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The charge and spin densities for bce iron were obtained from Bloch wave functions calculated by the
augmented-plane-wave (APW) method. An iterative spin-dependent Hartree-Fock-Slater calculation
was carried out and was found to yield a total spin per unit cell considerably in excess of the experimental
value. The APW method was also applied to the potential of Wakoh and Yamashita, and the x-ray and
neutron-scattering amplitudes were calculated from the resulting charge and spin densities for direct com-
parison with experiment. The neutron amplitudes are in reasonable agreement with experiment, and the
calculated spin density confirms the existence of a region of negative magnetization density which has been
inferred from experiment. The x-ray amplitudes for paired reflections indicate a much more nearly spherical
charge distribution than do the experimental values. The sensitivity of these results to the potential used
and the question of self-consistency have been investigated.

1. CALCULATION OF SCATTERING AMPLITUDES
FROM BLOCH FUNCTIONS

N a periodic ferromagnetic crystal, the electronic
spin density p,(r), the charge density of all oc-
cupied majority-spin states minus the charge density
of all occupied minority-spin states, can be expressed
as a Fourier series.

ps(T) = Z cjexp(iK;-1). (1)
7
In the absence of a contribution to the magnetization
from the orbital motion of the electrons, the magnetic
scattering amplitudes for the Bragg reflection of
neutrons are proportional to the Fourier coefficients
¢;! The sum in Eq. (1) runs over all the vectors K;
of the reciprocal lattice and the positive direction for
the spin density is defined in the scattering experiment
by an applied magnetic field perpendicular to the
scattering plane.? Similarly, the scattering amplitudes
for Bragg reflection of x rays are proportional to the
Fourier coefficients of the total charge density p(r).
In the calculations presented here, the charge and
spin densities of iron were calculated from the Bloch
states of spin-dependent periodic one-electron po-
tentials. One of these spin-dependent potentials was
that of Wakoh and Yamashita® (WY) in which the
spin dependence was introduced through a Slater
p® exchange potential* modified by an adjustable
parameter A:

V;{:exch(r) = —6(3/871‘) 1I3>\Ep(r) :tp,(r) ]“3) (2)

where the plus sign refers to states of majority spin
and atomic units with energy in rydbergs are used.
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In the Green’s-function energy-band calculation of
WY, the choice A=0.5, that is, Slater’s exchange ap-
proximation cut in half, gave a self-consistent value of
2.2 Bohr magnetons (ug) for the spin magnetization
per unit cell? In our band calculation applying the
augmented-plane-wave (APW) method® to this same
potential, we reproduced the bands of WY to within
0.01 Ry and the energies of many of the states to
within 0.001 Ry. To obtain the charge and spin den-
sities we summed the charge densities of our majority-
and minority-spin Bloch states up to a common Fermi
level using a grid of 128 points in the Brillouin zone.
In this way we found a total spin magnetization of
2.00pup. The discrepancy of 0.2up arises from the dif-
ference in methods of summing over occupied states.
In the calculation of WY, the Green’s-function method
was used to obtain the energy bands along symmetry
lines and then an interpolation based on tight binding
functions for the d bands and plane waves for s bands
was used to obtain the bands at other points. Thus,
WY had the advantage of summing over a finer grid of
points in the Brillouin zone but the disadvantage of
inaccuracy in the s band resulting from the fitting
procedure.

Because of the nature of the APW basis functions,
the charge and spin densities obtained from the Bloch
states are most conveniently expressed in terms of two
different expansions which apply to different regions
of the unit cell. In the interstitial region, defined to be
the region outside touching spheres surrounding the
atoms, the APW’s are plane waves and since a finite
number of these functions are used, the charge density
of a state is given by a finite Fourier series. A similar
Fourier series for the total charge or spin density is
then obtained by summing over states and is con-
venient for obtaining a numerical tabulation of these
functions in the interstitial region. Within the spheres,
the Bloch functions are expanded in terms of radial
functions and spherical harmonics so that it is con-
venient to express the square magnitude of the wave

5 J. C. Slater, Phys. Rev. 51, 846 (1937).
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TasLE 1. The first 27 Fourier coefficients of the calculated charge density ¢i, and the calculated spin density ¢, resulting from our
calculation using the WY potential are listed together with the experimental neutron diffraction results ¢,’, and the orbital contribution
cs described in the text. Each coefficient is multiplied by the volume of the unit cell 2=43/2, where a is the cube edge of the bcc lat-
tice. In these units [ug/ (unit cell) ], the experimental uncertainties in ¢.’ are estimated to be =0.013 for the first two Bragg reflections,
+0.0066 for the next two, and #0.0052 for the remaining ones (Ref. 6).

Charge Spin Expt. mag. Orb. mag.
K;a/2r Qc Q¢ xp952' Qcs QLce’ —cs—1.07¢5]
000 26.000 2.0000 2.2200 0.08 0.0000
110 18.371 1.2322 1.3964 0.0598 0.0182
200 15.124 0.7782 0.8969 0.0473 0.0169
211 13.033 0.4694 0.5546 0.0383 0.0141
220 11.536 0.3075 0.3852 0.0321 0.0241
310 10.409 0.2460 0.3044 0.0270 0.0142
222 9.628 0.1059 0.1365 0.0229 0.0003
321 8.977 0.0817 0.1015 0.0198 —0.0057
400 8.434 0.1206 0.1565 0.0169 0.0106
330 8.078 0.0225 0.0291 0.0147 —0.0097
411 8.052 0.0657 0.0828 0.0147 —0.0022
420 7.736 0.0305 0.0442 0.0129 —0.0013
332 7.487 —0.0273 —0.0362 0.0114 —0.0184
422 7.244 —0.0180 —0.0215 0.0100 —0.0122
431 7.045 —0.0248 —0.0291 0.0089 —0.0115
510 7.013 0.0320 0.0393 0.0089 —0.0038
521 6.698 —0.0065 0.0018 0.0073 0.0015
440 6.571 —0.0356 —0.0344 0.0067 —0.0030
433 6.450 —0.0534 —0.0604 0.0062 —0.0095
530 6.434 —0.0240 —0.0253 0.0062 —0.0058
442 6.327 —0.0485 —0.0435 0.0058 0.0026
600 6.290 0.0192 0.0262 0.0058 —0.0001
532 6.208 —0.0383 —0.0400 0.0056 —0.0046
611 6.183 0.0058 0.0113 0.0056 —0.0005
620 6.081 —0.0040 —0.0038 0.0054 —0.0049
541 5.997 —0.0379 —0.0415 0.0051 —0.0060
622 5.888 —0.0188 —0.0215 0.0050 —0.0064

function in the same form. In practice we need calculate
only the parts of these two expansions which are in-
variant under the operations of the cubic group since
the total charge and spin densities have the symmetry
of the crystal. Finally, we can Fourier analyze functions
represented by two such rapidly converging expansions
and obtain a Fourier series representing the charge or
spin density in the entire unit cell.

In Table I the neutron magnetic form factors®
scaled to the bulk magnetization of 2.22up per unit
cell in the forward direction, are given together with
the Fourier coefficients of our calculated spin density
multiplied by the volume of the unit cell. One source
of the difference between these two series is the orbital
contribution to the magnetization which is inferred
to be 0.08up per unit cell. This number comes from the
bulk magnetization and the measured magneto-
mechanical ratio of 1.93up/#%. Evaluation of the
orbital contribution is beyond the scope of our non-
relativistic theory since time-reversal symmetry rules
out the existence of any current density. That is, for
each occupied state yi(r), the state y_i(r) =¢r*(1)
is also occupied since E(k)=E(—k) and the current
densities of these two states cancel. In order to obtain
an orbital magnetization, it is necessary to consider
spin-orbit coupling. The series for the orbital mag-
netization given in Table I was calculated using atomic

6 C. G. Shull (private communication).

wave functions and arbitrarily averaging the de-
pendence of these form factors on the magnetic quan-
tum number of the 4 orbital.t

The differences between the spin part of the ex-
perimental coefficients and our calculated Fourier
coefficients of the spin density might have been con-
siderably smaller if the parameter in the exchange
potential had been adjusted to give a total spin mag-
netization of 2.14up per unit cell. If we estimate the
effect of such a change in the potential by multiplying
the calculated series by 1.07, then these differences
become considerably smaller for the shorter scattering
wave vectors as is shown in Table I. Thus our cal-
culation does not establish any significant difference
between the experimental spin density and that
calculated with the type of adjustable potential de-
scribed above.

II. NONSPHERICAL SPIN DENSITY

One interesting aspect of the neutron-difiraction data
is that the scattering amplitudes for different wave
vectors having the same magnitude are different.
The differences between the amplitudes of these
paired reflections are a direct measure of that part of
the magnetization density which cannot be expressed
as a lattice sum of spherically symmetric functions.
One can obtain an approximate physical interpretation
of these differences by assuming a model in which the
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Tasre II. Differences between coefficients of the spin density
given in Table I for the five pairs of reflections having scattering
vectors of equal magnitude.

K1 Kz QAC2I QACe 1. 07QA02
411 330 0.0537 0.0432 0.0462
510 431 0.0684 0.0568 0.0608
530 433 0.0351 0.0294 0.0315
600 442 0.0697 0.0677 0.0724
611 532 0.0513 0.0441 0.0472

crystal spin density is a lattice sum of atomic spin
densities which are nonspherical because of the partial
occupation of the d shell. In this model, the difference
between spin-density amplitudes for a paired re-
flection is7

AC=[W4(K1) —W4(K2):|(”e—%nt) fm P3d2(r).74(Kr) dr)
0
(3)

where 7, and 7, are the net numbers of spins in the
ty, and ¢, d orbitals, respectively, Ps;(7) is the assumed
radial function for all d orbitals, K is the magnitude
of the scattering vectors K; and K,, W, is a suitably
normalized cubic harmonic, and j; is the spherical
Bessel function for /=4. From the values of Ac given
in Table IT we see that the calculated values are some-
what smaller than the experimental ones though by no
more than 209%,. If we “renormalize” the calculated
values by multiplying by 1.07 to correct the total spin
as before, the agreement is within about 109, which is
the approximate experimental uncertainty in these
quantities.

1II. NEGATIVE MAGNETIZATION DENSITY

Another interesting property of the spin density is
that its sign is negative over a large portion of the
interstitial region, i.e., the magnetization is pointing
in the direction opposite to the bulk magnetization.
One can gain some insight into this result by consider-
ing a pair of corresponding spin-up and spin-down
Bloch states. By corresponding we mean that the
states would coincide if there were no spin dependence
in the potential. As one might expect from Eq. (2),
the difference between the potentials for these two
states is largest well inside the atom where the d
orbitals responsible for most of the spin density are
large. This spin dependence in the potential tends to
pull the wave function of the majority-spin state
toward the concentration of spin density inside the
atom while pushing the wave function of the minority-
spin state outward. Thus if both states are occupied,
they make a positive contribution to the spin density

7R. J. Weiss and A. J. Freeman, J. Phys. Chem. Solids 10,
147 (1959).
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within the atom and a negative contribution in the
interstitial region. Since each majority state lies below
the corresponding minority state, the calculated net
spin implies that two majority states per unit cell have
their corresponding minority states above the Fermi
level. These states of course make a positive contribu-
tion to the spin density in the interstitial region which
must be outweighed by the polarization of the pairs of
corresponding occupied states if a region of negative
spin density is to exist.

Since the negative spin density is quite small, having
a calculated maximum value of —0.002 electron
spins/cubic Bohr radius as compared with a value of
0.558 at the peak of the 3d function, it is difficult to get
an accurate measurement of it since only a finite
number of Fourier coefficients of the magnetization
density are available from experiment. Similarly, the
theoretical calculation of the spin density in the
negative region involves considerable cancellation so
that well-converged wave functions are required and a
sufficient number of points in the Brillouin zone must
be used. Having looked into the convergence of our
Bloch functions and the matter of summing over the
Brillouin zone, we find that the calculated negative
spin density is significant. To ease the convergence
difficulty in Fourier transforming the neutron data, a
block-averaging procedure has been introduced in
which one tries to evaluate the average spin density in
a cube surrounding a given point rather than the value
of the spin density at that point.! The sum which is
then performed is

sink ;»0 sink ;0 sink;,8
K6 Kid Kjpd'’

ps(1) = Z ¢j exp(iK;-1) (4)
J

where 26 is the length of the edge of this cube. In Table
IIT we present the block averages obtained from the
experimental Fourier coefficients and from our cal-
culated Fourier coefficients treated exactly the same
way. In these comparisons the orbital contribution to
the magnetization may be neglected since the block
averages of this part are not significantly different from
zero at the points in question. We also compare the
truncated block averages at two points with the block
averages of our finite Fourier series mentioned above
and with the values of ps(r) at these points. From our
numbers in the table we see that 5,(r) is somewhat dif-
ferent from p,(r) while the block averages obtained
from the first 27 Fourier coefficients of p,(r) are
reasonably accurate. Thus both the theory and ex-
periment establish the presence of a region of negative
spin density with its maximum value at the point
(a/2, a/4, 0) which is the point in the unit cell furthest
from the atom.

8 C. G. Shull and H. A. Mook, Phys. Rev. Letters 16, 184
(1966). The revised values for the block averages quoted here
were presented by C. G. Shull at the Symposium on Neutron
Scattering, 1967 AIME Annual Meeting, Los Angeles, California.
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TasLE ITI. The calculated spin density p,(r) at points in the interstitial volume is compared with the block averages s(r) at these
points and with the values of the block averages obtained from the first 27 Fourier coefficients. The numbers in the last two columns
were obtained by carrying the sum in Eq. (4) out to each of the last 16 terms and then averaging these partial sums.

ps(1) Ps(r) expt.

r ps(1T) ps(r) (27 terms) (27 terms)
(2a00) —0.000736 —0.000279 —0.000246 0.0013-0.0010
(3a 1a 0) —0.002008 —0.001507 —0.001411 —0.0020-+0.0006

16 (5/32)a (5/32)a] —0.000765 —0.0013+0.0006

IV. NONSPHERICAL CHARGE DENSITY

Some recent experimental information relating to the
charge density consists of the ratios of the squares of
the form factors for two paired reflections®:

1?(442) /f2(600) =1.054-0.01,
12(330) /f2(411) =1.023+-0.005.

The corresponding results from our calculations using
the potential of WY are

12(442) /£2(600) = 1.0115,
12(330) /f2(411) =1.0063.

Since the differences of these ratios from unity measure
the nonspherical part of the charge density, we can see
that the calculated nonspherical charge density is
about four times smaller than that indicated by ex-
periment.

It is of interest to see what effect a nonspherically
symmetric potential within the atoms would have
upon the nonspherical charge and spin densities. Well
inside the atom, the aspherity of the charge and spin
densities of the d shell will give rise to nonspherical
terms in the Coulomb and exchange parts of the
potential. Of these, the Coulomb term will tend to
reduce the aspherity of the charge density while the
exchange term will have the opposite effect. A com-
parison of these two terms, assuming the nonspherical
charge and spin densities inferred from experiment,?
and using Slater’s approximation to estimate the
exchange, indicates that the exchange effect may be the
larger. We can get an idea of how such a perturbing
potential would affect the charge density by finding its
effect to first order on the energies, and hence the
occupation of states near the Fermi level. From
these estimates it appears that the effect of these
nonspherical terms in the potential is several times too
small to resolve the discrepancy in the nonspherical
part of the charge density.

The amplitudes of the paired x-ray reflections in-
dicate a preponderence of f,, over e, charge density

¢J. J. DeMarco and R. J. Weiss, Phys. Letters 18, 92 (1965).

greater than the 3:2 ratio which would give spherical
symmetry. This implies a piling up of charge along the
nearest-neighbor (111) directions and a depletion of
charge along the (100) direction. If we consider the
crystal potential at a given radial distance from the
center of the atom, we expect the overlapping of
neighboring atoms to lower the potential along the
nearest-neighbor directions favoring a concentration of
the charge density in these directions. Part of this
qualitative aspect of the potential is suppressed by the
“muffin-tin” approximation to the potential used in
both the APW and Green’s-function methods. If the
potential used in the band calculation were allowed to
vary in the interstitial region and depart from spherical
symmetry within the atomic spheres, the calculated
nonspherical charge density would presumably be en-
larged by the overlap effect. Using a superposition of
atomic charge densities, we have calculated a non-
spherical potential arising from overlap. By estimating
the effect of this nonspherical potential as above, we
conclude that its effect on the calculated nonspherical
charge density is also too small to account for the
discrepancy.

V. SELF-CONSISTENT CALCULATIONS

Another matter bearing on the significance of our
results is the sensitivity of these results to the spherical
potential used inside the atomic sphere. One might
hope that either the charge and spin densities would be
much the same for various reasonable choices of the
potential, or that the sensitivity of these functions to
the assumed potential might be used in a semiempirical
way to determine a suitable prescription for the crystal
potential. Since such sensitivity is found to exist, we
have considered a somewhat generalized Hartree-
Fock-Slater (HFS) prescription in which the one-
electron potential set up by a charge density p(r)
and a spin density p,(r) consists of the usual Coulomb
part plus an exchange part of the form

Vioxen=—6(3/8m) " A[p(r) £ Bps(r) I'},  (5)
where the constants A and B are equal to unity for
Slater’s approximation. In our first series of calcu-
lations we used 4 =B=1 starting from a superposition
of atomic charge and spin densities obtained from the
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TaBLE IV. Summary of APW results for five different spin-dependent potentials. V; and V, are the first and fourth potentials, re-
spectively, of the iterative HFS calculation. Vwy and Vwy' are described in the text and Vwy™ was obtained from the same charge
and spin densities used to derive Vwy'. The zero of the energy scale on which the Fermi energy Ep is given corresponds to the constant
majority-spin potential in the interstitial region. Qous and Seut are the integrals of p(r) and p,(r) over the interstitial region and the

values of p,(r) are given in electron spins/cubic Bohr radius.

Potential V1 Vs Vwy Vwy' Vwy*

A 1 1 0.7 1

B 1 1 cee 0.71 0.5

Ep 0.62133 0.59233 0.65670 0.69526 —0.00290
fﬂp, (r)d3r 2.51566 2.68298 2.00000 2.00000 1.82813
Qout 0.74201 0.82514 0.88353 0.93538 0.19988
Sout —0.03914 —0.10166 —0.02166 —0.02221 —0.00572
ps(3a 1a 0) —0.002747 —0.005458 —0.002008 —0.002018 —0.000499
ps(3600) —0.001713 —0.004601 —0.000736 —0.000741 —0.000385
ps(ta ia la) 0.001210 —0.000139 0.001211 0.001183 0.000355

HFS atomic program of Herman and Skillman.
After four iterations of this calculation, we found that
the total spin magnetization per unit cell was 2.68ug
and was slowly increasing. In Table IV are listed some
of the parameters characterizing the results of this
calculation.

It would be of interest to know the results of self-
consistent calculations using a wide variety of values
for 4 and B, but such calculations are rather costly.
The work of WY is not an example of such a calculation
since the above self-consistent prescription was used in
their calculation only to determine the difference
between the one-electron potential to be used in the
crystal and a free-ion potential for Fet. This free-ion
potential was chosen to be the potential for which the
Hartree-Fock radial 3d function satisfies the radial
Schrodinger equation.® If we assume that the charge
and spin densities of WY are correct, we can use them
to determine the parameters in the exchange potential.
To do this we use the charge density together with a
Hartree-Fock core charge density to- calculate the
Coulomb potential. We then subtract this Coulomb
potential from the WY potential and fit the remainder
to the form of Eq. (5). This fitting procedure is easily
reduced to the determination of one parameter by
considering the difference between the spin-up and
spin-down potentials expanded in powers of p,(1) /p(r) :

AVesen= —6(3/8m) 13 4p'3(r)

2Bp.(x) | 10B%3(x)
[3p(r> 8l ] (6)

Since ps(r)/p(r) is considerably less than 1 for all r,
the spin dependence of the potential is very nearly
proportional to AB and since the spin dependence of
the WY potential Vwy is given by Eq. (5) with
A=0.5 and B=1, we choose AB=0.5. The choice

10 F, Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1963).

A=0.7 and B=0.71 gave about as good a fit to Vyy
as we could obtain using Eq. (5). As can be seen in
Table IV, the spin density resulting from a band
calculation with this new potential Vwy’ is very close
to that obtained from Vwy indicating that the fit to
the spin dependence of the potential is very good.
Using the slightly different charge and spin densities
obtained for Vwy', we have calculated another potential
Vwy'' with the same values of 4 and B. Since Vwy”’
is even closer to Vwy' than Vwy' is to Vwy, we
seem to have an approximately self-consistent calcula-
tion for this particular choice of exchange parameters.

As a check on the sensitivity of our results to the
exchange approximation used, we have constructed a
potential Vwy™® from the charge and spin densities of
the WY calculation with 4=1.0 and B=0.5. Since
this exchange formula is the same as Slater’s except
for a weakening of the spin dependence, one might
have expected it to yield results similar to those of our
original HFS calculation but with a reduction of the
calculated spin density. The energy band results
from this potential, however, are drastically different
from those mentioned above, having essentially all
eight valence electrons in the @ shell and thus a rela-
tively small charge in the interstital region. The
lack of conduction electrons is also shown by the
Fermi energy which is much lower than both the
HFS and WY Fermi energies, which are rather close
to each other as can be seen in Table IV. A calculation
of the potential set up by the charge and spin densities
of this calculation shows that it is far from being self-
consistent. In view of our earlier HFS results, it would
seem that the exchange formula with 4 =1.0 and B=
0.5 would give a much more reasonable band structure
if it were carried to self-consistency.

VI. CONCLUSION

In our calculation using the potential of WY, we
have found neutron-scattering amplitudes which are in
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reasonable agreement with experiment and which might
be brought considerably closer to experiment by a
slight modification of the potential. We have also
found that these results are close to self-consistency in
the context of one modified HFS approximation
(4=0.7, B=0.71) and far from self-consistency in
another (A4=1.0, B=0.5). On the other hand, the
unmodified HFS approximation leads to a total spin
per unit cell which is clearly too large. In contrast
with the spin density, the calculated charge density
has not shown sufficient sensitivity to the differences
between potentials used in our calculations to account
for the discrepancy in the x-ray scattering intensities.
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The field-induced magnetic phase transitions in MnCly-4H;0 were investigated by measuring the dif-
ferential magnetic susceptibility between 0.26 and 1.5°K in external magnetic fields up to 27 kOe. With
the external field along the most preferred axis of the crystal (¢’ direction), both the antiferromagnetic—-
to-spin-flop (AF-to-SP) and the spin-flop-to-paramagnetic (SF-to-P) transitions were observed below
1.3°K. The AF-to-SF transition appears to be a first-order transition, as predicted by molecular-field theory.
The temperature dependence of the phase boundary is given by Hc=Ha+bT, where Ho="7550210 Oe
and b=4344-10 Oe/deg. Within the spin-flop state x.- is roughly constant and approximately equal to the
value of x+ in zero field. At the SF-to-P phase boundary, x.- drops rapidly to zero. The temperature de-
pendence of the SF-to-P transition is given by He=H(1— CT") up to about 0.7°K, where He=20.624-0.03

kOe, #=1.822-0.10, and ¢=0.228--0.002.

EASUREMENTS of the ac magnetic susceptibil-
ity of antiferromagnetic MnCly+4H,0 have been
made in fields up to 27 kOe in the temperature range
0.26 to 1.5°K. Both the antiferromagnetic-to-spin-flop
(AF-to-SF) and the spin-flop-to—paramagnetic (SF-
to-P) phase transition boundaries were clearly deter-
mined from the data. These two phase boundaries
together with the antiferromagnetic-to-paramagnetic
(AF-to-P) boundary form a triple point at 1.30°K.
The AF-to-SF critical field was found to fit the equa-
tion H, (AF-to-SF)=H+bT, where H,=75504-10 Oe
and 5=4344-10 Oe/deg throughout the entire temper-
ature range from 0.26 to 1.30°K. The best fit for the
SF-to-P critical field up to 0.70°K was found to be
H, (SF-to-P) =H,(1—CT"»), where H.,=20.620.03
kOe, #=1.82+0.10, and C=0.2284-0.002.

Single crystals of MnCl,-4H.0 were grown by evap-
oration from saturated solutions at room temperature.
MnClp-4H;0 has a monoclinic structure! with the angle

* Research sponsored by the U. S. Atomic Energy Commission
under contract with Union Carbide Corporation.

1A, Zalkin, J. D. Forrester, and D. H. Templeton, Inorg.
Chem. 3, 529 (1964).

B=99°'. The crystals grow with the b¢’ plane promi-
nent. The orientations of the crystal axes were deter-
mined by x-ray precession techniques. Most of the
measurements were made with the external field parallel
to the ¢’ axis (L to ab plane), and it is believed that
this is the most preferred direction for this crystal.

The external field was produced by a superconduct-
ing solenoid. The differential susceptibility x=dM/dH
was determined by measuring the mutual inductance
of a pair of coils surrounding the sample. A Cryotronics
mutual inductance bridge was employed for these meas-
urements. The coils were similar to those described by
various authors?3 for magnetic temperature measure-
ments at very low temperatures.

A He® refrigerator was used to obtain temperatures
below 1.2°K. The temperature was determined by

2W. R. Abel, A. C. Anderson, and J. C. Wheatley, Rev. Sci.
Instr. 35, 444 (1964).

3D. De Klerk and M. J. Steenland, in Progress in Low Tem-
perature Physics, edited by C. J. Gorter (North-Holland Publish-
ing Company, Amsterdam, 1955), Vol. I, p. 273.

4H. M. Gijsman, N. J. Poulis, and J. Van den Handel, Physica
25, 954 (1959).



