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Elastic Scattering from Atomic Oxygen and Photodetachment from 0- t
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A method developed by Temkin to allow for polarization sects in low-energy scattering of electrons
from atoms has been extended to include all direct contributions from the polarized orbitals and the ex-
change contribution from the most important type of polarized orbital. The analysis has been applied to
atoms with con6gurations 1s'2s~2p~. Cross sections for the elastic scattering of slow electrons by atomic
oxygen are given for energies &6.5 eV. The additional direct polarization terms are found to be important
in calculating s-wave elastic cross sections for 0, as they decrease the cross section by a factor of 2 near
threshold; but the exchange d orbitals of the oxygen atom are relatively unimportant in relation to all direct
polarization terms. Photodetachment cross sections for 0 are given for photon energies in the range 1.47
to 5.5 eV, and are found to be in good agreement with experiment when polarization terms are included and
the dipole velocity approximation is used.

X. XN'TRODUCTXON'

0%—ENERGY scattering of electrons by atomic
& systems has been the subject of a number of

recent theoretical and experimental investigations. In
particular, theoretical attempts' ' have been made to
improve upon the results obtained using the exchange
approximation. This approximation neglects the reac-
tion of the scattered electron on the atomic system.
The long-range polarization effects which are induced

by this reaction are important for low-energy electron
scattering.

In their study of low-energy elastic scattering of elec-
trons from atomic oxygen and the photodetachment
of 0, Bates and Massey' introduced an additional
potential which had the asymptotic form —nr 4, where
o, is the polarizability of the atom. This is the antici-
pated form of a potential due to the polarization effect.
They computed phase shifts and photodetachment
cross sections as a function of the polarizability, which
was regarded as an adjustable parameter.

A. similar approach was used by Klein and Brueckner.
They uniquely determined the polarizability by re-

quiring that n is the eigenvalue in the solution of the
bound-state equation for the radial functions for 0 .
In this equation they assumed that the electron
aflinity is known, and used the value given by the ex-
perimental determination of Branscomb et at'." The
phase shifts for s-wave electrons were only calculated
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at a few energies by Klein and Brueckner, a wider
range of energy being obtained by using an effective-
range formula. The formula used was incorrect, since
a rn. odified effective-range theory" must be used for a
central potential with asymptotic form —nr 4. Cooper
and Martin's corrected and extended the results of
Klein and Brueckner. They obtained photodetachment
cross sections for 0 which are in good agreement with
the experimental results of Smith. '3

An approximate method for inclusion of dipole dis-
tortion effects was developed by Temkin. ' He applied
the polarized orbital method to atomic oxygen, and
made allowance for the d orbitals of the oxygen atom.
These orbitals contribute about 70% to the polariz-
ability. Only s-wave scattering cross sections were
computed.

The method employed by Temkin has been extended
to include all direct contributions from the polarized
orbitals and the exchange contribution from the most
important type of polarized orbital. The analysis has
been applied to atoms with configurations is'2s'2p&,
and is given in Sec.II.The numerical methods employed
to solve the coupled integrodifferential equations are
given in Sec. III. Cross sections for the elastic scattering
of slow electrons by atomic oxygen and photodetach-
ment cross sections for 0 are presented in Secs. IV and

V, respectively. The effect of inclusion of additional
direct polarization terms and the correct inclusion of
exchange d orbitals of the oxygen atom is discussed
in Sec. VI.

IX. THEORY

We will consider the collision of an electron with an
atomic system which has nuclear charge Z and X
electrons. The totally antisymmetric (%+1)-electron
wave function is de6ned as

~r:X,X, "X„„=e(r:X),
"L. Spruch, L. Rosenberg, and T. F. O' Malley, Phys. Rev.
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ts S. J. Smith, in Proceedings of the Fourth Internatsonat Con

ference on Ionssatson Phenomena sn Gases, Uppsata (North-Holland
Publishing Company, Amsterdam, 1960), p. 219.
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where X; denotes the spatial and spin coordinates of the
ith electron, and F—=yklLSL'S'ML Ms is the complete
set of quantum numbers required to specify the atomic
system. The atomic term is labeled LS, and the wave
number and orbital angular momentum of the pro-
jectile are k and I, respectively. The total orbital and
spin quantum numbers are L' and S', and we shall work
in a representation where the Hamiltonian HN+1 is
diagonal in L' and S'.

The time-independent Schrodinger equation is given
by

EN+1%=~,
where

For systems which have con6guration 1ss2s'2p&, the
direct potential V is given by"

V(r) =2Y (1s,ls; r)+2F (2s,2s; r)

+3q(2l+1) (2L+1)Q(2)%+1) 'C(l/) 000)

XC(11K;000)W(lIlL; L')) Q (—1)~'+~s
LgSg

X (qLS~ }LB's)sW(1L1L;Ls&) F"(2p, 2p; r), (5)

where W(abed; ef) is a Racah coeKcient, '4 (qLS
~
}LsSs)

is the coeScient of fractional parentage, and F" is
deined by

r
Y"(nl,n'l'; r) =r—"—' P„t(s)P„.t (s)s"ds

0

+r" P„t(s)P t (s)s " 'ds (6).

The exchange potential TV is given by"

W(r,F)= —(2l+1) 'Y'(1s,F; r)Pt, (r)
(1)@(I'.X)=Ap(I'. X), —(2l+1) 'F'(2s, F; r)Ps, (r)

—3q(2l+1)(2L+1)(2S+1)Q (qLS(}LsSs)'
LgS2

XW(S-' -'S S'Ss)g (2) +1)-'C(ilk i 000)'

and E is the total energy of the system.
The wave function%' may be expanded in terms of the

complete set of orthonormal eigenfunctions C of the
atomic system, these functions also being correctly
antisymmetrized. Thus,

it*(r:X „-')LII~„,—Zje(r:X)dr „-=0, (3)

where J'dr; ' denotes integration over all coordinates
except r;. We de6ne

where Fp is the energy (in atomic units) of the atomic
state LS, and we make use of the result that

II~=ZpC .

If only the ground-state term is retained in the ex-
pansion (2), then the Hartree-Fock or exchange approxi-
mation is obtained. Within this approximation, (3)
may be reduced to

where
(@+les)F(r)+W(r,F)=0,

d' l (l+1) 2Z
+—2V(r).

dr2 r2

(4)

'4 G. Racah, Phys. Rev. 63, 367 (1943). For Clebsch-Gordan
and Racah coefBcients we use the phase conventions of M. E.
Rose, Etementary Theory of Angular Momentum (John Wiley tk
Sons, Inc. , New York, 1957).

where A is the antisymmetrization operator, and

|t (r:X)=P C(S-',S'; m, m,X,.)
XC(LlL'; Mr, rtttMr, )Yt t(rtr+r)Xtts (X+1)

XC (MLS
~
X„+, ', Xtr+,)F(-rtr+, )r„+ . (2)

Here C(abc;nPy) is a Clebsch-Gordan coeKcient, '4

Ft t(r) is a spherical harmonic, and Xtts (i) is a spin
fu11Ct10n.

Solutions for the scattered electron wave function P
are obtained by requiring that

XX(Ls1L; Dl; LlL') Y"(2p,F; r)Psn(r), (7)

where X(abc; pqr; xys) is the Wigner 9j function.
The exchange approximation neglects the reaction

of the scattered electron on the atomic system. This
reaction is important for low-energy electron scattering.
It may be accounted for by taking more terms in the
expansion of f, Eq. (2). We may include, for example,

configurations 1s'2s2pp+' and 1s'2s 2pp '3d. However,
this would necessitate solving many coupled integro-
differential equations. '

An alternative approach has been suggested by
Temkin. ' He replaced C in Eq. (2) by (C+C„j, where
C„ is included to take account of the dipole distortion
of the atom by the incident electron. Ke will now
outline the procedure used to calculate the polarization
function C „.

If the perturbation due to the incident electron is
adiabatic and if the predominant polarization e6ects
occur exterior to the space occupied by the atomic
electrons, then the static Hamiltonian may be written

I.'Itr+t (static) =IItr srtr+r '+) P Vse(rtr—+t,rs),

t' K. Smith, R. J.W. Henry, and P. G. Burke, Phys. Rev. 147,
21 (1966).

~6K. Smith, R. J. W. Henry, and P. G. Burke, Phys. Rev.
157, 51 (1967). These authors have solved up to five coupled
integrodiGerential equations which arise when all terms of the
ground-state configuration are included in the expansion of P.
Since these terms all belong to the same configuration, no polariza-
tion effects are included.
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is awhere s==Z—E is the excess charge, X=r~+~ is a
small perturbation,

Vk rkP1('4'rN+i)
and

&(r~+i r~) = 1 (rzr+»r/)

(re+i «~) .

hat the scattered electronThe step function e ensures t..a
is always outside the atomic electrons.

stem ma e ex-
as sums of Slater determinants, and an un-

be written asperturbed ground-state orbital may e

C'/ ——r/
—'P„i (ri) 7'i."'(r/, )Xi/~" ~(k) .

Expanding the single-electron pertur er e functions in
the series

s a sum of products ofThe total polarization function is a p
hrturbed orbitals, in which eac

orbital is replaced consecutively by its polarize par .
Thus,

" r was first ob-The differential equation for N„q.
tained by Sternheimer. ' It is

d2

dr' P'„~ - dr 2

1 d'P i D'(/'+1) —l"(l"+1)j
r2

(8'+k')F (r)+W(r,F)+W~(r, F)

XN "()=-P (). (8)

When C is replaced by (C+C then from (2) and

(3) we o tain e oth f llowing scattering equation for t e
function Ii:

then
C +C '+ terms of higher order,kM k

2 n—1

+2 Z ~ii/-iP-i(r), (9)

M i'= P i- "C (m/' —+ l";m' ~ m")

rie

—'
nn I rXI.i i"(r~)&v" pa/

X Vl
' "(rw+l)~1/2" (&)rN+1 'e(rx+l, ry),

in which

n=1 l1=0

where 2'= Z —2V~(r). Here V r is the direct polar-
In calculating V„we assume t a

there is no contribution romm the closed 1s s e . e
V„ is given by

C (I/' ~ l"; m' ~ m")
=2(—1)'+~" ~'{4'(2P+1)L3(2@+1)$'}'/'

XC(1/'l"; m" m'm") C—(1/'l"; 000) . where

Vn(r) r L+& n(r)+/i2u (r)+&2m r (10)

r

0

r r

P2gsP2yds P2ys2q~yds
0

P2qsg2s~yls (11a)

and

1 C 11/"' 000) g& C(/1/j 000) Pz, ,s, (qLS }LiS2) 2 +1)W(1/"//; 1f)'n2„&"(r) =—6q(2l+1) (2I+1)C(11/';

X 2
'

y ~I —8 ~1 PigsP2yds P2~Bi~~iIIds . (11bXW(L21L'/ Lf)' P2„sN2„~i-ds 8t"o i,s—)
0

where

IS'I }L~S~)'W(Si -'S; S'S2)C(ld2; 000)

( 1L'/; If)'W(12l; 1f)W(1 /2; l~f), (13)X,C(X1$; 000)C(/1/; 000)Q (—1)r(2f+1 W I

1 considered the most important typecalculatin 5"~, we have on y consi er. I', ~
8' '

the exchange potential. In ca cu
'

g
of polarized orbital, 2p —+ d. Then W~ is given y

(12)W (r F) =P2„&Z"(2p,F; r)N2„d (r)+8/, X„(r,F),7

Z" (2p,F; r) =r" P2~FS ~ 'ds.

the ste function e. We findises from the operation o ep
'

f th Laplacian operator on the s pThe function X„arises fro p

1 r Bg(qLS~ }L+2)W(Sg gSj S S2)X(112 j 2 j1L L 2LL')

() j — —
~ ....()+—,p..(),'

ds $ ss s2$ r r r 2

dF " (d' 2Z 6)1
P, s—'Fds~ + ~N,„„(r)2)r dr

~' R. M. Sternheimer, Phys. Rev. 96,. 96 951 1954).
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rY" (nP,F; r) r"+'

rY"(nl', F; r) r ".

The Z" functions $Eq. (14)], may be treated in an
analogous manner to the Y" functions. Thus the func-
tions Z~ satisfy

p'„)Il dr =0.

Sloan' has shown that no special effects arise from the with the boundary conditions
unphysical discontinuity which the step function pro-
duces in the total wave function.

We have also required that the continuum wave func-
tion be orthogonal to all the ground-state orbitals, so
we have included in (9) terms of the form 5t tttt„tP„t(r),
where p„~ are the Lagrange undetermined multipliers.
They are adjusted so that

III. NUMERICAL METHODS

In order to calculate the polarization potentials we
have to solve Eq. (8) for the polarized orbital function.
The boundary conditions for N„t t ~ (r) are

ds (X+2) (X+1)
(rsZr)— (rsz) )

y2

(X+1) 1 dP„t.
P-t (r)+-

r2 r dr

1 dP
F(r) P„,.—(r-) (19—)

r dr

tt„t. p. (r) r"+', and are subject to the boundary conditions,

r'Z" (nl' F r) r'+'+'

rsZ" (nl' F r) - r-~-r.

liml„t. ~p. (r) =0. (15b)
(20)

The limit of large r cannot be employed exactly due to
rounding errors, so we must obtain an approximate form
for it. The unperturbed atomic wave functions have the
asymptotic form

N„t ~p. (r) ~ —A (4P) 'r"+'e ~"—

The integrals which occur in the X~ function may be
handled in a similar manner.

p ~~ gn —pr This treatment of integrals of the form J„'", avoidsI~)~ (f') ~ c41' e
~00 the difhculties encountered by Temkin and Lamkin2

b
.

h
and Sloan, ' who wrote the integrals in the form

When we use this in jsj instead of j15bj we obtain the
boundary condition 00 p 00

F(r) ~ r'+'
~0

F(r) k 't'(sing+tanbt cosa),
(16)

where
8= kr —lrr/2 —rt ln2kr+o t,
rt= —z/k,

t ——argl'(1+i+it)) .

We note that the Y~ functions LEq. (6)j, satisfy the
following second-order differential equation'

),()+1) (2) +1)
(rY")— P„p (r)F (r), (17)

r2 r

"D. R. Hartree, The Calcglotion of Atomic StrlctIres Qohn
&iley R Sons, Inc. , New York, 1957), p. 51,

The integration of (8) is then straightforward, except
for unphysical singularities due to the P„t.(r) 'd'P„p/dr'
term. These singularities were smoothed out, but we do
not expect to have introduced any large errors as a
result of this procedure.

We are required to solve the scattering equation given
by (9) in order to obtain the continuum wave function
Il. The boundary conditions which Ii must satisfy are

where e is a small, arbitrary, nonzero constant.
We thus have to solve Eqs. (9), (17),and (19) subject

to the above boundary conditions. We note that a 6rst
derivative is present. The coupled integrodifferential
equations were solved using an extension of a method
given by Sloan' for a single integrodifferential equation.
The numerical solution was obtained by integrating
outwards and inwards with subsequent matching to
obtain a Gnal continuous solution. "The integral terms
in the equations were treated noniteratively following
Marriott. "The asymptotic expansion method of Burke
and Schey" was used to determine the phase shift bq

from the function P. The combination of these methods
has been outlined by Smith et al."

IV. ELASTIC-SCATTERING CROSS
SECTIONS: OXYGEN

We have applied the theory presented in Sec. II to
atomic oxygen. The self-consistent-Geld. (SCF) wave
functions given by Roothaan and Kelly" were used for
the unperturbed ground-state term of oxygen.

'9 K. Smith and P. G. Burke, Phys. Rev. 123, 174 (1961).
'0 R. Marriott, Proc. Phys. Soc. (London) 72, 121 (1958).
sr P. G. Burke and H. M. Schey, Phys. Rev. 126, 163 (1962)."C. C. J. Roothaan and P. S. Kelly, Phys. Rev. 131, 1177

(1963).
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FIG. 1. Energy variation of s-wave elastic cross section for
electrons incident on atomic oxygen. Polarization potential terms
are included as follows: Curve A: 2p ~ d direct term only; curve
8:All direct terms; curve C: 2p ~ d direct and exchange terms;
curve D: All direct and exchange terms.

~ R. A. Alpher and D. R. White, Phys. Fluids 2, 153 (1959).

The polarized orbital functions were obtained by
solving Eq. (8). These solutions were then used to
calculate the direct polarization potential. Thus we
obtained 2V„—5.15' 4. This value compares very

7~ oo

favorably with the experimental value" for the polar-
izability of 5.190,0'.

The ground state of oxygen is a 'P state, and so for an
s-wave electron, the total spin quantum number can
have the values S= ~ or S=-,'. In Fig. 1 we present our
results for the elastic scattering of s-wave electrons by
atomic oxygen. The curves A through D represent the
sum of the 'P' and 4P contributions to the cross sections,
in various approximations. Curve A is obtained by in-

cluding only the o.&~& term in the direct polarization
potential and neglecting the exchange polarization
terms. For curve 8 all the direct polarization terms have
been retained, but 8'~ has been omitted. Curve C was
calculated by including 8'„and only the d-orbital con-
tribution to V~. For curve D all contributions to the
potentials were retained. In all the approximations the
direct and exchange potentials, V and 8", respectively,
have been fully included.

Curve A has previously been calculated by Temkin, '
who sought to obtain, within the framework of s-wave
scattering, a quantitative estimate of the relative im-

portance of the exchange polarization terms, compared
to the direct polarization terms. However, he erro-
neously considered integrals of the form Js"Ps„Fs~ds
for W~, instead of those contained in Kq. (12). Thus
curve C diGers from that computed by Temkin. When
the exchange polarization terms are included correctly,
the s-wave elastic cross sections are increased by 10j~
over those computed using the direct 2p-+ d potential
(curve A).

The effect of the additional 0.2, „and n2~, terms in
the direct polarization potential is large. The corre-

sponding cross sections (curve 8) are lower than curve
A by about 25/z at 1.5 eV and over a factor of 2 smaller
at threshold. When the exchange polarization terms
are included (curve D), there is a small increase over
those cross sections calculated without the exchange
terms.

Smith, Henry, and Burke" calculated cross sections
for scattering of s-wave electrons from atomic oxygen,
omitting all the polarization terms. They found a
threshold value of 7.5)&10 "cm' and observed a
gradual decrease in the cross section to 3.3)(10 "cm' at
13.6 eV. As can be seen from Fig. 1, in all the approxi-
mations used in the present analysis, the cross sections
are much less than these values, and they increase with
energy. Thus, the eGect of the inclusion of polarization
terms on the s-wave cross sections is significant at low
energies.

The eGect of the exchange polarization terms on
higher partial waves was investigated at several
energies and was found to be less than 4%. Thus, we
shall neglect all exchange polarization terms for l&0.

In Fig. 2 we present our results for the total elastic
scattering of electrons by atomic oxygen. All direct and
exchange polarization potentials were retained in the
calculation of the s-wave contribution. For the p and d
waves, the exchange polarization terms were omitted.
The integrodifferential equations were not solved for
l&2. The contribution from these higher-order partial
waves was estimated in the Born approximation' using
only a polarization potential.

The results of three other theoretical calculations
are shown in Fig. 2. Variations on the Hartree-Fock-
Slater (HFS) model were used in these calculations.
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FIG. 2. Total elastic cross sections for electrons incident on
oxygen atoms, compared with theoretical calculations of Bauer
and Browne (Ref. 24), Robinson and Geltman (Ref. 25), and
Garrett and Jackson (Ref. 26), and with experimental results:
A Neynaber et ol (Ref. 27); o Sunsh. ine et ol. (Ref. 28); g Lin
and Kivel (Ref. 30).

~ E. Bauer and H. N. Browne, in Atomic Collisioe Processes,
edited by M. R. C. McDowell (North-Holland Publishing
Company, Amsterdam, 1964), p. 16.
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Bauer and Browne" introduced adjustable parameters
to take account of exchange, correlation, and exchange
correlation interactions. Robinson and Geltman2'
modified the HFS potential by including two additional
terms which also had adjustable parameters. One term
removes the Coulomb tail in the HFS potential and the
other term introduces the effect of polarization. Garrett
and Jackson" obtained an equation which is an approxi-
mation to Eq. (9). In their treatment exchange was
included through the use of a modified Slater exchange
term.

In Fig. 2 the theoretical calculations are compared
with the results of three diGerent experiments on the
total scattering of electrons by atomic oxygen. Ney-
naber et ul.2~ and Sunshine, Aubrey, and Bederson'8
used crossed-beam techniques to obtain the ratio of
atomic to molecular oxygen cross sections. They calcu-
lated the absolute atomic values by multiplying these
ratios by the molecular cross sections obtained by
other investigators who used single-beam methods. "
The datum point of Lin and Rive& was deduced from
measurements with shock-tube techniques. At this
energy, 0.5 eV, Sunshine et al. obtained a cross section
of 5.0~1.5)&10 ' cm Another experiment which used
shock tube methods was reported by Daiber and
Waldron. "They obtained cross sections which varied
from 9X10 "cm' to 12X10 "cms in the energy range
0.43—0.49 eV.

The present calculations agree well with all the
existing experimental results except those of Daiber
and Waldron. Also the theoretical calculations reported
by Robinson and Geltman" and by Bauer and Browne'4
are in good agreement with the results of the present
analysis.

V. PHOTODETACHME5T OF 0
We are concerned with the transitions

0 (1s'2s'2P')'P+ j'to ~0 (1s'2s'2P')'P, 'D+ e

for the ejection of an outer-shell electron. The threshold
energies for excitation from 0 to 'I' and 'D states of
atomic oxygen are at 1.465 and 3.432 eV, respectively.

The photodetachment cross sections may be calcu-
lated using the expression given by Henry and Lipsky. ~
For single-channel photodetachment, this expression
may be written in the form

o.=3.42X10 isC„'(I+ j'es) '[Cem os+C 3f' 'j cm'. (21)

"E.J. Robinson and S. Geltman, Phys. Rev. 153, 4 {1967)."W. R. Garrett and H. T. Jackson, Phys. Rev. 153, 28 (196'/).
~'R. H. Neynaber, L. L. Marino, E. %. Rothe, and S. M.

Trujillo, Phys. Rev. 123, 148 (1961)."G.Sunshine, B.B.Aubrey, and B.Bederson, in ProceeCings of
the Fourth International Conference on Physics of Electronic end
Atoraio Colteseorts, Qttebee (Science Bookcrafters, Hasting-on-
Hudson, New York, 1965), p. 130.

ee E. Bruche, Ann. Physik 83, 1065 (192/).
'0 S. C. Lin and B.Kivel, Phys. Rev. 114, 1026 (1959)."J.W. Daiber and H. F. Waldron, Phys. Rev. 151, 51 (1966).
es R. J. W. Henry and L. Lipsky, Phys. Rev. 153, 51 (1967).
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Fzo. 3. Photodetachment cross sections for 0 . Curves A and B
were calculated using the dipole velocity approximation, and C
and D using the dipole length approximation. Solid curves were
obtained on retaining all polarization terms in Eq. (9), and dashed
curves on neglecting all polarization terms. The crosses represent
experimental results of Branscomb et ol (Ref. 34. ).

The terms of the form (uI b) are overlaps of the radial
wave functions is, 2s, 2p of 0 and 15, 28, 2p of 0, and
of the continuum wave orbital Ii.

The first term in (22) is the radial dipole matrix
element for a single electron transition corresponding
to the ejection of a 2p electron. The second term repre-
sents the relaxation of the ion core when photodetach-
ment takes place. It corresponds to transitions in which
the outer 2p electron goes to the 2s orbital with the
ejection of an s electron. This term we shall call the
s-wave core relaxation term. It is not to be confused
with the direct ejection of an inner shell 2s electron
which occurs at much higher energies than those con-
sidered here.

The corresponding expression to (21) for photodetach-
ment in the dipole length approximation may be written

or, =8.56X10 'eC (I+)'t')I CeM'e+CsMs j cms. (23)

In this form, the operator H is equal to r.
In order to calculate the matrix elements in Eq. (22)

we require an accurate knowledge of the bound and

~ D. R. Bates, Monthly Notices Roy. Astron. Soc. 109, 432
(1946).

This is the dipole velocity approximation. The ioniza-
tion potential I and the energy above threshold k' are
in rydbergs. The overlap integral C~ is given by

C„=(1sI 1s)'(2sI 25)'(2pI 2p)'.

In Eq. (21), Ce and Cs are constants, tabulated by
Bates,~ which depend on the initial and 6nal states of
the system. The matrix element M is given by

mt= (2pl &I P) Bio(2sIP) (2sI 28) '(2pI &I 2s), (22)

where the operator

d 1+(1—j)(21+1)H=-
dr
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FIG. 4. Photodetachment cross sections for 0, compared
with theoretical calculations of Cooper and Martin (Ref. 12),
Robinson and Geltman (Ref. 25), and Garrett and Jackson
(Ref. 26). The crosses represent experimental results of Brans-
comb et ul. (Ref. 34).

This region of large r is weighted more heavily in the
dipole-length approximation than in the dipole-velocity
approximation. Thus, the cross sections calculated in
the dipole-length approximation are not expected to be
as reliable as those calculated in the dipole-velocity
approximation.

The effect of the s-wave core relaxation term in Eq.
(22) was also investigated. When this term is included,
the s-wave contribution to the total photodetachment
cross section is increased by 15% over the contribution
obtained when the term is omitted. The d waves do not
contain this correction term. The contribution from the
d waves to the total cross sections increases as the
photon energy increases. Thus, the effect of the s-wave
core relaxation term is reduced as the photon energy
increases. The net increase in the total cross section is
8% at a photon energy of 3.4 eV.

In Fig. 4 we compare the results of the present
analysis (Fig. 3, curve 2) with the theoretical calcula-
tions of Cooper and Martin" Robinson and Geltman"
and Garrett and Jackson. "The crosses represent the
results of Branscomb ef al. '4 The present results appear
to provide better agreement with experiment than the
other theoretical calculations.

free radial wave functions. The SCF wave functions
given by Roothaan and Kelly" were used to describe
the bound state of 0 . The continuum wave functions
were obtained by solving Eq. (9).

In Fig. 3 we present our results for the photodetach-
ment of 0 . Curves A and 8 represent the cross sections
calculated using the dipole-velocity approximation
LEq. (21)g. Curves C and D are the cross sections
calculated using the dipole-length approximation LEq.
(23)). The effect of the polarization terms Ve and W„
in Eq. (9) was investigated. The dashed curves in Fig. 3
represent cross sections obtained when we neglected
the polarization terms in the calculation of the con-
tinuum wave functions. The solid curves were obtained
by retaining all the polarization terms in Eq. (9).

In Fig. 3, the experimental results of Sranscomb,
Smith, and Tisone, ~ represented by crosses, are com-
pared with the theoretical cross sections. We note that
in the dipole-velocity approximation, the cross sections
are in better agreement with experiment than those
calculated using the dipole-length approximation.
Further, the inclusion of polarization enhances the
agreement between theory and experiment, especially
at energies near threshold.

The lack of agreement between the cross sections
calculated in the dipole-velocity and dipole-length
approximations may be due to the representation used
for the bound-state wave functions for 0 . We have
used Hartree-Fock orbitals for 0, and these wave
functions do not have the correct asymptotic form. "

~L. M. Branscomb, S. J. Smith, and G. Tisone, J. Chem.
Phys. 43, 2906 (1965).

VI. CONCLUSIONS

The additional direct polarization potential terms
are important in calculations of s-wave elastic-scattering
cross sections for atomic oxygen. When these extra
terms are included, the cross sections are decreased by
25% at 1.5 eV and are over a factor of 2 smaller at
threshold.

The exchange d orbitals of the oxygen atom are
relatively unimportant in relation to the direct polar-
ization terms, since they increase the s-wave cross
sections by only 10% over those calculated when they
are omitted. Further, they have very little effect on the
p- and d-wave cross sections. The 2s —+ p and 2p ~ s
exchange terms have been omitted in the present
analysis. The consequence of this omission is difficult
to estimate, but in view of the small effect of the 2p —+ d
exchange terms, the results are not expected to be
altered significantly.

The present results are in good accord with recent
theoretical"" and experimental work" ""However,
more experimental work at very low energies for
elastic-scattering cross sections for atomic oxygen is
needed, since three experiments""" report widely
varying results at about 0.5 eV.

Photodetachment cross sections for 0, calculated
using the dipole-velocity approximation, are in good
agreement with experiment when polarization potential
terms are included in the calculation of continuum wave
functions. The polarization terms have a signihcant
eBect, especially at low energies, where the cross
sections are increased by 30% over those calculated
using Hartree-Pock continuum wave functions.
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At photon energies greater than 3.5 eV, the present
results are in better agreement with experiment than
previous theoretical calculations. """However the ex-
perimental results are not reliable in this energy region,
as calibration of the apparatus is dificult due to photo-
electric e6ects from the walls of the apparatus. '4

In the above analysis, the exchange terms have been
treated exactly, and the corrections for atomic distor-
tion have arisen naturally in the formalism, rather than
through the use of semiempirical parameters. These are
the chief advantages of the polarized orbital method
over previous theoretical treatments.
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A Schrodinger perturbation expansion is developed for exchange interactions between atoms or molecules,
starting from a complete, orthonormal set of symmetrized basis functions. The unperturbed Hamiltonian
Ho and the perturbation H' are de6ned in such a way that they are separately permutation-invariant.
First- and second-order results are compared with those obtained by Kisenschitz and London for non-
orthonormal basis functions, and with those derived from a Brillouin expansion.

INTRODUCTION
' 'N applying the Schrodinger perturbation formalism
~ ~ to the evaluation of intermolecular forces at large
distances (large on the scale of atomic dimensions), it
is possible to neglect symmetrization of the basis
functions with respect to permutation of electrons and
to start from a complete, orthonormal set of product-
type unperturbed wave functions. Usually, these basis
functions are eigenfunctions of the unperturbed
Hamiltonian Ho for the system; the unperturbed system
is that of an assembly of isolated atoms (or molecules),
i.e., at infinite distances from each other.

When the interatomic distances decrease, exchange
becomes important, i.e., the basis functions must be
chosen so that they satisfy the Pauli principle. When,
however, the product-type basis vectors are sym-
metrized (we call any vector or function, whose space
part is either symmetric or antisymmetric under ex-
change of two electrons, a symmetrised vector or func-
tion), then the new vectors do not form an orthonormal
set, and they "overspan" the space of symmetrized
vectors, i.e., they become linearly dependent. As early
as 1930, Eisenschitz and London' developed an elegant
method for overcoming these dHBculties by a judicious
choice of a particular type of basis set in symmetrized
space. They derived expressions for 6rst- and second-
order perturbation energies; the 6rst-order result is of
the same form as in the case without exchange, whereas
the second-order expression contains correction terms
due to nonorthogonality of the basis vectors. A re-
formulation and an extension of the Eisenschitz-

' R. Eisenschitz and F. London, Z. Physik 60, 491 (1930).

London method has recently been undertaken by van
der Avoird. '

Since the early work of Eisenschitz and London, and
especially during the past ten years or so, a considerable
number of different types of perturbation expansion for
exchange interactions has appeared in the literature.
Generally, the authors refer at most only superficially
to the Eisenschitz-London paper, although several later
analyses can be regarded as various approximations to
the early method, or as modifications along much the
same lines. This later work. can be roughly divided in two
categories: (a) Evaluation of exchange forces based on a
Brillouin-Wigner type expansion. "To this category
belong, e.g., the analysis by Dalgarno and Lynn' and
that by Lynn, ' to which we will return later on. Con-
vergence properties of the Brillouin series are deter-
mined by the smallness of the quantity H „/(E &~~), —
where H is the total Hamiltonian of the system, and
where H (m&e) and II are matrix elements of the
total Hamiltonian with respect to a given set of basis
functions. The energy E is computed by iteration. (b)
Evaluation of exchange interactions on the basis of a
Schrodinger type of perturbation expansion. Here, the
total Hamiltonian H is split into an "unperturbed" part
Ho and a "perturbation" II'. This type of procedure
immediately poses a complication, since, because of

s A. van der Avoird, Chem. Phys. Letters (Amsterdam) 1, 24
(1967).' L. Brillouin, J. Phys. Radium 3, 373 (1932);E. Wigner, Math.
Naturw. Anz. Ungar. Akad. Wiss. 53, 427 (1935).

4 P. O. Lowdin, J. Chem. Phys. 19, 1396 (1951).' A. Dalgarno and N. Lynn, Proc. Phys. Soc. (London) A69,
821 C'1956).

6 N. Lynn, Proc. Phys. Soc. (London) A72, 201 (1958).


