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An electron-gas model of a metallic interface is constructed by joining two semi-infinite half-planes of
unequal positive charge and adding electrons until a charge-neutral system is achieved. Our earlier treat-
ment of this model is extended in several directions. The exchange-and-correlation effective one-electron
potential, formerly taken in the "dipole approximation" to equal its bulk value in each material, is cal-
culated using the local-density approximation. In the case where the low-density material has the smaller
separation energy, the size of its depletion region and the height of the barrier potential are increased. In
the case where the low-density material has the larger separation energy, the use of the local-density
exchange-and-correlation potential scarcely alters the results obtained using the dipole approximation.
A modified self-consistent free-electron model of a metal-intrinsic semiconductor junction adequately
accounts for several features of the experimental data concerning the dependence of the barrier height on
the components and method of fabrication of the junction. A primary effect of energy gaps associated with
the periodic potential is the introduction of a long-range contribution to the junction potential in the semi-
conductor. An examination of (solvable) one-dimensional models suggests that if the semiconductor energy
gaps are small relative to the metal bandwidth, then the modified free-electron model correctly describes
the modi6cation of the short-range (~1-5A.) dipole layers at the metal-semiconductor interface In th. is
case the modified free-electron model adequately determines the barrier height at the interface, although
it never describes the details of the space-charge potential in the semiconductor.

I. INTRODUCTIOB
' 'N a previous paper' (I), a self-consistent-field model
~ ~ of a bimetallic junction was constructed by joining
two semi-infinite half-planes of unequal positive charge
and adding electrons until a charge neutral system is
achieved. We investigated the role of the surface
dipole layer in equalizing the Fermi levels of the high-
and low-density metals and in determining the barrier
between them. A highly simplified model containing
no adjustable parameters was used in which (i) the
exchange and correlation energy in each metal was
taken equal to its bulk value as calculated from the
Wigner interpolation formula'; (ii) the periodic lattice
potential was totally neglected (i.e., a jellium model was
used which cannot be applied directly to describe
metal-semiconductor contacts). In this paper, these
restrictions are removed.

The new features of the present work are best
described by reviewing the historical development of
our understanding of metal-semiconductor junctions.
In an early theory, ' Mott and Gurney postulated that
the voltage drop necessary to equalize the Fermi
energies of the two materials took place entirely in the
semiconductor and was equal in magnitude to the
contact potential between the materials. The barrier
height y~ therefore is given by

in which Ep is the Fermi energy measured relative to
the conduction band edge, q is the metal's work
function, and X~ is the semiconductor's electron

' A. J. Bennett and C. B.Duke, Phys. Rev. (to be published).' E. P. Wigner, Phys. Rev. 46, 1002 (1934).' See, e.g., N. F. Mott and R. W. Gurney, Electronic I'rocesses in
Ionic C~rystgls (Clarendon Press, Oxford, England, 1948).

amenity. Experimental determination of metal-semi-
conductor barrier heights~" indicate that Eq. (1.1) is
satisfied only for wid, e-band. gap semiconductors. Two
simple origins of the failure of (1.1) suggest themselves.
First, as emphasized. by Fan, " the total contact poten-
tial voltage d,rop is divided between the dipole layers of
the metal and the semiconductor. Equation (1.1)
describes the case in which all of this voltage drop
occurs across the semiconductor. Qf more signi6cance,
however, is the mod, ification of the surface dipole layer
at the metal-semiconductor interface, relative to the
dipole layers at the metal-vacuum and, semiconductor-
vacuum interfaces. Equation (1.1) involves the work
function and. electron afFinity as obtained. from measure-
ments of metal-vacuum and, semiconductor-vacuum
interfaces, respectively. As Bardeen and Wigner" have
emphasized, these quantities consist of at least two
contributions, that of the (bulk) separation energy and
that of the Coulomb (dipole) surface potential. The

4 See, e.g. , A. Many, Y. Goldstein, and ¹ B. Grover, Semi-
conductor Surfaces (North-Holland Publishing Company, Amster-
dam, 1965).' V. Heine, Phys. Rev. 138, A1689 (1965).

6 C. R. Crowell, S. M. Sze, and %. G. Spitzer, Appl. Phys.
Letters 4, 91 (1964).' R. J. Archer and M. M. Atalla, Ann. N. Y. Acad. Sci. 101,
697 (1963).

C. R. Crowell, %. G. Spitzer, L. E. Howarth, and K. E. La
Bate, Phys. Rev. 127, 2006 (1962).' C. A. Mead and W. G. Spitzer, Phys. Rev. 134, A713 (1964);
Phys. Rev. Letters 10, 471 (1963).' W. G. Spitzer and C. A, Mead, J.Appl. Phys. 34, 3061 (1963).

' D. V. Geppert, A. M. Cowley, and B.V. Dore, J.Appl. Phys.
37, 2458 (1966); D. Kahng, Sell System Tech. J. 43, 215 (1964);
S. M. Sze, C. R. Crowell, and D. Kahng, J. Appl. Phys. 35, 2534
(1964).

'2 F. G. Allen and A. B. Fowler, J. Phys. Chem. Solids 3, 107
(1957); F. G. Allen and G. W. Gobeli, J. Appl. Phys. 35, 597
(1964).

» H. Y. Fan, Phys. Rev. 61, 365 (1942); 62, 388 (1942).
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(a)

FIG. i. De6nition of C and g at a metal-semiconductor
junction (from Ref. 5).

~'E. Wigner and J. Bardeen, Phys. Rev. 48, 84 (1935); J.
Sardeen, ibid. 49, 653 (1936).

+ J. Bardeen, Phys. Rev. 71, 717 (1947).

former effect is due to the exchange and, correlation
potential of the system which in the case of a vacuum
interface is responsible for the image force felt by a
charged particle far outside the material. The dipole
contribution depends on the nature of the interface, and
its modification at the metal-semiconductor interface
relative to the vacuum interface of the metal and semi-
conductor can cause the failure of Eq. (1.1).

Several kinds of experimental results suggest the
importance of explicitly accounting for modifications
in the surface dipole layers of atomic dimensions before
using an equation of the form (1.1) to analyze data from
which pb is to be determined. For example, analysis of
data" used to determine an effective metallic work.
function p in Eq. (1.1) indicates that for a given metal
(e.g. , Au) the value of &p increases as the band gap of
the semiconductor increases (e.g. , GaAs, GdSe, and
GdS). In our model such a correlation is a consequence
of the reduction of the (usually positive'4) dipole
contribution to the "effective" metallic work function
as the band gap of the semiconductor (and hence the
evanescent charge density in the semiconductor)
decreases. Another, often quoted, aspect of the experi-
mental data which suggests the necessity of considering
corrections to the surface dipole layers relative to their
vacuum counterparts, is the fact, illustrated in Fig. 1,
that for a given semiconductor, the Fermi energy lies
a distance

(1.2)

above the top of the valence band, with ( being essen-
tially independent of the metal used in the contact. In
fact, Heines recently has noted that $ is constant to
within about 0.2 eV independent of (a) the degree of
doping' " which swings the bands in the bulk material
by something of the order of 1 eV; (b) the metal that
is used, " some di6ering from the semiconductor by
several volts in the work function; (c) the crystallo-
graphic orientation of the surface" "; (d) whether there
is a monolayer or so of oxygen or oxide between the
metal and the semiconductor. 7 "

Bardeen" explained the independence of the barrier
potential from the above factors by postulating surface
states in the interface. The junctions used in the early

experiments were made by pressing the two materials
together and the presence of imperfection-caused surface
states was thus quite likely. Later technical develop-
ments permitted junction fabrication by cleaving the
semiconductor in a metallic atmosphere. The barrier
height still exhibited the characteristics listed above.
Heine' noted that conventional4 surface states were
absent in such junctions, and that their analog was
localized charge due to evanescent waves in the semi-
conductor energy gap and below the metal's conduction
band. Heine studied these contributions to the charge
density by using the nearly-free-electron model.

The present paper and I both indicate that short-
range components of the potential barrier at the metal-
semiconductor junction are due to the contributions
(calculated in a self-consistent manner) of all the mobile
electrons in both materials. The potential in the
junction region is caused by and causes charge devia-
tions in a self-consistent fashion. Therefore, we have
completed Heine's shift in emphasis from surface to
bulk properties of the junction components as the
determining factors of the junction potential for
intimate contacts. Our analysis demonstrates that a
self-consistent dynamical treatment of Coulomb,
exchange, and correlation energies of the mobile
electrons suKces to describe the (equilibrium) one-
electron potential near the contact. The introduction
of surface states and other specifically surface properties
is not required.

We recall that the analysis described in I exhibited
two major limitations. The local changes near the
interface in the exchange-correlation contributions to
the dipole potential were neglected and no discussion
was given of the effects of the periodic lattice potential.
The numerical example considered in most detail in
I, a free-electron gas of density 10" cm ' joined to a
free-electron gas of density 10" cm ', is studied again,
but with the exchange and correlation potential taken
to be a function of the local electron density. "There are
no qualitative changes in the results of I. Among these
results are the absence of bona fide surface states, the
four-region nature of the net charge distribution near
the junction, and the absence of any general relationship
between the barrier height and the work functions of the
two materials.

Even a free-electron model of a metal-semiconductor
junction differs in a qualitative way from the numerical
example considered in I. For electron gases of density
less than or equal to 10" cm ', the magnitude of the
electron separation energy is a monotonically increasing
function of density. Hence, the surface dipole potential
in the 10"—10"cm junction raises the potential in the
high-density material with respect to that in the
low-density material. The free-electron analog of most
semiconductor metal junctions is one in which the

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964);
W. Kohn and L. J. Sham, ibid 140, A1133 (1965.); 145, 5(j1
(1'W6),
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FiG. 2. The potential energy and charge density near the
interface of a material of higher density (lower separation energy)
with a material of lower density (higher separation energy).

higher-density material (the semiconductor) has a
smaller separation energy than the lower-density
material (the metal). (This situation corresponds' to
homogeneous electron gases of density greater than
10" cm s.) Therefore, the direction of the surface
dipole potential needed to equalize the Fermi levels is in
a direction opposite to that obtained for the 10'~10"
cm ' junction. The general. character of the potential
in the junction region is shown in Fig. 2, together with
a charge density of the type needed to account for the
potential. The self-consistent calculation indicates that
the four-region nature of the model charge density used
in the previous calculation is no longer essential to a
description of the interface potential. In particular, the
charge in the two outer regions which was of prime
importance in I is no longer required.

Before considering the effects of the crystal potential,
we should emphasize that the above free-electron model
with the addition of experimental values for the
cohesive energy of the semiconductor is adequate to
explain those features of the existing experimental
data on the properties of metal-semiconductor junctions
listed above. In the present model the equilibrium
characteristics of the junction are determined by bulk
properties of the materials rather than those connected
with the surface, e.g. , bulk separation energies rather
than experimental work functions. Therefore its
predictions are unaffected by the surface changes (c)
and (d). Since the separation energies of typical metals
which enter our calculation vary in general by less than
0.2 eV, the lack of dependence on the particular metal
(b) is satisfied. Since the density of impurities added is

much less than the normal density, in our free-electron
model, doping has little effect on the position of the
Fermi level and separation energy. Therefore in this
model the junction characteristics are essentially
unaffected by dopants (a). Experimentally, however,
the widths of the junction-potential barrier in the
semiconductor are well known to be sensitive functions
of the doping. ' Therefore, when commenting on the
invariance of $ to doping, we must examine the influence
of band-structure effects on the junction potential.

As electrons are added to a semiconductor by doping,
the band structure energies remain relatively rigid
with respect to the vacuum energy. Because of the
energy gap, a small number of donor electrons raises
the Fermi energy substantially and thus lowers the
semiconductor's one-electron separation energy. The
dipole potential across the junction which is equal to
the difference in the semiconductor's and metal's
separation energies is increased and greater band bend-
ing occurs. This band bending leads to a region of
uncompensated donors near the semiconductor surface
which are customarily (Schottky model) taken to cause
the additional voltage drop required by the lowering
of the semiconductor's separation energy to occur in the
semiconductor. $ remains constant. While we do not
further discuss extrinsic semiconductors in this paper,
these remarks indicate that the experimental data
concerning them are not inconsistent with our results
for metal-intrinsic semiconductor junctions.

Although we expect a modified free-electron model to
account for many aspects of the data, it is necessary to
consider the effects of the periodic lattice. In order to
treat those effects, we consider the various approxima-
tions required to obtain a tractable analog of the
jellium model. The restrictions necessary are so severe
that only qualitative results can be obtained. The weak-
nesses of the model preclude any numerical computa-
tions. A particular band structure in which the "semi-
conductor" has a gap in its energy spectrum for the
crystal momentum in the junction direction and is
free-electron-like parallel to the junction is introduced
in order to illustrate certain general features of the
metal-semiconductor contact.

The primary effect of the band structure is the
introduction of energy gaps with associated evanescent
contributions to the charge density of the semiconductor
of range (2pE, /fs') ', where p is the reduced mass of
the tw'o bands separated by a vertical energy gap E,.
This contribution to the charge density is often small
because it is de-emphasized by phase-space weighting
factors. In I, where free-electron band structures were
assumed for both materials of the junction, the three-
dimensional nature of the physical problem was reQected
in the one-dimensional integral expression for the
density by a factor (Er —E ). Here E, is the electron
energy associated with motion perpendicular to the
interface, and (Er E„)is an e6'ective tw—o-dimensions, l
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II. FREE-ELECTRON MODEL

A. Sumxnary of Formulas

Let us first review the procedure used in I to obtain a
self-consistent solution for the junction potential. The
junction is constructed by joining two semi-infinite
half-planes of unequal positive charge and adding
electrons until a charge neutral system is obtained. The
self-consistent procedure for determining the junction
potential in the dipole approximation consists of the
following sequence of operations:

(1) The bulk values of the exchange and correlation
potential V,.(x) in each metal are added to an assumed
dipole starting potential Vq(x). V,.(x) is calculated
using the Wigner interpolation formula and the bulk
electron density in Eq. (2.13) to follow. The dipole
starting potential is taken to be

Vg(x) =
1+r

e
—hgx-

g(—x)—V~ 1— — 8(x), (2.1a)
1+r

V'g=S g —S I„
r =ks/hl, ,

(2.1b)

(2.1c)

where hg and hr. are the Thomas-Fermi decay lengths,
and S g and S ~ are the bulk-separation energies in
each material.

(2) The one-electron potential

V(x) = Vg(x)+ V..(x)

is used in the Schrodinger equation in order to find the
one-electron wave functions by solving the equations

Pe, (p,)+V(x)-E.j%'g, (x)=0,
e, (p,) =p '/2m' ———(h'/2m')d'/dx',

V(x) = Vg(x)+ V.,(x),

@(r)=exp(ik„y)+s.(x)/2n,

8=h'k~P/2m~~+E~.

(2.28)

(2.2b)

(2.3)

(2.4)

(2.5)

density of states for motion parallel to the interface.
This phase-space factor de-emphasizes the contributions
of states near the Fermi energy which often are those
most affected by the semiconductor band structure.
Although the evanescent wave functions in the energy

gap may make a long-range contribution to the charge
density in the semiconductor, the barrier height at the
interface is relatively insensitive to the presence of
small band gaps in the semiconductor.

In the next section, we recall some of the formulas
of I, investigate the effect of including a density-
dependent exchange and correlation potential in the
numerical example of I, and present a free-electron-
model calculation of the characteristics of a metal-semi-
conductor interface. Section III contains an examina-
tion of the effects of the crystal lattice on the charge
density near the junction, and a summary of our results.

(3) The electron density (obtained by filling all states
of the system up to the Fermi energy at zero temper-
ature) is calculated from

n(x) =n, (x)+n„(x), (2.6)

(2s+1) mii
n. (x)=

2z 6' ' p

f%'s.&@(x)
(
'

X Q—Z.)dZ. , (2.7)

(2.8)E,=h'k, '/2m~,

(2s+1) m„
n„(x)= Z(u+~~) I+E (*)I',

2x
(2.9)

where n, (x) and n„(x)are the densities due to con-
tinuum states and surface states, respectively. Con-
tinuum normalization is used for the unbound wave
functions.

(4) A model charge density n„(x)is fitted to the
calculated charge density subject to the subsidiary
requirements of obtaining both over-all charge neutral-
ity and the proper voltage drop across the junction.
The model charge density

n (x)—=n„(x)-n,(*)
+L2 ) &L2+ &+ &Ll

= nl i(1+x/xl i), —xl i& x&0
= —nsi(1 —x/xsi) ) 0&x& xsi
=eg2) xgg&x&xg2
=0, otherwise (2.10)

contains eight parameters of which only six are inde-
pendent because of the two subsidiary requirements.
These six parameters are determined according to some
well-defined "fitting" procedure, one of which is de-
scribed in I.

(5) The dipole potential (given in I) obtained by
inserting the model charge density into Poisson's
equation t Eq. (2.1) of Ig is employed in step (1) and
the five steps are repeated until convergence is obtained.

The modifications of this procedure introduced in
subsequent sections consist of more refined calculations
of V„(x)for use in step two. Although we estimate the
effects of a periodic potential in Sec. III, complete self-
consistent —field calculations are performed only for
free-electron-like one-electron dispersion relations e(p)
=p'/2m in Eq. (2.2).

B. Effect of the Density-Dependent Exchange
and Correlation Potential

In I, a major approximation in the self-consistent
calculation of the electron density in the vicinity of the
barrier was the use of the bulk values of the electron
density in calculating the exchange and correlation
potential in each metal. We now consider the effects of
the varying electron density on the exchange-correlation
potential and hence on the self-consistent electron
density and junction potential.
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The Hartree-Pock equation contains a term due to
the correlation in electron position caused by the Pauli
principle which keeps electrons of parallel spin apart.
Slater" rewrote that term in the form

U (xt) Us (xs) Uk(xl) U'(x2) (s /47rspr12)
d $2

1 U;*(xt)U;(xt)

X U;(xt) . (2.11)

It is apparent from (2.11) that there is a different
effective exchange potential for each eigenfunction U;
of the system, i.e., the potential is both momentum- and
energy-dependent. After arguing that the potential in
fact depends rather weakly on those quantities, Slater
substituted a weighted average of the potential over all
occupied electron states of the system. A further
approximation (the "statistical" one) consisted of
using the average potential as function of local electron
density as calculated from the eigenstates of a free-
electron system. The exchange potential in that approxi-
mation is given by

3 )Us
I
~.(r) I,

4prsp/ 87r )
(2.12)

where m, (r) is the local density of electrons. The validity
of the statistical approximation has been examined by
various authors. Juretschkers considered an electron
gas bounded by an infinitely high barrier. He found
that the statistical approximation agreed reasonably
well with the averaged potential calculation using the
proper wave functions, in regions of high density but
rather poorly in regions of low-electron density near
the barrier. Other authors' have investigated the
non-negligible effect of correlation corrections (the
correlation between electrons of antiparallel spin) on
Slater's work.

More recently, Hohenberg and Kohn, " and Kohn
and Sham, "have developed a generalized treatment of
the inhomogeneous electron gas in terms of the proper-
ties of a uniform electron gas. A term in the potential,
analogous to the Slater potential, was found which
systematically includes not only exchange but also
correlation effects. Their lowest-order expression for
the exchange and correlation potential is

I l I T [ t I T

-3
IO

XI.2 X

5 IO

Cl
C

2I -3
nR= IO cm

22 -3
nl = IO cm

-l
IO

give the exact result for systems of slowly varying
density or very high density, i.e., when

r,/rp&(1 or r,/a~&(1, (2.14)

respectively. Here ro is a typical length over which
changes in the density occur. Unfortunately, neither of
these conditions is satisfied in the junction region.
Higher-order corrections expressed in terms of gradients
of the electron density may become important.

Since the coe%cients of the various higher-order
terms depend critically" on reinements in the theory
of the polarizability of the homogeneous electron gas,
we have performed the self-consistent calculation using
only the lowest-order expression. The exchange and
correlation potential as given by the signer interpola-
tion scheme is evaluated as a function of local electron
density. Ke follow in detail the procedures used in I
for the performance of step (4), in which the calculated
electron density is represented by a model charge
density by means of which total charge neutrality and
the proper voltage drop across the junction is insured
at each stage of the calculation. In order to achieve a
"sensible" self-consistent procedure, this same model
charge density is used in calculating the density-
dependent exchange and correlation potential.

The particular numerical example used in I, an
electron gas of density 1022 cm ' next to an electron gas
of density 10" cm ', is again considered. The zeroth-

V„=B[es„(N)]/BN, (2.13)

where p„(e)is the exchange and correlation energy per
electron of a uniform electron gas of density n. Besides
including correlation effects not present in Slater's
work, their expression contains an exchange term which
for the case of a free-electron gas differs by a factor of ~3

from that of Slater. This approximation is asserted to

-5
5-IO

I I I I

-12 -9 -6 -3
I I I I I I I I

3 6 9 I2 l5 l8 2I 24
x/a,

' J. C. Slater, Phys. Rev. 81, 385 (195&).
'8 H. J. Juretschke, Phys. Rev. 92, 1140 (1953)."T.L. Loucks and P. H. Cutler, J. Phys. Chem. Solids 25,

105 {1964);J. K. Robinson, F. Bassani, R. S. Knox, and J. R.
SchrieSer, Phys. Rev. Letters 9, 215 (1962).

Fro. 3. The actual electron density and model electron density
in the neighborhood of a bimetallic junction (1022 cm '—10"cm 3}
as calculated in the erst iteration using a density-dependent
exchange and correlation potential calculated from the model
charge density of Fig. 5 of I.
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FIG. 7. The actual electron density and model electron density

in the neighborhood of a bimetallic junction (5X10" cm '—10"
cm ') as calculated from the starting potential used in the itera-
tion procedure.
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FIG. 6. A comparison of the electron density in the neighborhood
of a bimetallic junction (10"cm '-10" cm ') as calculated using
exchange and correlation potentials derived from the model
density and actual density of Fig. 8 of l.

introduced by ignoring density-gradient terms in the
Hohenberg-Kohn-Sham theory are of the same order of
magnitude as our choice of the model potential. Due to
its discontinuities in the density, the model density is,
of course, unsuitable for higher-order calculations.

Juretschkeis has shown that the statistical approxima-
tion tends to overestimate the effects of the varying
density on the exchange and correlation potential.
Therefore, the use of higher-order corrections is
expected to decrease the size of the calculated depletion
region.

C. Free-Electron Model of a Metal-Semiconductor
Interface

We now consider the free-electron prototype of the
metal-semiconductor junction in which the higher-
density material (the semiconductor) has a smaller
separation energy than the lower density material
(the metal). The experimentally observed band bending
indicates that this situation exists in most metal-semi-
conductor contacts. The dipole potential needed to
equalize the Fermi levels in this case is in a direction
(rising from the higher to the lower density material)
opposite to that in the previous calculation.

The numerical example used to simulate the metal-
semiconductor interface is the case of an electron gas of
density 5)&10"cm 3 next to one of density 10" cm '.
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FIG. 8. The actual electron density and model electron density
in . the neighborhood of a bimetallic junction (5X10~ cm '—10~
cm 3) as calculated in the 6rst iteration using the bulk values
of exchange and correlation potential.

The separation energy as calculated from the Wigner
interpolation formula is smaller for the high-density
material than for the low-density material. The self-
consistent procedure described above is followed again.
Two calculations are performed, the first using the
bulk values of V„in each material and the second
using the density-dependent potential. The first step in
each of these interations consists of calculating the
density using the bulk V„and a starting dipole
potential of the form of Eq. (2.1).The resulting charge
density (Fig. 7) is then fitted with a model charge
density. The erst iteration is performed with and
without a density-dependent V„.The results of the
two calculations are shown in Figs. 8 and 9; the total
potentials used in Fig. 10. We see that reasonable self-
consistency is obtained with one iteration in both cases.
The eGects of the density-dependent exchange and
correlation potential appear to be small. The four-
region model of the charge density in the junction
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region is unnecessarily complicated. The tm'o outer
regions are much smaller than the two inner regions
and can probably be ignored. There is only a very small

dip in the potential in the high-density material and as a
result no surface states are bound in the junction region.

The free-electron model of a metal-semiconductor
interface suffers from two obvious inadequacies: The
separation energies in the semiconductor are not
adequately approximated by the free-electron model
and the periodic potential in the semiconductor severely
modifies the one-electron eigenvalue spectrum e, (p)
in Eq. (2.2a). Both of these inadequacies are associated
with the accumulation of electronic charge along lines
connecting the atoms in the semiconductor'0: a phenom-
enon which is often discussed in terms of chemical
bonding. Nearly-free-electron models can describe this
charge accumulation only by introducing a large
number of terms in the lattice pseudopotential. "It is
evident that a jellium model never adequately describes
such a charge density. The change in the separation
energy due to the charge accumulation can be simulated
in a jellium model by use of a phenomenological e„(e)
relation in Eq. (2.13). We show in Sec. III that the
free-electron charge density is insensitive to the inser-
tion of small energy gaps in e(p) near the Fermi energy.
However, such energy gaps result from a weak pseudo-
potential which does not suKce to create the known
charge accumulation in the bulk semiconductor. There-
fore, we conclude that a jellium model cannot provide
a quantitative description of a metal-semiconductor
contact. Its adequacy for a description of the qualitative
features of these contacts rests upon the (hypothetical)
insensitivity of the details of the junction potential to
the directional properties of the charge density in the
bulk semiconductor.
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FIG. 9.The actual electron density and model electron density in
the neighborhood of a bimetallic junction (5X10n cm '—10n
cm ') as calculated in the.nrst iteration using the exchange and
correlation potential calculated from the model density of Fig. 7

"See, e.g., L. Kleinman and J. C. Phillips, Phys. Rev. 118,
1153 {1960).

"W. A. Harrison, I'seudopotentials irI, the Theory of Metals
(W. A. Benjamin, Inc., New York, 1966).
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FIG. 10. The starting potential and the potentials used to
calculate the electron density in Figs. 7-9. In order to achieve a
systematic self-consistent scheme, the same model potential used
to calculate the dipole potential vras used to calculate the density-
dependent exchange and correlation potential.

III. EFFECTS OF THE CRYSTAL LATTICE

A. Total Potential in the Junction Region: Application
of the Effective Mass Approximation

In order to consider the inQuence of the lattice
potential on the above calculations, we 6rst investigate
those approximations required to obtain a tractable
model of a semiconductor analogous to the jellium
model used in I and above for metals. The total
potential seen by the mobile electrons in the semicon-
ductor near the junction is a complicated functional of
the one-electron eigenfunctions of the system. In a bulk
system, the cancellation sects discussed by a variety
of authors" make possible the substitution of an array
of pseudoatoms for the actual atoms of the lattice. The
weak pseudopotentials associated with these pseudo-
atoms serve as a small perturbation on the free-electron
system.

The pseudopotential form factor representing the
potential due to'-a pseudoatom consists of various
contributions some of which may change signi6cantly
in the junction r'egion. The valence-charge potential
arising from the net valence charge on the ion, and the
core potential arising from the remainder of the nuclear
charge and core electrons are una6ected by the local
electron condguration. Other contributions such as the
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eKect of the orthogonalization hole. (the, absence of
conduction electrons in the core region) can probably
be computed in terms of the local electron. .density.
Still other contributions" depend essentially on the
electronic wave. functions in the vicinity of the atom.

For simplicity we approximate the actual potential
by writing it as

VT(r +) Vy, b &k(r +)+V (r)+V&(r) (3.1)

where V„,b„~k(r,E) is the bulk periodic pseudopotential,
V„(r)is the exchange and correlation potential due to
inh'omogeneous electron-density effects, and Vs(r) is
the Coulomb dipole potential. The last two terms are
the analog of the conventional band-bending potential.
The vahdity of a band-bending model of the junction
rests on the validity of Eq. (3.1). The just&fication for
such a model usually relies on arguments to the eGect
that in a material with a large dielectric constant, the
last two terms in (3.1) are slowly varying on the distance
scale of a single unit cell.

We 6rst ignore the band-bending term and comment
on the difFiculties inherent in matching the wave
function in each of the two materials at the junction. A
single Sloch wave in one material must be joined at the
junction to an in6nite series of Bloch waves in the
second material each of which has the same energy, "

(3.4)

[~-( s&—)+V(r))f-x(r) =&f-s(r) (3 5)

Here e„(—iV) is the bulk one-electron energy due to
the periodic potential. The f„«(r)are eigenfunctions of
the bulk material and 0 is the volume of the system.
Equation (3.5) is the periodic-potential form of Eqs.
(2.2) in the free-electron model.

The electron density in the KMA may be obtained
from the following considerations. Using Eq. (3.3)

Near k', k=0, we may write

Nno & nE I ) (3 7)

V(r) is imposed on a periodic lattice potential V~(r)'
the wave functions within a band (I) are given in the
EMA by

(3.3)

khaki l

(3.2a)

where Io is a coordinate vector parallel to the junction.
I''or a wave function with given values of E and k~i

in the erst material there are now at most two terms
(values of &k,) in the sum of Bloch's waves of the second
material which join it at the junction. Unfortunately,
the only model in which a separable f is rigorously
realized is one in which the potential in directions
parallel to the boundary is uniform and periodic
variations are confined to the direction normal to the

junction.
If we now include the band-bending term in the

potential, an exact treatment of even the separable
model involves a linear superposition of many Bloch
waves. The eBective-mass approximation" u (EMA)
is a means of avoiding some of the complications of such
an exact treatment. When a slowly varying potential

"V.Heine, Proc. Phys. Soc. (London) 81, 300 (1963).
~~ J. C. Slater, Phys. Rev. 76, 1592 (1949).
"D.J.BenDsniel and C. B.Duke, Phys. Rev. 152, 683 (1966).

For a, fixed value of kl 1 in the reduced zone, there are an
infinite number-of wave functions in the various bands
which must be included in the above sum.

In order to obtain a tractable model, we further
approximate the Bloch function in each material by a
separable form

(3.2b)

where the Bloch function u„«(r) factors out, giving a
rapidly oscillating contribution to the density. We de6ne
the effective density, to be used in Poisson's equation,
to be equal to an average over the unit cell, and
therefore

kk'E
(k)f,8(k~)ei(k—k') R~e

X— e'&« "''"u «(y)u «*(y)d'y, (3.8)
8

where B is the volume of the unit cell, r= R +y, and

R,
„

is a lattice site.
The integral can be expanded in a series in q = k—k',

which for k= k' gives unity, so that

p„(R )= Q f„e(k)f„e*(k')e'&««'&'""1+OI —
I

(g
kk Z &Gl

where 6 is a reciprocal lattice vector. In averaging

over the unit cell, we have averaged out the variation
in density associated with the chemical bonding in the
semiconductor. "The electrostatic effects treated here,
however, vary with a characteristic distance of several
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of the junction. That is,Bohr radii, which in a semiconductor is much larger
than a typical cell dimension. Equation (3.9) is the
periodic-potential analog of Eqs. (2.6)—(2.9) in the
free-electron model. We already have discussed the
physical consequences of the averaging over the single-

cell density variations at the end of Sec. II C.
In order to calculate the electron density, we require

the wave functions for all values of the energy spectrum
of the bulk materials. Only when (i) e„(—iV) in both
materials can be represented as an expansion about
critical points in the energy spectrum, and (ii) continu-

ity of kl& is possible for all electron states in the energy
band considered, can simple relationships be obtained
between the values of f and df/dx in the metal and
semiconductor at the interface. Then

k'k. ')
~(k) = + 8(Eo E)+—E&—

2mo 2m~~ 2m~, )

X8(E,—E)+8(E—E)(E&+ E,+ k'k. '/2m r,), (3.13)

with

Eo= h'k p/2mr, g
=Eg k—'k p/2m1. 2 &

E2= Eg+k'qg'/2mrn= Eg+Eg k'qP/—2mra, (3.14)

where mo is the free-electron mass, k~=iq~, E~ is the
energy at the top of the valence band, and E, is the
size of the energy gap.

Nonlocalized states appear in the energy gap of this
model structure because all motion parallel to the plane
of the junction is unbounded. Both the spectrum as a
function of k' and the density of states are shown in
Fig. 11.The band gaps of typical semiconductors range
from 0.5 to 3.5 eV; their electron aKnities X, the bulk
separation energy as measured from the bottom of the
conduction band, from 3 to 5 eV; their valence band
widths from 5 to 15 eV. ' " The parameters of the
model may be chosen to simulate actual semiconductors,

Using the model for the semiconductor, the solutions
to the Schrodinger equation (2.2a) must be obtained
separately for each of the six regions indicated in Fig. 12.
We have obtained these solutions and the resulting
expressions for the electron density analogous to Eqs.
(2.6)—(2.9) in the free-electron model. The length of
these formulas, together with the approximate nature of
the model, leads us to discuss in the remainder of this

(3.10)fsc(~ O) fm—(g —
O)

(3.11)
gfsc 1 gfm

(x=O) = (x=O).
m„dx m dg

The latter relationship guarantees current conser-
vation. '4

From the above discussion we see that practical
calculations require a large number of simplifications
and approximations, many of which cannot be justified
a priori. Treatment of the periodic potential in a simple
manner requires the approximation of a separable
wave function. Consideration of band bending requires
the use of the EMA in situations for which it cannot be
justified adequately. By using these approximations,
Eq. (3.3) may be rewritten as

4..(r) = LZ f..(k.)4.. (~)j~:„(8) (3.12).

E(k)
I

E2—

3. Model Metal-Semiconductor Junction Ep

As we previously emphasized, the approximations
required to obtain a manageable model of a metal-
semiconductor junction are suKciently severe that such
a model cannot be expected to give a quantitative
description of the experimental results. However, let us
define a given model band structure in order to illustrate
certain qualitative conclusions which will be relevant
in discussions of actual junctions. The band structure
adopted, consistent with the requirements of Sec. III A,
is one in which the motion parallel to the interface is
that of a free electron and which exhibits an energy gap
in its band structure in the direction normal to the plane

(ik} k
p(E}

Pro. 11.The density of states and energy spectrum as a function
of k' for the model of a semiconductor given by Eqs. {3.13)
and {3.14).

2'M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789..
(1966).IR. K. Swank, Phys. Rev. 153, 844 {196/).

The variation associated with k&& is treated exactly at
the interface and the variation associated with k, is
treated within the EMA. We examine this model in the
next section in order to estimate the modifications of the
predictions of the free-electron model by a lattice
potential.
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F»G. 12. The energy bands and band-bending potential in the
model of the metal-semiconductor junction speciQed by Eqs.
(2.2a), (2.4), (3.13), and (3.14).

section selected aspects of the results rather than giving
them in full.

In each of the six regions E, has a restricted range of
variation and the expression for the density is of the
form

n(x) =g dE. I P~.'(x)
~
'W(E.), (3.15)

p„(E)dE, (3.16)

in which p&&(E) is the two-dimensional density of states
associated with motion parallel to the junction. Con-
sideration of tight-binding expressions for p„(E)
indicates that W(E,) is constant for small values of E,
and tends to zero as E -+ EF. In the particular model
considered

p» =mo/2~6 &

W(E,)= (mo/2m h') (Ep E) . —
(3.17a)

(3.17b)

Since states in the energy gap are lightly weighted,
their contribution to the charge density responsible for
the potential barrier is relatively small. The charge
contribution from the gap may be of long range since
for narrow band gaps the characteristic decay length
q»

' may be longer than the scale length associated with
valence-band contributions. However, the value of the
potential at the interface is affected only slightly by the

where the sum over i includes degenerate wave func-
tions, and the weighting factor W(E,) gives the number
of filled states in the energy band associated with k~& for
afixed E,.For the separable model considered, W(E,) is
the same for both materials:

small amount of charge due to the evanescent states in a
small band-gap semiconductor. It is principally deter-
mined by the short-range charge deviations due to
oscillatory states in the metal and the semiconductor,
and evanescent states in the metal. Only as the energy
gap of the semiconductor becomes comparable to the
metal's conduction-band width does the evanescent
component in the semiconductor play an important
role in fixing the barrier height of the interface. In this
case the states in the semiconductor gap serve as the
analog of the vacuum in a metal-vacuum interface, and
bring the effective metallic work function closer to its
value at a metal-vacuum interface.

The band structure within the valence band is
refiected in a new characteristic length for oscillations
of the charge variation. We expect that k» ' serves as
a characteristic decay length for the charge oscillations
calculated in Sec. II. In addition, the matching of the
wave function along the line Eo(x) introduces reflected
waves which may lead to charge deviations further from
the interface than are present in a totally free-electron
model. These reQected waves are, however, artifacts of
the particular band structure chosen.

C. Suannary

Our main conclusions about metal-semiconductor
contacts are: (a) the bulk one-electron separation
energies of the composite materials dominate the
features of the junction potential; (b) for narrow band

gap semiconductors, the nearly-free-electron (NFE)
model of the interface, adjusted to give the bulk
separation energy in the semiconductor, may provide a
semiquantitative description of the junction potential;
(c) the main limitation on the applicability of the NFE
model to the description of metal-semiconductor
contacts lies in its inability to simply describe the
"chemical-bonding" charge accumulation in the bulk
semiconductor; and (d) to the extent that the NFE
model provides a qualitative description of a bimetallic
or metal-semiconductor contact, all of the "band-
bending" effects associated with the difference in the
bulk one-electron separation energies of the composite
materials are adequately described by alterations in
the "bulk" electronic charge density near the interface.
It is not necessary to introduce specifically surface
properties like surface states to describe the junction
potential.

As Heines has noted, the evanescent charge contribu-
tions due to electron states in the semiconductor and
in the metal are the analog of the surface states orig-
inally introduced ' to explain deviations from the Mott-
Gurney model. In our model, all the electron states of
the system, not just the evanescent ones, are determined
by and determine the junction characteristics. Although
surface states associated with impurities may exist in
some junctions, their introduction in the situations we
have considered is both unnecessary and incorrect.


