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The room-temperature phonon dispersion relation of a-Fe has been measured by using the neutron-
inelastic-scattering technique. Measurements were taken on phonon groups with their wave vectors in the
principal symmetry directions. A Born-von-K4rmén fifth-neighbor general-force-constant model was used
to analyze the data, and the phonon distribution function was obtained from the force-constant model.
We see no evidence for anomalous behavior in the phonon-dispersion curves; on the contrary, the phonon
spectrum is remarkably well behaved when compared with the results of the experiments performed on other

bee transition metals (Nb, Ta, Mo, and W).

I. INTRODUCTION

INCE the pioneering work by Brockhouse and co-
workers,! the inelastic scattering of thermal neu-
trons by the phonon excitations in solids has become a
powerful technique for studying the lattice dynamics of
solids. The conservation of crystal momentum (modulo
a reciprocal lattice vector) and the conservation of
energy in the coherent scattering of thermal neutrons
lead to the dispersion relations for the lattice excitations
of the solid.

The unique position of pure iron metal in the itinerant
electron theory of the magnetism of metals warrants a
comprehensive study of its lattice excitation spectrum.
Moreover, since one of the objects of a theory of metals
is to calculate the phonon spectrum, one can expect
that experimental results for iron will be of use in the
development of the theory for those metals in which
band admixture is of great importance. At the same
time, its high neutron coherent scattering cross section
(11.4 b) combined with its low incoherent (0.4 b) and
absorption cross sections (1.4 b) allow the collection of
reasonable phonon group intensities with comparatively
small sample volumes. For these reasons, then, iron
becomes a natural candidate for an inelastic neutron-
scattering experiment. The first attempt to measure the
phonon spectrum of iron was carried out by Low? using
the time-of-flight technique. While in the process of
analyzing our data, we became aware of measurements
carried out independently by Brockhouse et al.? and
Bergsma ef al.* with a three-crystal spectrometer. A
comparison will be made with the results of two more
recent experiments. In the present experiment, phonon
groups were measured with their wave vectors along
the [0,0,¢], [£:6,00, 647, [64,1], and the [3,3,¢]
symmetry directions.

In recent years, the pseudopotential theory of
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metals®® has provided an elegant theoretical frame-
work within which one can describe the properties. of
the simple metals. However, the approximations that
have been used in the pseudopotential formalism, in
particular the small-core approximation, preclude the
possibility of using the theory to calculate the properties
of the more complicated metals. Thus for want of a more
appropriate theory for these metals, their phonon spec-
tra have normally been analyzed along the lines of the
Born-von-Kérmén theory of lattice vibrations, with the
hope that it would provide a convenient method of col-
lecting and comparing the results of measurements on
different systems. Woods,! for example, has analyzed
the phonon spectra of the bece transition metals niobium,
tantalum, molybdenum, and tungsten and has shown
that a pattern does indeed exist for the force constants
of these metals. ...

In practice, the Born-von-Kdrmén theory consists of
assigning a force-constant matrix to each of the neigh-
bors of a particular atom, constructing the dynamical
matrix from the individual force-constant matrices, and
then solving the dynamical matrix for the phonon
energies and the associated phonon polarizations. For
example, in the bec lattice with one atom in the unit
cell, the atom at the %¢(1,1,1) position is given a force-
constant matrix of the form

a B B
B1 o '31} 1)
1',51 a

where the elements of the matrix can be interpreted as
the force on the atom at the origin in the sth direction
when the first neighbor atom is given a unit displace-
ment along the jth direction. The force constants are
substituted into the equations of motion

mé= 3 ZZ eii(De; (2)
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TasLE I. Experimental values of the phonon energy E for the [¢,¢,0] and [¢,9,¢] directions.

g(A™) E(meV) g(A™) E(meV) g(A™Y) E(meV) gAY E(meV)
9,90 Ta[g,9,0] L{g,9,4] Tlg,9,9]

0.141 7.54£0.3 0.219 7.94£0.2 0.231 15.5:£0.4 0.231 7.9::0.4
0.212 11.5+0.3 0.329 11.94:0.2 0.346 22.4%0.5 0346 12.0:£0.2
0.230 12.9+0.2 0.438 15.4+0.2 0.462 28.0+0.5 0.462 16.1+0.2
0.248 13.8£0.2 0.548 18.5-0.2 0.577 32.7+0.5 0.577 19.9.£0.3
0.265 14.84+0.2 0.566 19.0-:0.2 0.693 33.940.4 0.693 23.4+0.4
0.283 15.62:0.3 0.636 20.840.2 0.751 34.740.4 0.808 25.84-0.2
0.301 16.60.2 0.707 22.440.2 0.808 34.630.3 0.924 27.84-0.2
0.318 17.42:0.2 0.778 23.940.2 0.924 33.840.2 1.039 29.440.2
0.336 18.3+0.2 0.849 25.140.2 1.039 31.440.3 1.155 30.4£0.2
0.354 18.940.3 0.919 26.1-0.2 1.097 29.8-0.2 1.270 31.8£0.2
0.424 22.3+0.3 0.990 26.540.2 1.155 28.50.1 1.386 32.940.3
0.495 25.540.3 1.061 26.7+0.2 1.212 27.3%0.1 1.501 33.440.3
0.566 28.6=:0.2 1.096 26.7£0.2 1.270 25.940.1 1.617 34.540.3
0.636 31.3+£0.2 1.328 24.740.2 1.732 34.4+0.4
0.707 33.6:0.2 1.386 23.840.1 1.848 34.9+0.6
0.743 34.4+0.3 T1[g,4,0] 1.501 23.74+0.4 1.963 35.1+£0.4
0.778 35.54+0.3 1.096 18.5+£0.3 1.617 24.940.5 2.079 35.6=£0.4
0.813 36.140.3 1.730 27.74+0.2 2.192 35.40.2
0.884 37.140.3 1.846 30.40.2

0.955 38.240.3 1.961 33.2£0.2

1.025 38.3£0.4 2.077 34.940.3

1.096 38.3+0.5 2.192 35.4-:0.2

and the equations of motion are then solved for the
phonon energies as a function of a1 and B1; in Eq. (2), m
is the mass of the vibrating atom, the ¢;;(l) are the
elements of the force-constant matrix for the /th neigh-
bor, and ¢; is the displacement of the atom along the ith
direction from its equilibrium position. The elements a1
and B; can then be used as the first-neighbor parameters
in a least-squares fit to the data. In addition, one can
restrict the analysis to force systems that are of the
central or the axially symmetric type; this amounts to
introducing relationships among the elements of the
force-constant matrices, so that not all of the elements
are independent parameters in the fit to the data. The
force constants can also be of great value as a simple
mathematical description of the phonon spectrum. Gilat
and Raubenheimer!! have used this property in their
method of calculating the phonon distribution function.
Once the distribution function is known, one can cal-
culate the thermodynamic properties (specific heat,
Debye temperature, etc.) of the lattice within the
harmonic approximation. This approach was used in
the present study, and the results are presented in the
next section.

II. EXPERIMENTAL METHOD AND RESULTS

All the data were collected at the Brookhaven high
flux beam reactor using a standard three-crystal
spectrometer to analyze the outgoing neutron energy
and momentum. Incoming neutron energies of 45 and
65 meV were used to collect the majority of the data
points with the spectrometer operated in the constant-Q
mode and the incident neutron momentum fixed. To
limit the energy and momentum spread of the beam,

11 G. Gilat and L. J. Raubenheimer, Phys. Rev. 144, 390 (1966).

collimations of 30 and 20 min were normally used, before
and after the scattering. The sample was an excellent
cylindrical single crystal with the dimensions 1} in. in
height and % in. in diam. The mosaic spread of the
crystal, measured with a perfect germanium crystal as a
monochromator, was 7 min. full width at half-maximum.
The crystal was grown by the strain-anneal method by
Monocrystal Company of Cleveland, Ohio.

An attempt was made to make a rather complete
study of the phonon-dispersion surface and toward this
end a total of 126 phonon groups were measured and
analyzed. The data are given in Tables I and II and
plotted in Figs. 1-3. Two examples of the experimental
phonon group profiles are given in Fig. 4. The accuracy
of the experiment performed by Brockhouse et al3. is
comparable to ours (~19%), although the number of
phonon modes they measured is approximately % of
those measured in the present experiment. As is shown
by Brockhouse ef al.,* the agreement between the two
sets of data is quite satisfactory. However, a comparison
with the results of Bergsma et al.* shows a rather serious
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1G. 1. The room-temperature phonon dispersion curves of a-Fe
along the [0,0,¢] and [¢,¢,1] directions.



530

TaBirE II. Experimental values of the phonon energy E for the

MINKIEWICZ,

[0,0,¢1, [w/a,x/a,q], and [¢,q,27/a] directions.

SHIRANE,

q(&-Y) E(meV) g(A™) E(meV)
L[0,0,4] T70,0,4]

0.4 13.8+0.3 0.2 5.040.2

0.6 19.84+0.4 0.4 10.240.05

0.8 25.04+0.4 0.6 15.0£0.1

1.0 29.34+0.4 0.8 19.34-0.2

1.2 32.24+0.3 1.0 23.3+0.2

14 342404 1.096 25.1£0.2

1.6 35.540.7 1.315 28.7£0.2

1.8 35.8+0.5 1.534 31.440.3

2.0 36.040.6 1.753 33.44+0.5

2.192 35.4+0.2 1.973 35.4+0.5
2.192 35.4+0.2

w[w/a,m/a,q] Alr/a,m/a,q]

0.2 38.3+0.4 1.292 29.4+0.4

0.3 37.3£0.5 1.492 28.8+0.5

0.4 36.84-0.4 1.692 28.0+0.3

0.6 35.4+0.3 1.892 27.44+£0.4

0.8 33.3+0.3 2.092 26.7+0.4

1.0 31.0+0.3

1.2 28.84-0.3

1.492 25.740.4

1.692 22.44-0.5

1.892 20.1+£0.3

2.092 18.8-0.2

AEQ7q;27r/a’] 7"2[%%27"/0']

0.141 34.94-0.5 0.707 28.94+0.5

0.283 33.6+0.4 0.849 27.7+0.4

0.424 31.6+0.3 0.990 26.2+0.4

0.566 28.140.5 1.096 26.7+0.2

0.658 26.1+0.5

0.707 25.24+0.3

0.849 22.14+0.3

0.990 19.140.3

1.061 18.540.5
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Fic. 3. The room-temperature phonon dispersion curves of a-Fe
along the [{,{,¢] direction.

sentative phonon groups could be attributed to the
instrumental resolution function.

As noted before, we have analyzed the data along the
lines of the Born-von-Kérmén theory of lattice vibra-
tions. A number of models were used in a linear least-
squares fit to the data. We found that the axially sym-
metric force models did not seem to fit the data quite as
well as the tensor models, and that in any case, we had
to include interactions out to at least the third-neighbor
atoms. The dashed curves on Figs. 1-3 are the result of
the least-squares fit of the data to a fifth-neighbor tensor
model; the elements of the force-constant matrices are
given in Table III. The solid straight lines in Figs. 1-3
are the appropriate sound velocities as calculated from
the elastic constants of Rayne and Chandrasekhar.!?

disagreement for the longitudinal modes with their wave
vectors near the zone boundary in the [{,¢,0] direction.
For example, our value for the zone-boundary energy in
the [¢,¢,0] direction is approximately 5%, lower than
that quoted by Bergsma et al.%; the difference is well
outside of our experimental error. No attempts were
made to extract the phonon lifetimes from the widths of
the inelastic neutron groups; in fact, the analysis of
Cooper and Nathans!? showed that an overwhelming
fraction of the observed widths for a number of repre-
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F16. 2. The room-temperature phonon dispersion curves of a-Fe
along the [¢,5,0] and [§,3,¢7].

12 M. J. Cooper and R. Nathans (to be published).
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TasiE III. The elements of the force-constant matrices (in
units of 10¢ dyn/cm) from a least-squares fit of the data to a
fifth-neighbor general-force-constant model. The notation is taken
from Woods.»

Atom position

3a(L,L,1)  $2(20,0)  3a(220) 3a(BL1)  3a(2,2,2)
oq(XX) Olz(XX) aa(XX) aq(XX) as(XX)
1.688 1.463 0.092 —0.012 —0.029
Bi(XY) B2(YY) Bs(Y'Y) B«(YY) B5(XY)
1.501 0.055 —0.057 0.003 +0.032
v3(XY) v4(XZ)
0.069 0.052
84(XY)
0.0007

8 A, D. B. Woods, Inelastic Scattering of Neutrons in Solids and Liquids
(International Atomic Energy Agency, Vienna, 1963), Vol. II, p. 3,

The force constants that we obtained for the fifth-
neighbor tensor model were compared with those ob-
tained by Brockhouse et al.3; the agreement is quite
reasonable, and , in particular, we agree with the result
that a; is larger than By, which is an inequality peculiar?
to the bcc transition metals that have been studied to
date.

The phonon frequency distribution function g(v) has
been calculated by the method of Gilat and Rauben-
heimer,'? and is given in Fig. 5. The channel width,
which corresponds to the resolution in frequency space
with which one wants to define the distribution func-
tion, that has been used in the calculation for g(v),
is 1.5X10° cps. It should be noted that inherent in the
calculation for g(») is the assumption that the force
constants obtained from the phonon spectra along the
symmetry directions can be used to calculate the
phonon frequencies throughout the entire zone. This
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Fi1G. 5. The phonon distribution function of a-Fe calculated from
the fifth-neighbor general-force-constant model.
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assumption is justified in our case, since we see no
evidence for a sharp break or Kohn anomaly along the
principal symmetry directions in the phonon spectrum
of this metal. Gilat!* has recently shown that the dis-
tribution function of this metal has a rather unique
singularly at 8.58X10% cps; the singularity is one for
which the amplitude of g(v) is logarithmically divergent,
the divergence being probably limited by anharmonic
effects.

III. DISCUSSION

To satisfactorily reproduce the phonon spectrum of
a-Fe, we have used a Born—von-K4rmé4n force-constant
model that includes interactions out to the fifth-
neighbor atoms; the fact that the force system in-
cludes interactions out to the distant atoms is indicative,
to some extent, of the metallic nature of the inter-
atomic forces. One might have hoped that the phonon
spectrum would reflect some of the properties of the
band structure of the metal in a fairly straightforward
way, but the results of the experiment have shown that
the excitation spectrum has the rather normal behavior.
The spectrum is far from being as complicated as the
spectra taken for some of the other bec transition
metals. In fact, the phonon distribution functions of
a-Fe and the simple metal potassium are, at least
qualitatively, very similar.

An attempt was made to analyze the data with a
model for iron that was physically more appealing. We
tried to separate, in some sense, the total interatomic
interaction into a nearest-neighbor bonding or “quasi-
bonding” contribution and a metallic contribution. The
Born-von-Kdrman approach was used to parametrize
the bonding nearest-neighbor interaction, while a
reciprocal-space analysis, similar to the analysis used
recently by Cowley et al.' for potassium, was used to
characterize the metallic contribution to the total inter-
atomic interaction. The dynamical matrix was con-
structed and the parameters in the dynamical matrix
were used as the variables in a nonlinear least-squares
fit to the data. We could not obtain satisfactory results;
we are, however, continuing our effort in this direction.
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