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The phonon-frequency distributions of aluminum and lead have been determined from individual fre-
quencies measured by neutron spectrometry. The measurements were mainly for wave vectors in the sym-
metry directions, but were sufficient elsewhere to permit interpolation throughout a cell of the wave-vector
space solely with the help of symmetry conditions. Since there is little latitude for subjectivity in this process,
the resulting distributions may be regarded as experimentally determined. They differ appreciably from
distributions obtained by Born-von Ké4rmén analysis of dispersion curves. The distributions have been
used to calculate heat capacities at temperatures up to 800° (A1) and 500°K (Pb), with corrections for
anharmonicity based on shifts of phonon frequencies with temperature. Formulas for the anharmonic cor-
rections are derived on the assumption of effectively independent modes, with small relative frequency shifts
that vary with temperature in the same way as the vibrational energy of the lattice. One correction affects
both C, and C,, but is actually very small. Another, which is more important, is approximately of the form
aC?T, where a is closely related to an average value of the rate at which phonon frequencies vary with
temperature at the temperature concerned. When a corresponds to frequency shifts at constant pressure
(observed), this gives the anharmonic contribution to Cp; the anharmonic contribution to C, requires shifts
at constant volume, which cannot be observed directly. Calculated and calorimetric values of C, agree well
in the range of temperature where the expression ¢C?T is a fair approximation. The corresponding expression
with the parameter appropriate to constant-volume changes is expected to be a good approximation over a
wider range of temperature, and it has been evaluated by comparison of calculations and calorimetric results.
For both aluminum and lead, the anharmonic contribution to C, thus arrived at is some 10 times smaller
than the theoretical estimates of Keller and Wallace, which were based on a Lennard-Jones interatomic
potential. The quasiharmonic approximation used here gives a very good account of the heat capacity up to
at least 500°K in Al and 400°K in Pb. No conclusion can be drawn about the variation of the electronic heat
capacity with temperature, mainly because of uncertainty in the calorimetric data. It seems that the lattice
heat capacity of aluminum should vary in an anomalous manner below 20°K, first falling below a T3 curve
and then rising above it in the usual way; unfortunately, precise measurements that might reveal such
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behavior do not extend beyond 4°K.

1. INTRODUCTION

UR neutron spectrometric measurements on the

dispersion relations for phonons in aluminium and
lead have been reported elsewhere.!'* For both metals
they include frequencies in the principal symmetry
directions of wave-vector space and at many other
points, at 80°K. The data were comprehensive enough
and accurate enough to permit reliable interpolation
over a cell of reciprocal space, solely on the basis of
measured values and symmetry conditions. This inter-
polation was carried out graphically for the three
branches in each metal to obtain tables of phonon
frequencies at intervals of 0.1 in three directions of
reciprocal space (145 points for each branch). A com-
puter then calculated frequencies at 1000 points in a
cube around each point of the table network, using a
Taylor expansion, and counted the number of frequency
values falling in each of a series of small intervals. This
sample of frequencies at points uniformly distributed
in q space gave the frequency distribution at 80°K,
after a little rounding off to remove statistical fluctu-
ations. As no theory of interatomic forces is involved in
this procedure and as the interpolation procedure is
quite objective, the distributions thus obtained for

* Present address: Chalmers Institute of
Gothenburg.

1 R. Stedman and G. Nilsson, Phys. Rev. 145, 492 (1966).
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aluminium and lead may be regarded as experimentally
determined.

Values of the lattice heat capacity at a series of
temperatures are easily calculated from the frequency
distribution by means of the formula for a harmonic
solid, but it is of course desirable to improve on this
result by calculating the anharmonic contribution as
well. Theoretical work on anharmonicity is to a great
extent formal; where estimates of the anharmonic
contribution have been made they have been based on
some miodel of the interatomic potential, i.e., not in any
simple way on observable quantities, and in fact the
estimates are intended as tests of the theory, not for
practical use. The effects of anharmonicity are ob-
servable in neutron measurements as frequency widths
and frequency shifts of phonons, and it would presum-
ably be possible to calculate the anharmonic contribu-
tion to the heat capacity to any desired degree of
accuracy in terms of these quantities if a good enough
data sample were available. Our measurements at
80 and 300°K suffice for a calculation which gives the
anharmonic contribution to ¢, below 300°K within
roughly 209, which corresponds to about 19, of the
total heat capacity at 300°K. The result may be further
improved upon by adjusting a parameter so that
calculated and calorimetric values of ¢, agree over a
wide range of temp:ratures (according to a formula
derived in Sec. 3.2, the anharmonic contribution to ¢,
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550 STEDMAN,
depends on a single parameter which is related to a
mean value of phonon frequency shifts at constant
volume).

It may seem that there is little point in performing
the approximate calculation of ¢, just mentioned if
parameter fitting gives a better result, but the former
calculation does provide a test of the formula concerned
in terms of observed frequency shifts, and is therefore
included here. The parameter fitting, in its turn, is
more than a restatement of the experimental data on
which it is based: It serves to eliminate the experi-
mental fluctuations in these data, it reveals the tem-
perature at which processes not included in a simple
treatment of the nonharmonic contribution to the heat
capacity (e.g., vacancy formation and complex an-
harmonic interactions between phonons) begin to be
significant, and it provides a definite measure of the
anharmonic heat capacity that is easily compared with
estimates based on a proper theory of anharmonicity.

2. FREQUENCY DISTRIBUTIONS
2.1 Graphical Interpolation

The first step towards a frequency distribution, a
table of phonon frequencies at regular intervals in
reciprocal space, was made by carrying out a graphical
interpolation of measured data, because this seemed
quicker and easier to check than a computer program
including all the same considerations.

The method was briefly as follows. For each branch,
six diagrams were drawn, the diagrams being for
successive ‘“floors” of reciprocal space, i.e., the Oth
diagram for points with ¢3;=0, the 1st for points with
¢5=0.1, and so on up to ¢s=0.5. [ (¢1,¢2,qs) is the phonon
wave vector; the diagram for ¢;=0.6 would be a
reflection of that for ¢3=0.4, and so on. ] Each diagram
consisted of 11 curves or profiles for ¢.=0, 0.1, 0.2, - - -,
1.0, each profile showing the variation of frequency
along the line in question. Permutation of components
gives points equivalent to (g1,42,¢3). A point and its
equivalents in general occur in two profiles in each of
three diagrams. The three different profiles among these
six represent the variation of frequency in three direc-
tions through the point in question, while the occur-
rence of each profile in two diagrams allows it to be
compared with its neighbors in two directions. The
information put into a set of diagrams was all the
measured frequencies for the branch in question which
fell on the profiles, each frequency being inserted at all
possible positions in accordance with symmetry condi-
tions, as well as the slope of the profile at places where
the slope was known from more detailed measurements
[e.g., at points in the (2,2,0) direction]. Then, having
regard for the zero slope at the end of each profile, the
similarity of adjacent profiles, and the six different
positions at which each interpolated frequency must
fit, the various profiles were constructed. The con-
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struction proceeded from regions of greater density of
information to regions of lesser density. Because of the
several conditions to be observed, the procedure per-
mitted remarkably little latitude of choice.

The result is three tables of phonon frequencies for
each metal; Table I gives the figures for lead, while a
similar table for aluminium is available on request.
Measured values are italicized in the tables. The
general level of accuracy is probably about 29; the
three or four significant figures of the tables merely
serve to keep irregularities in the variation of frequency
from point to point small.

It will be seen that the boundary of the region covered
by the tables is a tetrahedron with vertices (0,0,0),
(1,0,0), (1,1,0), and (0.5,0.5,0.5). The boundary oppo-
site the origin thus differs from that of the first Brillouin
zone. For phonons, Bragg reflection is of no conse-
quence, and the Brillouin-zone construction, involving
perpendicular-bisector planes, appears unnecessarily
complicated; the present construction exhibits the
symmetry of the lattice in a more obvious way, and
tetrahedral elements may be easily put together to
form the rhombohedral unit cell of the bcc lattice or a
cube.

2.2 The Frequency Distribution Program

Since phonons are uniformly distributed in q space,
the obvious way to compute their frequency distribution
is to work out frequencies for a uniform network of q
points and count frequencies in a sequence of frequency
intervals. To obtain a more finely meshed sampling of
frequencies than the tables of the last section provide,
frequency values were computed for 1000 points in a
cube of side 0.1 around each of the q points of the tables,
i.e., in a cube extending halfway to each neighboring
point. The frequencies were generated by a Taylor
expansion, for which the six nearest neighbors of each
point in the table network gave the gradient vector and
the diagonal terms of the curvature tensor, while six
pairs of next-nearest neighbors gave the other terms of
the curvature tensor. No attempt was made to achieve
continuity between frequency values in adjacent small
cubes. Discontinuities between q intervals give rise to
fluctuations in the frequency distribution, but these are
small and almost random, like the fluctuations arising
from the limited number of frequencies and frequency
intervals involved in the computation, and are smoothed
out when the final distribution curve is drawn.

The Taylor expansion must be a poor approximation
for frequencies near crossover singularities, curves in
reciprocal space where two branches are in sharp
contact, and where the slope of each branch is dis-
continuous. However, the rounding off which the
Taylor expansion leads to in the neighborhood of such
singularities (the discontinuity in the gradient dis-
appears) is not noticeable in the final frequency distri-
bution, evidently because the regions concerned are
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PHONON FREQUENCY DISTRIBUTIONS

TasLE 1. Phonons in Pb at 80°K. w values (10" rad sec™) for a complete set of q vectors
(g1,92,93). Italicized figures are measured, others interpolated.

10 q w1 w2 ws 10 q
274 157 157
554 309 309
796 447 447
1001 567 567

1155 655 655
1272 696 696

0 0 1 0 5 10
0 0 2 0 6 6
0 0 3 0 6 7
00 4 0 6 8
0 0 5 0 6 9
0 0 6 o 7 7
0 0 7 1366 702 702 0 7 8
0 0 8 1391 680 680 0o 7 9
0 0 9 1316 633 0633 0 8 8
0 0 10 1184 576 576 0o 8 9
0 1 1 434 230 125 0 9 9
0 1 2 642 346 246 1 1 1
0 1 3 850 469 409 1 1 2
0 1 4 1026 586 529 11 3
0 1 5 1165 674 623 1 1 4
0 1 6 1253 711 682 1 1 5
0 1 7 1341 711 699 1 1 6
0 1 8 1366 686 686 1 1 7
0 1 9 1322 671 642 1 1 8
0 1 10 1240 667 623 1 1 9
0 2 2 818 441 233 1 2 2
0 2 3 963 541 337 1 2 3
0 2 4 1089 642 453 1 2 4
0 2 5 1162 730 541 1 2 5
0 2 6 1228 771 636 1 2 6
0 2 7 1278 768 689 1 2 7
0 2 8 1303 743 735 1 2 8
0 2 9 1322 787 118 1 2 9
0 2 10 1322 806 711 1 3 3
0 3 3 1064 623 337 1 3 4
0 3 4 1118 724 428 1 3 5
0 3 5 1171 825 519 1 3 6
0 3 6 1221 907 617 1 3 7
0 3 7 1272 910 705 1 3 8
0 3 8 1291 856 793 1 3 9
0 3 9 1303 863 815 1 4 4
0 3 10 1310 894 806 1 4 5
0 4 4 1168 8§18 482 1 4 6
0 4 5 1228 910 560 1 4 7
0 4 6 1297 991 645 1 4 8
0 4 7 1316 1026 743 1 4 9
0 4 8 1284 1014 837 1.5 5
0 4 9 1234 951 891 1 5 6
0 4 10 1215 926 919 1.5 7
0 5 5 1303 988 589 1 5 8
0 5 6 1341 1077 655 1 5 9
0 5 7 1354 1133 756 1 6 6
0 5 8 1265 1152 847 1 6 7
0 5 9 1149 1102 8§94

w1 w3 w3 10 q w1 w2 wg
1089 1089 - 926 1 6 8 1247 1133 793
1354 1143 074 1 7 7 1291 1165 737
1300 1190 743 1 7 8 1303 1070 778
1218 1184 831 1 8 8 1322 957 749
1218 1007 . 881 2 2 2 985 359 359
1234 1212 743 2 2 3 1089 428 419
1281 1064 787 2 2 4 1162 504 482
1303 944 796 2 2 5 1209 604 541
1297 963 756 2 2 6 1237 774 614
1316 850 718 2 2 7 1265 881 671
1278 749 617 2 2 8 1297 944 730
523 186 186 2 3 3 1159 478 444
708 290 283 2 3 4 1206 548 485
913 428 422 2 3 5 1234 636 523
1061 560 541 2 3 6 1256 793 592
1171 674 630 2 3 7 1278 935 677
1247 711 661 2 3 8 1297 1033 740
1328 711 680 2 4 4 1253 030 497
1354 727 607 2 4 5 1278 711 523
1322 724 623 2 4 6 1310 825 592
863 365 277 2 4 7 1322 951 655
1001 491 371 2 4 8 1297 1051 718
1108 592 460 2 5 5 1335 787 545
1174 693 545 2 5 6 1360 869 595
1231 756 630 2 5 7 1360 963 652
1284 781 630 2 5 8 1322 1039 705
1309 800 727 2 6 6 1360 951 630
1322 837 124 2 6 7 1316 1007 667
1089 573 375 2 7 7 1288 1064 705
1146 674 447 3 3 3 1221 472 472
1187 768 526 3 3 4 1253 501 491
1240 863 611 3 3 5 1265 586 510
1291 932 708 3 3 6 1269 724 507
1291 932 784 3 3 7 1275 916 636
1303 938 803 3 4 4 1294 519 510
1203 768 478 3 4 5 1306 592 529
1240 863 532 3 4 6 1328 702 573
1297 944 617 3 4 7 1347 869 617
1316 1014 715 3 5 5 1335 630 545
1284 1020 803 3 5 6 1360 724 573
1234 1014 856 3 5 7 1366 850 614
1306 944 554 3 6 6 1373 793 595
1344 1014 620 4 4 4 1325 513 513
1350 1077 705 4 4 5 1322 563 545
1284 1108 803 4 4 6 1366 061 573
31202 1108 866 4 5 5 1354 586 548
1354 1064 648 4 5 6 1379 636 563
1306 1127 711 5 5 5 1385 554 554

small and the small spurious frequency shifts that arise
for two branches in contact tend to neutralize each other
in the later averaging process. This was checked by
carrying out a graphical integration of a crossover
region in aluminium, with the correct frequency vari-
ation, and comparing the result with that obtained by
the computer using the Taylor expansion. The expan-
sion is also inadequate at Kohn anomalies, but for
reasons similar to those just mentioned it has been
assumed that this does not noticeably affect the fre-
quency distribution. Near the origin the method breaks
down altogether, because the curvature of w(q) perpen-
dicular to q varies so rapidly. There it is a much better
approximation to assume that the frequency varies

almost linearly out from the origin in all directions,? as
far as a limiting frequency which is chosen by inspection
of the dispersion curves in the symmetry directions,
(for aluminum this frequency was taken to be 2, and
for lead 0.4—the unit 10*® rad sec™ to be understood
here and elsewhere). If we further assume that the
deviation from linearity is about the same for the
different directions within this frequency interval, we
may describe the frequency distribution there by

3 This is so even though in the case of aluminum the slopes of
the dispersion curves for transverse phonons in the region where
our measurements commence is somewhat larger than the velocity
of sound (see Ref. 1) and this may be expected to give a slight
enhancement of g(w) at very low frequencies. No similar effect
was observed for lead.
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Fic. 1. The phonon-frequency distribution of aluminum.

(aw?+bw™), and determine @, b, and # to fit the rest of
the computed distribution, utilizing the integral of
¢(w) out to the limit chosen, together with the value of
g(w) and the slope of g(w) at the limit chosen. A good
approximate description of the first part of the distri-
bution in aluminium is (0.0151w?+0.000106w7) and in
lead (1.33w?+439.6w7). For units, see Figs. 1 and 2. The
power 7 in the small term is in good qualitative agree-
ment with the observed shapes of dispersion curves near
the origin—notably straight for some distance before
falling off.

The frequency distributions for phonons in alumi-
num and lead at 80°K are shown in Figs. 1 and 2. The
integral for the total curve in each case is 1. The con-
tributions from the L, Ty, and T branches are shown
separately. In rounding off the curves, phonon widths
have been taken into account, which means that each
phonon frequency is replaced by a distribution of
frequencies about the same mean and with a small but
appreciable width: The only effect worth mentioning
is a broadening and lowering of the high longitudinal
peak in both metals.

2.3 Comments on the Frequency Distribution
for Aluminum

The three peaks of the aluminum distribution are
easily referred to stationary points on dispersion curves.
The maxima at (0.5,0.5,0.5) T, (1,0,0) T, and (0.6,0.6,0)
L, for which the respective frequencies are 2.64, 3.66,
and 5.45, turn out to be saddle points when examined
in three dimensions, and correspond closely to the peaks
in the frequency distribution.

Gilat and Nicklow* have calculated a frequency
distribution at 80°K from our dispersion curves for
aluminum, using Born-von Kdirmén formulas with
suitable parameters to interpolate over a network

4G. Gilat and R. M. Nicklow, Phys. Rev. 143, 487 (1966).
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similar to ours in Table I, though with an interval of &%
in each q component, followed by a linear Taylor
expansion of frequencies locally in this network. Their
results differ from ours mainly in the relative intensities
of the peaks near 2.6 and 3.6, but in other details as
well. (In comparing the two distributions it should be
noted that theirs is not normalized as ours is.) The
source of the differences between the two distributions
must be in the frequencies for points off the main
symmetry directions, since they have attained a
remarkably close fit for frequencies in the symmetry
directions. Dr. Gilat kindly sent us the data which are
their equivalent of our tables for aluminum, and we
have compared the two sets. The differences are ap-
parent in the two frequencies for q= (1,0.5,0): They
have 4.45(Ts) and 5.18(L,T;), while the measured
values are 4.06 and 5.00. The deviations from the
correct values affect the shapes of the saddle points
previously mentioned ; in the frequency distribution the
most marked effect is a displacement of intensity from
the peak in the T, contribution at 3.6 towards higher
frequencies.

The discrepancy between the calculated frequencies
of Gilat et al. and the measured values is of interest
outside the particular case of aluminum, since it
illustrates the fallibility of the method which they and
several others® have used to derive phonon frequency
distributions for metals, via an analysis of dispersion
curves for symmetry directions in terms of a Born-von
Kérmén model. A simple sketch will verify that it is
easy to interpolate graphically between symmetry
directions in aluminum with at least the accuracy of
the complicated computer program involved in the

g(w) (10™rad™ 5)

o 2 4 K] 8 1.0 12 14
w (10" rad ")

Fi16. 2. The phonon-frequency distribution of lead.

8 For example: C. B. Walker, Phys. Rev. 103, 547 (1956)

(aluminum); A. D. B. Woods, ibid. 136, 781 (1964) (tantalum);
R. A. Cowley, A. D. B. Woods, and G. Dolling, sbid. 150, 487
(1966) (potassium).
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latter method: Draw three “profiles” for the line from
(1,0,0) to (1,1,0), the end values of the frequencies
being 3.66 and 6.10, utilizing symmetry conditions and
the circumstance that the three branches retain their
order (L>T1>Ts), while tending to be closer together
in regions where the simple distinction between longi-
tudinal and transverse modes of vibration is lost [the
symmetry conditions are that each profile is symmetric,
with zero slope at the ends, and that L and T'; have a
“cross-over” singularity at (1,3,0)]. Yet aluminum
might be expected to be particularly favorable for a
Born-von Ké4rmé4n model, since it is regarded as a
relatively simple metal, with uncomplicated dispersion
curves to which the model provides an exceptional fit.
It seems that a few more experimental data and simple
interpolation are to be preferred in generating dispersion
relations for a complete cell of reciprocal space.

2.4 Comments on the Frequency Distribution for Lead

It will be seen that the frequency distribution for
lead is less regular than that for aluminum, which is to
be expected from the less regular dispersion relations.
However, the three main peaks, at w=0.56, 0.70, and
1.30, are exactly analogous to those in aluminum.
Various small humps can all be identified: That at
w=0.5(T5) is due to irregularity near (0.5,0.5,0.5), that
at w=0.75(T3) to the maximum at (0.75,0.75,0), the
dips at w=0.84 and 1.08(7:) to the two crossover
singularities for this branch, and the hump at w=1.35
(L) to the Kohn anomaly near (0.5,0.5,0.5).

Gilat® has calculated the phonon frequency distri-
bution for lead from the dispersion curves of Brock-
house et al. by the method mentioned in Sec. 2.3. His
result is considerably different from ours, but in view
of the complexity of the dispersion curves for lead the
Born-von Kédrmén analysis cannot be expected to give
a good account of the actual phonon frequencies, not
even in symmetry directions.

3. THE LATTICE HEAT CAPACITY

3.1 Basic Formulas and Introductory Remarks

In the harmonic approximation we may define a heat
capacity for phonons associated with a particular
normal coordinate and polarization (or the ith of 3N

modes) by oo/ 26T

Ci= k[m]z , 1

where w; is the characteristic frequency. Transforming
the sum of the heat capacities for 3¥ modes to an
integral, the lattice heat capacity per mole is

ho/2kT P
dw g (w)[m] ) (2)

where g(w) is the distribution of phonon frequencies.

@max

C=3R
0

8 G, Gilat, Solid State Commun. 3, 101 (1965).
? ’ \ /
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Observed frequency widths of phonons and shifts of
frequency with temperature indicate an appreciable
departure from harmonic behavior, which becomes more
pronounced as the temperature rises. But even in lead
at 300°K—which, being more than three times the
Debye temperature, is a relatively high temperature—
the observed phonons are still quite well defined. So it
is reasonable to apply formula (2) to the frequency
distributions described in Secs. 2.3 and 2.4 in order to
calculate a “harmonic” heat capacity at a series of
temperatures up to 300°K, and tentatively even beyond
that, subsequently applying anharmonic corrections.
One obvious correction corresponds to a slight change
of g(w) with temperature, owing to shifts of individual
phonon frequencies, and we may hope to derive this
correction from our data on shifts. Another correction
may be attributed to a small term in the temperature
derivative of a function involving phonon frequencies,
a term of type (dw/dT)[d(energy)/dw]; in harmonic
formulas frequencies are taken to be constant, and no
such term occurs. This term involves the temperature
derivatives of phonon frequencies, and in principle may
also be evaluated from observations on frequency shifts.

3.2 Anharmonic Corrections

We use a quasiharmonic model of the thermal motion
of the lattice, i.e., the vibrational energy is associated
with 3N separate modes, the interactions between
phonons in the different modes being included here in
the shifts and widths of the phonon frequencies. It is
assumed that only the mean frequencies of phonons are
of significance for the heat capacity—i.e., that frequency
widths may be disregarded—and that the right mean
frequency in this connection is the mean frequency
obtained from neutron measurements. A quasiharmonic
approximation of this kind has been discussed by
Cowley?; it is expected to be good in several applications
as long as the temperature is not too high.

Our aim is to produce a formula for the anharmonic
contribution to the heat capacity which, while not
rigorously correct, is based on reasonable assumptions
and approximations, and which contains quantities
such as the thermal energy and heat capacity calculable
from our phonon frequency distributions, together with
a mean frequency shift. To begin with we consider how
frequencies may be supposed to vary with temperature
(since we have no more than values at 80 and 300°K),
and how to determine appropriate mean values of the
frequency shifts.

The variation of each w; with temperature is expressed
in terms of a small relative shift 6;, where

wi(T)=w;(0) expdi(T). ©)

Our observed shifts are shifts at constant pressure, and
are related to shifts at constant volume and at constant

"R. A. Cowley, Advan. Phys. 12, 421 (1963),
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temperature by

(dd:/dT) p=(dd:/dT) s+ V7 (dbi/dV)z, 4)

where v is the coefficient of volume expansion. For
shifts at constant volume we make the drastic though
plausible assumption that they are proportional to the
total vibrational energy of the lattice, not including the
zero-point energy, i.e., that the constant-volume deriva-
tive in Eq. (4) is proportional to the heat capacity (at
constant volume, though this is not important here).
This agrees with the expected linear variation of shifts
relative to 7" at high temperatures (see, for instance,
Ref. 7, p. 435), and with the zero values of the tem-
perature derivatives in Eq. (4) at 0°K, and it will be
seen later that the corrections calculated on the basis
of the shifts are in any case insensitive to detail in the
uncertain region of intermediate temperatures, because
of their smallness and the averaging processes involved
in calculating them. Over a range of temperature which
may be obtained by examining a table of expansion co-
efficients it is also a fair approximation to take v (or,
more strictly Vv) to be proportional to the heat
capacity, and since we may assume the constant-
temperature derivative in Eq. (4) to be independent of
temperature, the constant-pressure derivative in Eq.
(4) is then also proportional to the heat capacity in the
range of temperature concerned. There are several
approximations and assumptions involved here, but in
practice the result is better than might be supposed,
because we evaluate the shifts at constant pressure
from frequencies observed at 80 and 300°K, and only
need the general form of the variation with temperature
to get good enough values elsewhere (actually we extend
the range of validity of our result down to 0°K to obtain
convenient formulas). We thus write

51,': aiE P} (5)

where E is the thermal energy of the lattice, a quantity
which can be calculated from g(w) by appropriate
integration, and @; is a constant which may be derived
from measurements at 80 and 300°K. or, where such
measurements are lacking, by assuming shifts measured
for other phonons to be typical of their polarization
branch and frequency.

The correction to the heat capacity which arises
because the values of w; in Eq. (1) must be appropriate
to the particular temperature, i.e., because g(w) in Eq.
(2) varies slightly with temperature, is

—T[E(T)—E(80)] Z (dCi/dT)as, ©)

because for functions of (w/7T) such as that in (1), 8/w
=—79/dT, and because our calculation of C uses the
frequency distribution for 80°K. The correction may
be evaluated by dividing the phonons into frequency
intervals, each interval with a known average shift,
working out (dC/dT) for each phonon group, and then
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determining the average parameter @(7), using the
appropriate temperature-dependent weights for each
group. The correction is then

—TLE(T)—E(80)](aC/aT)a(T). @)

Five or six frequency intervals should usually suffice:
Where the interval is narrow [e.g., that including the
main L peak in g(w)] the variation of C; with 7 may be
regarded as nearly the same for all modes and the shift
is a simple average, while if the shifts are similar (e.g.,
for the low frequencies) the width of the interval need
not be restricted. The correction is of course zero at
80°K in our case, and for both metals it is positive above
that temperature and negative below. For temperatures
greater than ©/2 (where © is the Debye temperature,
about 380°K for aluminium and 90°K for lead), all
dC;/dT vary approximately as 73 (and consequently
dC/dT does too), and the thermal energy varies as T';
so the correction varies as 77 at higher temperatures.
In the cases we are dealing with, it turns out that the
correction is negligible at the upper end of the tempera-
ture range for which the approximation y=constXC
is fairly good. Below ®/2, a(T) increases in size to a
maximum value at 0°K which is determined by the
shifts in the velocities of transverse sound waves
between 80 and 0°K, and relative to the specific heat
the correction is largest near 0°K. However, the cor-
rection is nowhere large enough for even a 209 in-
accuracy to be of significance. )

When the original “harmonic” specific heat is cor-
rected in the manner described above, the result is
something intermediate between C, and C,. With the
correct formula for the anharmonic contribution and
our observed shifts, we can proceed to C,, but as
already pointed out, the temperature range in which the
approximation expressed by Eq. (5) is fairly good is
limited, and therefore we cannot expect our calculated
C, to be a fair approximation at higher temperatures.
However, Eq. (S) should be a better approximation in
the case of the frequency shifts at constant volume
involved in the anharmonic contribution to C,, and in
this case the formula arrived at should be a good ap-
proximation over a wider range of temperature. We
first consider changes at constant volume, and then
extend the results to conditions of constant pressure.

There are three alternative points of departure for
the heat capacity,

1)@ o

where S is the entropy, F the free energy, and E the
vibrational energy of the lattice (we neglect the ground
state, which we take to be independent of temperature).
S, F, and E are all approximately equal to the harmonic
expressions involving summation with respect to 7 of
known functions of w; and 7, but there is no immediate
way of knowing the deviation from the harmonic form
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for any of them. If we use a harmonic expression for S,
allow frequencies to vary with temperature, and carry
out total differentiation with respect to 7', we obtain an
anharmonic correction which is Y ;[—C.;T(ds:/dT)].
Starting from a harmonic expression for F, we arrive at
a correction }_; [—2C;T(ds;/dT)— E.T (d?./dT?)], and
starting from a harmonic expression for E we arrive at
a correction » ;(E;—C.T)(ds;/dT). Of these three
alternatives, that based on the entropy is best, because
(1) Barron?® found that the entropy is the appropriate
quantity in the present connection, (2) Cowley’ found
that when the quasiharmonic temperature shifts (those
observed with neutrons) are inserted into the harmonic
expression for the free energy, the change in the
temperature-dependent part of the free energy is twice
the amount obtained by a more proper consideration of
phonon-phonon interactions, and (3) the correction
derived from a harmonic expression for E approaches a
constant value at high temperatures, whereas according
to anharmonicity theory it should vary as T. The
following general argument confirms the ‘“entropy”
correction, though with a modification which may be
significant at fairly low temperatures.

If the average number of phonons in the ith mode at
temperature T is #./, the associated entropy is (see, for
instance, Landau and Lifshitz®)

S¢=m!/+1)nm/+1)—n! Inn/, ©)

where the prime indicates a value which includes
anharmonicity. Putting #,/=#;(1+¢;), where #; is the
number of phonons in the harmonic approximation
{[exp(hw:/kT)—1T™, w; being the frequency at some
standard temperature} we have

S{=Si+eE/T (10)

to the first order of small quantities. The anharmonic
contribution to the heat capacity is

d(e:E:)/dT— e;E:/T. (11)

Starting from the energy, #nw;(1+¢+9;), the an-
harmonic contribution is

d(eE:)/dT+E(ds;/dT). (12)

Equating (11) and (12), e¢;=—7T(ds;/dT), and the
anharmonic contribution to the heat capacity is

—T[Ci(ds;/dT)+ E:(&:/aT?)]. (13)

Straight differentiation of the energy would give an
additional term C;d, in (12), which would make the first
term in (13) twice as large; this term is omitted because
it corresponds to a change of energy where the number
of phonons in the ith mode and the frequency change
simultaneously, i.e., to interaction between phonons

8 T. H. K. Barron, in Lattice Dynamics, edited by R. F. Wallis
(Pergamon Press, Inc., New York, 1965), p. 247.

® L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon
Press, Ltd., London, 1958), especially Chap. 5.
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belonging to the same mode, an effect which is included
in the changes of energy registered by neutrons. The
factor 2 appearing in the anharmonic correction if this
term is included presumably corresponds to the factor
2 previously mentioned in comparing results derived
from harmonic expressions for S and F, and to that
mentioned by Cowley.”

In order to achieve a practical summation of (13)
over 3NV modes, we adopt a procedure similar to that
used previously—divide phonons up into groups with
given average shifts, and determine average values of
the parameters @; by appropriate weighting. The
weights here are C; and E;, so the average parameter
will not be the same as before. Above ®/2 it will be
almost constant and about the same for both terms in
(13), and since in this case the shift of emphasis towards
low frequencies at low temperatures is not as great as
in the previous case and anyway occurs in a region
where the correction is almost negligible, we assume
that the average value of a; is independent of tempera-
ture, and call it ¢. The correction is then

—aT[C+E(dC/dT)]. (14)

The second term is negligible or almost so: At © it is
about one-tenth of the first term, and above that
temperature falls off approximately as 72 while the
first term increases approximately as 7'. In order to be
able to assess the second term below ©, approximate
factors of proportionality relative to the first term may
be derived from the Debye specific heat: They are
0.5, 0.3, 0.2, 0.15, and 0.1 at 7/0=0.2, 0.4, 0.6, 0.8,
and 1.0.

If the second term in (13) is neglected, it will be seen
that (13) is of the form T'(8S/0w;)(dw:/dT),, and the
corresponding term for changes at constant pressure is
evidently T(3S/0w;) (dwi/dT),. That is, the anharmonic
contribution to C, is approximately —a'C?T, where o’
is the average parameter derived from observed shifts
at constant pressure in the manner described above.

3.3 The Heat Capacity of Aluminum

In Table II, C denotes the heat capacity per mole
calculated from the phonon-frequency distribution of
Sec. 2.3, with the correction (7) included. The correction
is everywhere almost negligible. The next column,
(Cp—C.) (calculated value), is obtained from the first
by adding the correction (14), with the parameter a
determined from experimental frequency shifts (¢=5.4
X10~% J=* mole). Experimental values of C, have been
taken from Giauque and Meads® up to 300°K, and
above that from the American Institute of Physics
Handbook; of these latter values, only that at 800°K is
measured, the others being obtained by an interpolation
formula. The values of the electronic heat capacity C,

(1;’4\1)\)'. F. Giauque and P. F. Meads, J. Am. Chem. Soc. 63, 1897
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*-“.TaBLE II. The heat capacity of aluminum. 7 and ©
are in °K, other quantities in J deg™ mole™.

T Cc C,—C. Cp—C, C, C,—C, ©
(calc) (calc) (expt) (expt) (calc)
0 446
10 442
20 0.19 0.19 0.20 0.03 0.20 432
-30 0.78 0.78 0.81 0.04 0.81 405
40 1.99 1.99 2.04 0.05 2.04 392
50 0 368 - 3.69 3.75 0.07 3.74 389
60 5.61 . 5.63 5.67 0.09 5.65 390
80 9.45 9.51 9.53 0.12 948 393
100 12.71 12.83 12.91 0.13 12.78 395
120 .+ 15.24 15.44 15.51 0.14 15.32 396
140 - - 1717 17.46 17.51 0.15 17.22 396
160 18.63 19.01 19.13 0.16 18.73 396
200 20.62 21.16 21.39 0.19 20.81 396
250 22.06 22.84 23.02 0.23 22.16 395
300 2291 23.92 24.09 0.28 22.95 394
400 23.81 25.24 0.37 23.61
500 24.23 26.39 0.47 24.28
600 2444 27.56 0.56 24.86
700 24.55 28.68 0.65 25.29
800 24.63 29.85 0.74 25.48

have been taken from the low-temperature data of
Phillips" and the free-electron value: According to
Buckingham' and Buckingham and Schafroth®® the
low-temperature value is enhanced by electron-phonon
interaction,! so that there is a hump in the curve of C,
versus T at temperatures well below the Debye fre-
quency, and C. may be supposed to approach the free-
electron value at higher temperatures. Krebs!® has
calculated some of the integrals involved, and on the
basis of his curves we have supposed the electronic
specific heat to attain the free-electron value at ©/2,
after starting from 0°K as found by Phillips.!! The
experimental values of (C,—C,.) have been obtained
from (Cp—C.) with (C,—C,) calculated from expansion
data of Nix and Macnair'® and compressibility data of
Kamm and Alers,'” using the formula (C,—C,)= V~%/kr
© indicates effective Debye temperatures obtained by
referring the C values to a table of the Debye specific
heat function. That at 0°K corresponds to the poly-
nomial fitted to the low-frequency part of g(w) in Sec.
2.2, taking into account shifts of frequency between
80 and 0°K in agreement with the ultrasound data of
Kamm and Alers.!? (The shifts of low transverse phonon
frequencies between 80 and 300°K are the same as the
shifts of the corresponding sound velocities between
these temperatures, so we have assumed agreement
between 0 and 80°K as well.)

U E. Phillips, Phys. Rev. 114, 676 (1959).

12 M. J. Buckingham, Nature 168, 281 (1951).

3 M. J. Buckingham and M. R. Schafroth, Proc. Phys. Soc.
(London) 67, 828 (1954).

¥ N. W. Ashcroft and J. W. Wilkins [Phys. Letters 14, 285
(1965)7] find that the enhancement of the low-temperature elec-
tronic specific heat in aluminum and lead is wholly due to
electron-phonon interaction.

15 K. Krebs. Phys. Letters 6, 31 (1963).

16 F, C. Nix and D. MacNair, Phys. Rev. 60, 597 (1941).

17 G. N. Kamm and G. A. Alers, J. Appl. Phys. 35, 327 (1964).
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.Comparison of the calculated and experimental
values of (C,—C,) indicates that the correction calcus-
lated on the basis of our observed frequency shifts is
correct to within 109, which is as good as could be
expected [ the approximation adopted in Sec. 3.2, y~C,
makes our value of (C,—C,) at 300°K too low, and the
average shift must be assigned an error of at least 109, ].
Since C and the experimental values of (C,—C,) agree
within estimated margins of error up to 500°K, we may
conclude that any correction of form (14) to be applied
in this case is very small, which means that a quasi-
harmonic approximation with frequency shifts entirely
determined by changes of volume is excellent up to
500°K. On the bases of a Lennard-Jones interatomic
potential, Keller and Wallace'® estimated the an-
harmonic contribution to C, as —6.7X1073T J deg™!
mole™! above the Debye temperature; a glance at
Table II shows that this is at least a factor of 10 too
large, and not necessarily of the right sign. From 600°K
to the melting point (933°K) processes other than the
type of anharmonicity considered here evidently be-
come important.

The low-temperature values of the heat capacity,
stated in Table II as effective Debye temperatures, are
of some interest. Kamm and Alers!” obtained a value of
430.3°K at 0°K on the basis of their ultrasound data,
Phillipst 427.7°K from measurements of the heat
capacity below 4°K. Our value at 0°K is extrapolated,
and so of little weight. If we instead accept a value near
430°K, we conclude that there should be an anomaly
in the lattice heat capacity somewhere below 20°K, at
which temperature our value should be near the true
value. The reason that our values of ® at 0, 10, and
20°K are higher than that derived from ultrasound data
has already been given?: The phonon frequency distri-
bution determined by us must contain fewer phonons
in the range below 10® rad sec™® than the Debye distri-
bution based on the ultrasound data, so that even if we
allow the two distributions to coincide at the origin the
heat capacity must fall below the corresponding 7°
value before 20°K is reached (the specific heat at 20°K
is predominantly due to frequencies in the range of our
measurements). Unfortunately, the particularly ac-
curate measurements of the heat capacity by Phillips!!
do not extend beyond 4°K, at which temperature the
lattice heat capacity is only about 0.2 of the whole, and
a downward shift of even a few percent might be
difficult to see—particularly in view of the effect of
alternative temperature scales (see his Fig. 6). The
effective Debye temperature derived from the data of
Giauque and Meads!® at 15°K is 4504-5°K and at
20°K, 428+ 2°K (our corresponding figures are 438 and
432°K). However, irregularities in a curve of effective
Debye temperatures from their data plotted against
temperature (see Gilat and Nicklow,* Fig. 5) indicate
that the errors are probably larger than estimated by

s J. M. Keller and D. C. Wallace,; Phys. Rev. 126, 1275 (1962).
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them, and it is not possible to draw any conclusion from
the notably high value at 15°K. It may in any case be
difficult to observe an anomaly in the low-temperature
lattice heat capacity, because an anomaly of the oppo-
site kind and of a similar order of magnitude is expected
in the electronic heat capacity in the same temperature
region (see Buckingham® and Krebs's),

3.4 The Heat Capacity of Lead

Table IIT for lead is analogous to Table II for
aluminum. The experimental values of C, are from
various sources: At 4°K from van der Hoeven and
Keesom,! at 10°K from National Bureau of Standards
tables, at 15-300°K from Meads et al.,2° and at 400 and
500°K from Douglas and Dever.?* Meads et al. do not
give a direct estimate of errors, but comparisons of
their results with later results at three temperatures
where this is possible indicate an uncertainty of roughly
1% (Cp at 60°K is 23.0, at 80°K, 23.0 J deg™! mole™},
according to Horowitz et al.,”> while at 300°K Douglas
and Dever?! have C,=26.49 J deg™* mole™! and make
the comment that the results of Meads et al. appear to
be systematically too high near this temperature]. The
electronic heat capacity in Table III is mainly the free-
electron value, except at temperatures below S0°K,
where there is a slight “hump”’ as earlier described, with
a transition to the value given by van der Hoeven and

Tasre III. The heat capacity of lead. 7 and © are in °K,
other quantities in J deg™ mole™.

T C C(Cp,—C. Cy—C, C, Cy,—C, Co—C, Q
calc calc expt expt calc calc
0 103.5
4 0.13 0.13 0.13 0.01 0.13 0.13 98.0
10 2.92 2.93 2.78 0.03 2.78 2.93 85.2
15 7.06 7.07 7.18 0.05 7.18 7.06 87.2
20 1093 1095 1094 0.07 1092 10.92 89.2
25 1405 14.08 1399 007 1395 14.03 90.5
30 16.38 1643 16.43 0.07 16.36 16.36 91.2
35 18.11 18,18 1821 0.07 1812 18.08 92.1
40 1941 19.50 19.50 0.07 19.38 19.37 92.8
50 2114 2128 2126 0.08 2107 21.09 94
60 2220 2239 2234 0.09 2209 2213 95
80 2333 23.60 23.56 012 2318 2324 97
100 23.89 2425 2427 015 2378 23.78 98
150 2446 25.02 25.04 022 2428 24.28
200 24.66 2542 25.57 030 2450 2442
250 2476 25.72 2599 037 2462 2445
300 2481 2597 2640 045 2469 2445
400 24.86 26.85 0.60 2456 24.37
500 24.89 27.67 0.75 2461 24.27

19 J. C. Van der Hoeven, Jr., and P. H. Keesom, Phys. Rev. 137,
103 (1965).

2 P, F. Meads, W. R. Forsythe, and W. F. Giauque, J. Am.
Chem. Soc. 63, 1902 (1941).
(1;51‘5 B. Douglas and ]. L. Dever, ). Am. Chem. Soc. 76, 4824

2 M. Horowitz, A. A. Silvidi, S. F. Malaker, and J. G. Daunt,
Phys. Rev. 88, 1182 (1952).
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Keesom? for the region 0 to 4°K (it will be seen that
this latter feature is not important here). In calculating
(C,—C,), data on compressibility were taken from
Waldorf and Alers,? on expansion from Channing and
Weintroub? and, above 300°K, from the American
Institute of Physics Handbook.

The constant ¢ in correction (14), determined from
observed shifts of phonon frequency, was 4.8XX107¢ J=!
mole. The calculated and experimental values of
(Cp—C.) agree within about 109, having regard to the
fact that our correction is somewhat too low at 300°K
and the experimental value quoted probably too high.
This indicates that the correction formula is satis-
factory for lead, as it was for aluminum. Irregularities
in the experimental data make it difficult to estimate
the constant for a calculation of the anharmonic con-
tribution to C, in accordance with formula (14), and
there is of course always the uncertainty about Ce, but
we have nevertheless derived a rough estimate of the
parameter concerned in order to have a definite estimate
of the effect of anharmonicity on C,. With a=2.10-% J!
mole, we obtain the calculated values of (C,—C.) shown
in Table ITI. The general close agreement between the
calculated and experimental values of (C,—C.) seems
to hold up to about 400°K (at 300°K two alternative
experimental values?2 lie on either side of the calcu-
lated value), while beyond that temperature more
complicated anharmonic effects and/or vacancy forma-
tion begin to make an appreciable contribution. Keller
and Wallace!® estimated the anharmonic contribution
to C, above the Debye temperature as —1.14X107*T" J
deg™* mole™?; this is nine times the present result, and
obviously at variance with the experimental data.

The effective Debye temperatures in the last column
of Table III are derived from the calculated values of
(C,—C.). At 0°K ultrasound measurements® yield a
value 105.4°K, and calorimetry®® 105.3+0.8°K, and our
value, 103.5:£2°K, is in satisfactory agreement here,
which also applies to the values at 4°K-98.0-£1°K here
and 99.1°K from calorimetry.’® Above 4°K our results
rapidly increase in accuracy as a larger part of the
frequency distribution comes into play and errors in
individual phonon frequencies become of little signifi-
cance [between 10 and 30°K the estimated error in the
calculated value of (C,—C.) is 0.01 J deg™! mole™'] but
unfortunately the calorimetric results in this region are
very uncertain (see Figs. 3 and 5 of Ref. 22).
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