (k, ~X,k, ) for k;—k;
=GM((s. In Fig. 2(a) the vector k; traverses the path
A-8-C-P. Path A-8 lies in the (0002) zone plane. The
point labeled A represents the midpoint of the third
band lens; the point labeled B is the intersection of the
lens with the (0002) plane. Path 3-C follows the
constant energy contour Ej,——EI. Path C-F completes
the circuit. Note that on this last path the angle between
k, and k; remains fixed at a constant value of s. The
values of (k;~X~k;) corresponding to points along this
path are shown as the solid curve in Fig. 2(b). The
constant local pseudopotential matrix element is shown
there as the dashed curve.

In this nonlocal calculation we set (k, jX~ k;)=0 for

9 P. J. Lin and J. C. Phillips, Advan. Phys. 14, 257 (1965).' The core states l(r) are expressed in terms of spherical
harmonics:

l~)= "
Y( (((, (),

P ((r)

where P„((r) is tabulated in Ref. 8.

(kin)= V '"J e'a'P~(('r) Y(~(e, q)r drdt(,

where V is the volume of the Wigner-Seitz cell enclosing one
ion and dQ is the element of solid angle. Hence,

(kl(r)= (,fY(„(k) P~((r)j ((kr&rdr

= Y( (k)F ((lkl),
where we now define F~((lkl) to be the radial portion of the
Fourier transform. By use of the addition theorem all terms for a
given n and l can be combined to yield

P Y( *(k)Y( (k)= P((cosO),
2l+1

where OH is de6ned by k.k'=cosO~. Thus, for a given n and l

2 &kl~&&~lk'&= 4 F-((lkl)F-((lk'l&P((«»O) .

2l+1

=(kin)((rl k) P( (cso8),

where now a= is, 2s, 2p.

ilP

{a)
(a)

0.025

UQQQp (local)

K

1~ 0.020-—
1~+ v)

I

0,015 -—

path A-B path B-C path C-I'

I'zc. 2. The k dependence of a typical nonlocal matrix element
&k; lX l k() with k;—kq = Gooo( (a) Variation of k;; path A —8: in
the (0002) zone'plane; path 8—C: on the constant energy surface
E~ of the lens; path C—F: along the line for which k; and k; are
antiparallel Le=(r, see Eq. (6)]. (b) The value of &k, lRlk;& for
k; constrained to the path shown in (a).

~' R. W. Stark, T. G, Kck, and W, j . Gordon, Phys. Rev. 133,
A443 (1964).

~2 F. M. Mueller, Phys. Rev. 148, 636 (1966).

t k,—k;) greater than the length of the t 1012j recipro-
cal-lattice vector. Note that in this formulation
X(ba) &pk(r) = h(, (p(,(r), so that the eigenvalue h(, must
be determined self-consistently; for purposes of com-
parison with experimental data, h},=Ep.

The experimental data give the following information
about the Fermi surface: connectivity, " surface
calipers, ' and extremal areas. ' The latter information is
the most complete and the most accurate. Because most
of the sheets of the surface do not have sufhcient
symmetry to allow a direct conversion of area to radii, "
it was necessary to adopt the following iterative pro-
cedure in calculating both the local and the nonlocal
band structures:

(1) Initial values on symmetry lines of 11 select
points (see Table I), k;, on various sheets of the Fermi
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TABLE I. Experimental calipers used to determine
the Fourier coeKcients. —

Number Symbela
Fourier coeKcients

Sheet '- 'most influenced by

2
3
4

8b
9b

10b
1lb

krK
krM
krA
k. FM

FK
kKr

,kKII
rue

Lens
Lens
Lens
Monster

Butterfly
ButterQy
Monster

Monster
Cigar
Cigar
Monster

L00027

L10117

[10107

a Notation as defined in I. Caliper dimensions are given in Table III.
b Strongly inQuenced in second order by (1011).

Table I lists the 11 points which were used to obtain
a rapidly converging set of values for both the local and

surface were obtained. from measured and deduced
experimental calipers. ' "

(2) Using these points, the model-band-structure
parameters were found by minimalization of p, where

q'= (1/11) Q; LE(k;)—Ep]'

Ep (1j11)P——; E(k;).

(3) These model-band-structure parameters were
used to calculate several selected extremal areas.

(4) Based on differences between the calculated and
experimental areas, the 11 caliper points were moved in
direction and. magnitude to minimize the deviation in
the areas. (These changes were always within the
experimental error of the initial calipers and remained
bound to the symmetry lines, )

(5) Steps 2, 3, and 4 were repeated until area devi-
ations were minimal.

nonlocal pseudopotentials. The I'ourier coeKcients
indicated for each of the three groups were those which
had 6rst-order importance on the various calipers.

The 6nal calculations were made using. a ten plane
wave expansion for y&(r) LEq. (2)j. The convergence
error associated with this secular equation was esti-
mated to be about 1,5)(10 ' Ry by a further expansion
of rpq(r) to about 25 plane waves. The integration errors
in area calculations using these model Hamiltonians
were smaller than 0.5%. A typical grid of calculated
points is shown in Fig. 3 for the area determination of
one cross section of the third-band cigar.

Table II lists the final values for the Fourier coeK-
cients for both the local and nonlocal pseudopotential
models. Also listed are the values of E~ measured with
respect to the bottom of the conduction band for each
model, the values of A, 8, and Go in Eq. (5), and the
values of Ep —E in Eq. (6). The signs of these coeflj.-

cients were uniquely determined by the calculational
procedure described above. This was because the signs
are determined by second-order efI'ects whose magni-
tudes were much larger than the truncation error. The
Fourier coefficients of V(r) listed in Table II should not
be considered. to be unique. These are determined. pri-
marily by our choice of the core eigenfunctions and.
eigenvalues' and would be modi6ed by a different set,
although the consistency obtained between various
atomic calculations would seem to indicate that any
modi6cations wouM be small.

It is interesting to compare our local pseudopotential
coefricients with the predictions of the model potential
of Heine and Abarenkov. "This comparison, as shown
in Fig. 4, indicates that for magnesium the model po-
tential yields a form factor which is in surprisingly good
agreement with our empirical parameters.

The variable parameters used in the nonlocal pseudo-
potential calculation were the I'ourier coefficients of the
self-consistent ion-core potential V(r). Thus, these
should be comparable with the first-principles potential
which Falicov used in his calculation. 4 The solid curve

TABLE II. Fourier coefficients of phenomenological potentials
(in rydbergs}.

FIG. 3.Typical grid of Fermi-surface points
calculated to determine the cross-sectional
area of the cigar in the 1XIIA plane of the
Brillouin zone.

I'—~ +K

Local Pseudopotentia 1:

De=A {G—Gp)e
A =+0.215

U101p ——+0.014
Vpp02 ——+0.026

V1p10 ———0.440
V0002 = —0.412

EP —E1,——94.11

8= 1.355

Eg ——0.522'

Vpppp = —0.8
Ep=0.518'

L~'P —F.2,=6.49

Gp = 1.133
U1011 +0 036
U 10T2 = +0.058

V1p11= —0.386
V10I2 = —0.299

EI;—I~"2„=4.05

a Meaeured relatiVe tO Fx+.
b Calculated using the experimental value of the work function.

~3 A. O. K. Animaln an& V. Heine, Phil. Nag. 12, 1249 (1965}.
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TanLE III. Calculated and experimental diinensions (a.u.).

+ 0.05—

-05—--— r 1

I.O

IG l(in o.u.)

FIG. 4. The (1010), L0002), L1011), and L1012j Fourier coeffi-
cients of the local pseudopotential. The solid curve is the form
factor for the magnesium model potential of Heine and Abarenkov
calculated by Animalu and Heine (Ref. 12).Note that the positive
scale is enlarged by a factor of 10 compared with the negative
scale.

Sheet

Monster

Lens

Cigar

HutterQy

Fourth-band
pocket

Cap

Dimen-
sion Measured

ynside E; rK

Outside E,„trK

Z'L
&& waist
&lens

1
rK

u. . Kr~~oigar
k . KM~ac igar'

g ~~LH
EgpL~
gpLM

HA

Experimental

0.370&0.007
0.370&0.007
0.622&0.009
0.476~0.008
0.100&0.002
0.064&0.002
0.080&0.003
0.312+0.006
0.312~0.006
0.100&0.005

=0.067
=0.033

0.184~0.002
0.206&0.016
0.043&0.035

Non-
Local local

0.3706 0.3705
0.3705 0.3706
0.6284 0.6292
0.4706 0.4694
0.1001 0.0988
0.0639 0.0615
0.0825 0.0801
0.3114 0.3142
0.3125 0.3143
0.0990 0.0991
0.0634 0.0647
0.0356 0.0345
0.1834 0.1834
0.1816 0.1823
0.0729 0.0715

0.0308 0.0281
0.0832 0.0753
0.0421 0.0383

iri Fig. 5 shows the Fourier transform of Falicov's first-
principles potential. Compared with this are the four
empirically determined Fourier coefncients of V(r) as
well as a rough estimate of the L0000) coefficient. The
striking feature here is that the empirical coefFicients

appear to be about 0.1 Ry more negative than the
first-principles potential.

A direct comparison between the size of the Fourier
coefficients of U(r) and V(r) for each of the four shortest
reciprocal-lattice vectors can be made in Table II.
Note that the cancellation of V(r) by the core terms is
complete to within about 10jo.

Even though our calculated bands are degenerate
across the AIIL plane of the Brillouin zone, we will

use the single-zone scheme representation in the follow-

ing discussion. This degeneracy is removed by the
e6ects of spin-orbit coupling' across this entire plane
with the exception of the AL line. Since spin-orbit effects
are considerably smaller than our truncation error, they
were not included explicitly in the calculation.

indication of the small error resulting from the local
approximation. This illustrates that the nonlocal
corrections are essentially of second-order importance.

Table IV lists the important cross-sectional areas of
the Fermi surface reported in II together with those
calculated from our models. The local model yields
good agreement with the experimental data on all
sheets of the Fermi surface with the exception of the
second-band monster which appears to be a bit too
large. It should be noted that these discrepancies,
although significant, are only about twice as large as
our estimated truncation error. It was not found to be
possible to improve the accuracy of the local model by
further variations of the Fourier coeKcients of the
pseudopotential since a model yielding better agreement
with the monster always led to poorer agreement on
other sheets of .the Fermi surface.

The cross-sectional areas calculated for the nonlocal
model yield better agreement with the experimental

DISCUSSION OP THE MODEL BAND
STRUCTURES

The accuracy with which these band-structure models
represent the experimental data is illustrated in
Tables III and IV. Table III lists the important
magnetoacoustic Fermi-surface calipers reported in I
together with those calculated from each of our model
Hamiltonians. In all cases except one, the calculated
calipers for both models are within the experimental
error of the magnetoacoustic calipers. The one dis-
crepancy occurs for the fourth-band electron pocket and
in this case the discrepancy almost certainly results
from an error in the initial assignment of the magneto-
acoustic caliper.

The very small differences between the calipers
calculated for our local and nonlocal models are an

'4L. M. Falicov and M. L. Cohen, Phys. Rev. 130, 92 (1963).

0.0

0 I I 1 I l l l I l l l

l.o 2,0
lG l(i~ o.U.)

Fro. 5. The L1010j, $00027, [1011$and L1012$ Fourier coeffi-
cients of V(r) obtained for the nonlocal pseudopotential. The
L0000$ coefficient was estimated to +0.1 Ry from the experi-
mental value of the work function. The solid curve is the form
factor for Falicov's (Ref. 4) calculated shielded potential. The
apparent constant di6erences between these two can be in-
terpreted as a core shift.
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FIG. 6. Several de Haas-van Alphen
extremal area branches for magnesium
reported in the preceding article. The
large dots are the values calculated
for these branches using the nonlocal
pseudopotential.
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data. In all cases the di6erences were within the trun-
cation error. In this sense the nonlocal model is a definite
improvement over the local model. Figure 6 shows the
de Haas —van Alphen area branches reported in II
together with those points calculated for the nonlocal
model. The agreement between the speci6c calculated
points and the pertinent area branches validates the
orbit assignments given in II for these branches.

For a pseudopotential model, the cross sections of the
Fermi surface should be similar to the single-OP%

model. Since our nonlocal model yields the better
representation, we present only the nonlocal cross
sections. These as well as the corresponding single-OP%
cross sections are shown in Fig. 7 and 8 for the major
symmetry planes in the Brillouin zone. These Ggures
show that the magnesium Fermi surface is strikingly
free-electron-like. One should note in I ig. 7 that the
L1010) band gap separating the monster and. the cigar
is quite small and, in fact, vanishes at one point. At
that point there is an accidental degeneracy between

TpuLE IV. Calculated and experimental cross-sectional areas.

Sheet

Monster

Cigar

Lens

Clam-
Sutterfiy

Breakdown
Orbits

8
Coordinates

of H'

0
90
48.5
90
0

90
00

90'
90
0
0

90
0
0

Symbolb

P1
Jtl1

Jtl2

P2
+1
~~1
X1'

) 21

L'
C11
C11
G
A

A local

0.296
0.746
3.96
4.70
0.610
3.10

30.6
7.30
7.30
2.36
3.70
2.07

167.0
14.5

A local-Aesop

Aexp

37.7%
3 5'Fo
42'Fo
40yo

-1 o'Fo—0.6/o
0.6'Fo
o.4%
.O'Fo—o 5'

o 5'
o o'Fo
0.7%

Areas (10' a.u.)

Aexp

0.215
0.721
3.80
4.52
0.598
3.13

30.8
7.26
7.27
2.34
3.72
2.08

167.0
14.4

A, y„,1—A, p

A exp

O.sy
1.9ojo
1 8'Fo

3'
o 3'Fo
o 3'Fo

0 8'—o 4'
Fo—1 0'Fo

0.0'Fo
0.7'

A non local

0.216
0,707
3.87
4.48
0.612
3.14

30.9
7.32
7.34
2.33
3.68
2.06

167.0
14.5

a The subscript number on each area symbol refers to the crystallographic plane containing H as defined in II. The (1010) plane is designated by 1,
the (1190) plane is designated by 2, and the (0001) plane is designated by 3.

b As defined in II.
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Fn. 7. Cross sections of the
nonlocal pseudopotential Fermi
surface in the unfolded zone
scheme. The, , , and .... con-
tours refer to the erst, second,
third, and fourth bands, respec-
tively.

the two bands. Had we included spin-orbit coupling,
this degeneracy would have been removed. The im-

portant point here is that the energy gap separating a
large segment of these two sheets of the Fermi surface
is quite small both in the FEW plane and near the tip
of the cigar, and hence explains, via magnetic break-
down, both the giant orbit and trifoliate orbit reported
in II (the G and T branches, respectively). In addition,
Fig. 4 also shows that the t 10101gap between the third-
band butterAy and the fourth-band electron pocket
vanishes by symmetry along the III. line and is small

in the immediate vicinity of this line. Hence, magnetic
breakdown across this gap generates the I. branches
reported in Il.

The B(k) bands were calculated iteratively for the
nonlocal model. These bands which are shown in Fig. 9
exhibit accidental degeneracies at several points. The
h(k) bands were also calculated for the local model;
these would appear, on the same scale as those shown
in Fig. 9, to be very similar to the nonlocal bands. The
difference h(k)~, „q«,~

—h(k)~«, ~ is shown in Fig. 10.
The tendency of this difference to become increasingly
negative as the energy is increased rejects the fact that
the nonlocal bands are generally slightly Qatter. The
undulating character of the difference reflects the k

dependence of the nonlocal ps eudopotential. It is
interesting to note that the slope gradkh(k) of our bands
is, on the average, about 40% smaller than Falicov
obtained. 4 This apparently results from the Bohm-Pines
correction, since the band energies without this "cor-

FIG. 8. Cross section of the nonlocal pseudopotential Fermi
surface in the FXM and AHL planes of the Brillouin zone. The
band notation is the same as that in Fig. 7.

rection" which he quotes agree more closely with those
shown in Fig. 9. This slope does not necessarily reflect
upon the accuracy with which one can determine the
Fermi surface but it does strongly inQuence the accuracy

TAax.z V. Calculated and experimental cyclotron masses.
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FIG. 9. The lowest energy bands along the major symmetry lines of the Brillouin zone for the nonlocal pseudopotential model.

with which one can calculate dynamical sects such as
cyclotron masses.

We have used both the local and nonlocal models to
calculate the cyclotron- masses on those orbits whose
areas are listed in Table V. These were calculated from
the formula

1 dk 1'
m*=— .,b;, d8 ~ d8

For the nonlocal model the energy diGerential dh was
explicitly included in the matrix elements of the

Hamiltonian. The masses which were obtained are
tabulated in Table V.

On the average, the masses obtained for the local
model were 30% smaller than experimental masses
while those obtained from the nonlocal model averaged
26/o smaller. One would normally describe this dif-
ference by an enhancement factor. This enhancement
factor is listed in Table V as a percentage deviation for
each mass. The enhancement factors for the local model
vary from about 20 to 33/o, the enhancement factors
for the nonlocal model vary from about 20 to 30%%u~.

These enhancement factors would normally be at-
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tributed to electron-electron" and electron-phonon"
interactions. Thus any significant variation in the en-
hancement factor within each model would appear to
indicate that these interactions are it dependent. The
variations shown in Table V probably only reflect the
uncertainty in the experimental masses. The only
conclusion which we can draw with any confidence from
the data listed in Table V is that the nonlocal model
requires only about 4 as much enhancement as the local
model. The nonlocal model should give the more
realistic value for the enhancement since the energy
dependence of the matrix elements is ignored in the local
model.

It is interesting to note that the local pseudopotential
masses are on the whole nearly identical to the single
OPW masses. Thus the average 30% enhancement
found for this model indicates a 30 jo increase in the
density of states at the Fermi level relative to the free-
electron bands. The electronic specific-heat data' yields
a value of 1.33 for the density of states relative to the
free electron, which is in good agreement with our
calculated average.

's T. M. Rice, Ann. Phys. (N. V.) 51, 100 (1965).' N. W. Ashcroft and J. W. Wilkins, Phys. Letters 14, 285
(1965)."J.G. Duant, in Progress in Loz-TeeIPerature Physics, edited
by C. J. Garter (North-Holland Publishing Company, Amsterdam,
1955), p. 2j.0.

CONCLUSIONS

A polyvalent metal such as magnesium which has
Fermi surface sheets in several Brillouin zones ofI'ers a
demanding test of the accuracy of any model-Hamilton-
ian band-structure representation. Magnesium is an
element particularly suited for this test since it has a
tightly bound core with a closed-shell configuration.
This is the case for which the cancellation theorem
should apply. The local and nonlocal pseudopotential
calculations reported in this paper yield accurate
models for the magnesium Fermi surface. These models
should be viewed primarily as an interpolation pro-
cedure whereby one generates the entire Fermi surface
from data limited to only portions of the Fermi surface.
Insofar as the single-particle approximation is valid,
these models also generate the entire band structure for
energies other than Ep.

Comparisons of the models with the experimental
data indicate that the errors in the local pseudopotential
are about &3X10 ' Ry, while we could find no errors
in the nonlocal pseudopotential model greater than our
truncation error of &1.5)&10 ' Ry. We can conclude
from this that while the local pseudopotential model
offers a very accurate representation of the magnesium
Fermi surface, the most accurate fit to the data can
only be achieved by inclusion of the nonlocal nature of
the pseudopotential.
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Magnetic Ordering in Dilute Solid Solutions of Iron in Gold.
II. Electric HyperQne Interactions*
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The Fe" Mossbauer spectra of Au-Fe alloys with Fe concentrations between 1.7 and 10.5 at.%%uoat tem-
peratures between the transition temperature and room temperature consist of a doublet superimposed on a
central line which is an unresolved doublet. The centroids of the two doublets are separated by 0.06&0.02
mm/sec. This is independent of Fe concentration and temperature. The outer doublet is associated with
Fe ions with one or more Fe nearest neighbors, while the inner doublet is associated with Fe ions with no Fe
nearest neighbors. The separation of the outer doublet lines is independent of Fe concentration and is
0.77+0.02 mm/sec at 77'K and 0.69%0.02 mm/sec at 294'K. The separation of the inner doublet is an
order of magnitude smaller. It increases with increasing Fe concentration, but has no detectable dependence
on temperature. These doublets are interpreted as quadrupole-split resonance lines. The electric Geld gradient
(EFG) of the outer doublet probably arises from conduction electrons within the atomic sphere. The
EFG of the inner doublet may arise from random strains, or Fe impurity charges beyond the nearest-
neighbor shell, or both. An analysis of the temperature shifts gives an effective Debye temperature of
(290+40)'K for Fe impurities in Au. The observed linewidths are independent of Fe concentration and
temperature from 77 to 294'K. The linewidths increase slightly at a few degrees above the transition tem-
perature, perhaps because of the onset of magnetic-relaxation effects.

I. XNTRODUCTIOÃ
' 'N a previous paper' (henceforth called VB-1) we
& - presented the results of an investigation in which

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' C. E. Violet and R. J. Borg, Phys. Rev. 149, 540 (1966).

the Mossbauer e6ect was used to observe magnetic
ordering in dilute solid solutions of Fe in Au. The
magnitude of the hyperfine splitting was studied as a
function of composition and temperature, and the
magnetic transition temperature (To) was determined
as a function of composition. Spectra were obtained for


